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Good  morning.  In  the  previous  lecture  on  optimization,  we  studied  the  conceptual

framework, conceptual background of multivariate optimization. In this lecture, we will

be studying some of the methods to  solve optimization problems.  Now, some of the

methods are called direct methods that is because they use only the function values and

not derivatives. And one direct method we will study first, and then we will continue into

the study of methods based on variance also that is steepest descent, Newton’s method,

and hybrid method.
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So,  first  the  direct  methods,  these  are  some of  the  direct  methods  and  some of  the

methods are very simple in operation.  And one of these methods I will  use here for

elaboration that is Nelder and Mead’s simplex search method. And all  these methods

utilize only function values and do not use the variance or derivatives. And therefore,

they are of great value for those functions which are not differentiable that is which are

not  differentiable  at  several  points in the domain.  For such functions  these are  quite

important, because derivative based methods will not be appropriate for such functions.

Even when derivatives exist, derivatives are defined there are also quite often we find

that  using  this  kind  of  a  method  which  does  not  use  a  derivative  is  helpful  if  the

derivative  evaluation  is  computationally  quite  costly.  However  whenever  derivatives

exist, we use a method which gives us derivative because using derivatives every step of

the algorithm can make longer sweeps. So, first we study derivative free method or direct

method that is Nelder and Mead’s simplex search method.
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Now, those of you who have a background of linear programming, they know that there

is a simplex method in the linear programming methods also. Now, this simplex method

is  different  from  that  and  this  is  called  non-linear  problems,  and  that  is  why  to

differentiate it from the simplex method for LP problems we call it as Nelder and Mead’s

simplex search method. Now, first thing what is a simplex? In two-dimensional space, a

triangle is the simplex that is a polygon composed of three vertices; in three-dimensional

space,  a  tetrahedron  is  a  simplex.  Now,  in  two-dimensional  space,  among  triangle

quadrilateral, pentagon, hexagon and so on what is so special for a triangle, the special

property of a triangle which is not shared by any other polygons is that triangle by nature

is convex.
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For example if I give you four points in sequence A, B, C D, the quadrilateral that you

form out of it in that sequence does not have to be convex, see this is not convex. On the

other hand, if I give you only three points and ask you to frame a triangle you cannot

frame a triangle without the triangle being convex. So, by nature by definition itself a

triangle is a convex region that is an advantage. Similarly, in three-dimensional space

tetrahedron as long as it is non-degenerate that is all the four points are not in the single

plane in that case a tetrahedron cannot be formed.

So, a tetrahedron is by nature convex to begin with similarly in an n-dimensional space a

similar  geometric  entity  a similar  geometric  figure a  polytope composed of n plus 1

vertices is s simplex. So, a triangle is a simplex in two-dimensional space that is a plane;

a tetrahedron is a simplex in the three-dimensional space; and in n-dimensional space a

polytope formed with n plus 1 vertices is a simplex.

Now Nelder  and Mead’s method iterates  over  simplexes  that  are  non-degenerate.  To

begin with we must give it  a simplex which is  non-degenerate  that  is  all  the n plus

vertices do not fall in a single hyper plane that kind of a simplex we have to give in the

beginning. And then the methods step the typical iterative step of the simplex method we

are ensured that at one step one vertex of the simplex method will be replaced by a new

vertex and like that the simplex will keep on changing iteration by iteration travelling



towards a minimum point of the function. Now, framing initial n plus 1 vertices which

form a non-degenerate simplex is actually not very difficult.
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For example,  if  you take one point  in n-dimensional  space then finding additional  n

points in order to form a non-degenerate simplex is easy because from this point if you

move towards x 1 direction by little amount x 2 direction by a little amount and so on.

So, like that n directions among the coordinate directions itself you will get which will

give you additional n points and this original point n plus 1 points, so that will be a

simplex which will be non-degenerate.

So, in 2D plane the corresponding thing is that corresponding situation is that whatever

point you take from that move in the x direction a little and y direction a little and then

you get two further points and this is a valid triangle, no chance of all the three points

falling on the same line. So, like that developing n plus 1 points which form a non-

degenerate simplex is actually easy, you develop such a simplex and start the iteration.

Now, in the typical iteration, beforehand we evaluate the function at these n plus points

and after developing the function values after evaluating the function at these points we

identify three of the n plus 1 vertices. The point x w the vertex x w which is the worst

point, where the function value is the worst that is highest for a minimization problem.

The best point x b, where among these n plus 1 vertices the function value is lowest. And

the second worst point x s.



Now, in one iteration of the simplex method, this worst point x w will be replaced with a

good point how to do that. So, we try to find out the centre of gravity of the face not

containing x w. So, in this simplex of n plus 1 vertices every collection of n  vertices

define a face. Now, that face which contains all the vertices except the worst point the

centre of gravity of that face is found by simply adding the position vectors of their

vertices its vertices and dividing by n out of the n plus 1 vertices n vertices are included

here, that is excepting the worst point. So, therefore, divide by n. So, this x c is the centre

of gravity of that face, which does not contain the worst point.

Now, for example, suppose this tetrahedron is the simplex and this is the worst point.

Now, the centre of gravity of the face not containing the worst point will be the centre

gravity of this triangle. So, suppose this is here. Now, from x w to x c, if we draw a line

and extend it further behind then this is a point, which is the reflected point, reflection

not by this plane, but against this point. Why we do this, because among the vertices of

the simplex this is the worst point then from this plane from this hyper plane this side is a

bad side. So, we try to go on the other side. So, we come from x w to x c and further go

behind by equal amount and that is the reflected point x r, so that is x r. Now, this x r is

the  default  replacement  for  x  w.  Now, other  than  this  default  replacement  we  can

consider several other options.
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See default option is here where this reflected point this is x w, this is reflected point x r

and this line segment this line shows the face not containing the worst point x w. So, this

is x r which is a default new point to be used for replacing x w in the simplex. There can

be some other possibilities.  For example,  if it  happens that we find that the function

value at x r, f of x r f at x r turns out to be better compared to even the best point that we

have right now. Among the current vertices of the simplex whatever is the best point

compared to that also if the reflected point is better that will mean that it is a very good

direction to go forward.

So, in that case we may decide not to stop at this point itself, but to go further so that

means, we will expand the simplex not keeping it of the same size, but we will expand

the simplex and go here, this is the (Refer Time: 10:51). So, if the function value at x r

turns out to be lower than function value at x best, then we consider an expansion of the

simplex. On the other extreme, if the function value at x r turns out to be worse than the

current  worst  point;  that  means,  that  staying on this  side of the plane itself  is  better

because  on  that  side  it  is  even worse.  So,  then  we consider  a  negative  contraction,

contraction on the old side itself not on the new side at all.

On the other hand, if we find that the function value is between x s and x w that is it is

better  than  the worst  point,  but  worse than the  current  second worst  point  even that

means, that it is not a great idea to go all the way to x r. Because the moment we accept

this and frame the new simplex this new comer will be ready for expansion, because

after the x w point is replaced with this then this will become the worst point because it

worse than the second worst point. So, that is why going x r may not be a good idea

though this direction is good. So, in that case we consider a positive contraction that is

here.

So, all these special measures expansion, contraction of either kind can be affected, so

this kind of measures, that if the reflected point is better than the current best then we

expand that is x c plus alpha into x c minus x w, alpha equal to 1 would mean taking a

side itself. So, alpha is greater than 1 that is that will bring us here the simplex will be

expanded.  If  x  r  is  worse  than  the  current  worst  point  that  is  here  then  negative

contraction that is x c minus beta into x c minus x w. So, beta is between 0 and 1, so that

will give us this kind of a point in between that way the simplex will get reduced in size.



In this case, where x r is better than the worst, but worst than the second worst that is in

between the two worst points currently then we consider a positive contraction, this in

place of this minus sign, we have a plus sign the rest of it is same. So, the simplex is

nevertheless reduced in size, but it is brought to this side. And if the function value at x r

the reflected point turns out to be worse than the current best point, but better then the

two worst points at present, then we take the default value default point which is the

reflected point itself. This is a typical iteration. And as this situation goes on then finding

good directions the simplex is expanded in order to explore the such space and when

good directions do not come forthcoming then the simplex is reduced to such negative

contractions and positive contractions, and slowly the size of the simplex goes down and

that way squeezing the minimum point.

So, finally, the termination condition part term aside is when the vertices of the simplex

come extremely close to each other approaching that tolerance or accuracy required by

the problem. So, this is one very good method which uses only function values and it

operates remarkably well for most of the problems. However, if variant is available then

that is if the function is differentiable, and the derivatives can be developed without too

much of computational  cost  then most  of  the  time we use derivative  based methods

because they are relatively faster more efficient.
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So,  the  most  straight  forward  method  conceptually  simplest  idea  is  that  of  steepest

descent method or Cauchy’s method. This is typically a line searched based method in

which from a point x k initially x 0 the guest point given and in intermediate steps the

current point the current iterate. So, from a current point x k, a move through alpha units

in a direction d k results in this kind of a situation f of x k plus alpha into d k which will

be up to first order approximation will be alpha into variant transpose d k. Now, this is a

first order up to first. So, if you omit the high order terms then you find that this is the

change in the function value.

Now, if  along the direction  d k,  if  the function  value decreases  at  least  in  the local

neighborhood, then you call that direction d k as a descent direction that is for positive

alpha if  this  is negative then a direction is called a descent direction.  It  is along the

direction  an  infinite  decimal  step  will  tend  to  decrease  the  function.  And  since  our

problem is  that  of  minimization  typically  we would  like  to  operate  along  a  descent

direction.

Now, if  we are going to  operate  on a  descent  direction,  then  y naught  pick  up that

direction along which the descent is fastest or steepest descent and that will be in the

direction of negative gradient, because gradient of a function is gives you that direction

along which the function increases fastest.  So,  its  negative direction will  give you a

direction along which the function will decrease fastest. So, if you take that direction

which  is  the  direction  of  steepest  descent  that  is  fastest  decrease  that  is  a  negative

gradient. You can take minus g k negative of the gradient factor or the unit factor along

that direction it does not matter. So, after selecting that if you select that direction then

that corresponding method is called the method of steepest descent or Cauchy’s method.

Then you say that after deciding the direction we decide we try to pose the problem to

minimize the function along that direction that is how far to go in that direction first we

have decided which way to go and that choice of that direction like this has characterized

the method of steepest descent. And then along that direction we want to now decide

how far to go that is the line search sub problem. So, if you want to conduct a line search

along that direction then we say that how far what is alpha how far to go, so that along

that line the function is minimized.



So, after decision of the direction d k has been made, this problem is a single variable

problem because we are trying to find out how far what is the distance alpha that we

have to move. So, f of x k plus alpha k we want to minimize with respect to alpha. So,

this function pi of alpha is a single variable function. So, if we try to exactly minimize

the function along this line then the process is called exact line search. On the other

hand, sometimes we conduct an inexact line sets that is decreased sufficiently and then

from there we try to work out a new direction that is also in practice.  In fact,  more

professional algorithms use inexact line set, but for a time being to keep things simple

we talk of exact line sets only.

So, for exact line sets, we will terminate at that point where along that line the function

while reducing, reducing, reducing, stops reducing and then starts increasing again. That

means,  we  are  looking  for  that  point  where  the  function  stops  changing  along  this

direction that is phi prime is 0 at which value of alpha the phi, phi prime the derivative of

phi with respect to be alpha becomes 0. If I differentiate this with the help of the chain

rule then we find gradient of this function at this point transpose derivative of this with

respect to alpha that is d k, so this should be 0. So, we are looking for that point that

alpha k where this will be 0.
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What happens is that if the function contours are like this, here is a minimum point. And

if  I  have started somewhere at  this  point,  then at  this  point  the gradient  is  this  way



orthogonal to the contour and then negative gradient is this direction, and the steepest

descent direction is this. So, in the steepest descent method, this is the direction along

which the line search is conducted. And as we proceed along this direction on the way

contours are cut like this. And finally, we approach a point where a contour is tangential

to the direction that is a point where the line sets ends, there is a point where an exact

line set would end. So, that is as you cut the contour inward, the function value goes on

decreasing,  decreasing,  decreasing  and  at  the  tangential  point  it  does  not  decrease

anymore; beyond that it would you would end up cutting the same contours outward, so

you stop here at this point.

So, this is the point where the gradient is in this direction and it is orthogonal to the

current search direction.  Initially we started searching along the direction,  which was

exact negative to the gradient, but finally we arrive at a point where the current direction

is at right angle to the gradient direction, so that is the end of one iteration. From there

the fresh gradient is evaluated from this way and the search in a negative gradient would

go like this which would be tangential to the another contour here, and this is the way in

which we will proceed. So, this is the method of steepest descent.

Now if you conduct exact line search in any method then you will find that the direction

along which the line search is made at the end of the exact line search, the gradient at the

final point turns out to be orthogonal to this search direction. In the case of the steepest

descent method, its negative will be the next search direction orthogonal to d k. So, this

is the way the steepest descent method works.
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And if  you try to work out an algorithm out  of it  then this  is  how it  will  look like

selecting a starting point x 0 and several termination parameters tolerance values etcetera

and maximum number of iterations. The termination condition for the steepest descent

algorithm will be the vanishing of the gradient. If a gradient at a point is found to have

very small magnitude that is almost 0, then we stop else we evaluate the direction. And

then in that direction conduct a line search by minimizing this and accordingly update

the point x that is x k plus alpha k d k, the result of line search that gives the next point.

And then we can check whether there has been significant change in the function value

in terms of absolute tolerance and relative tolerance. If not if not much change has taken

place then we can stop; otherwise if the number of iteration exceeds, then also we can

stop  which  means  that  we  are  losing  patience,  we  do  not  expect  to  have  further

improvement. And otherwise if the number of iterations is reasonable not approaching

the maximum allowed number, then we go to the step two again evaluate the check this

gradient condition and continue into finding the next direction and so on. So, this is the

typical go. Now one good quality one great merit of this method is that it has excellent

global convergence that is started anywhere at every step, it is assured that will make

significant, it will make a descent step and it will approach the minimum point. But why

we  put  so  many  stops  because  in  spite  of  having  excellent  global  convergence  the

method of steepest descent has a very poor local convergence.
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The  reason  for  that  can  be  analyzed;  if  you  consider  the  benchmark  problem  of

minimizing a quadratic function like this. Now, minimizing this function and this error

function is actually equivalent, because if x star is the minimum point of this function

then it is a minimum point of this function also, and the difference between these two

functions  is  actually  a  constant.  Now, therefore  while  analyzing the steepest  descent

method on a quadric function, we typically analyze it over this function. And through a

long direction, you can prove that the ratio the convergence ratio first of all it has linear

convergence rate, and then the convergence ratio of that linear convergence process that

is  error  at  the  next  point  divided by a  error  at  the  previous  point  is  limited  by this

number.

And this number is this number can be very large depending upon what is the condition

number of A. For example, A is a matrix - the Hessian matrix. And if you find that the

largest Eigen value by least Eigen value of that Hessian matrix is something like 9 then

you will find that this will be 8 and this will be 10, 8 by 10. And the square of that will

be 64 by 100 that means, 64 percent which will mean that 64 percent of the error at the

previous step is likely to remain in the next step, so that shows that the convergence is

quite  slow. And this  is  why in badly scaled problems in which the Hessian is  badly

conditioned the condition number of Hessian is large in such situations you will find that

the convergence ratio is poor and the algorithm does not operate quite well.



However, steepest descent method has its own advantages. One great advantage is that its

conceptual  understanding is  direct,  conceptually  that  is  the simplest  method that  one

could think of. Second is that in a completely new problem, it is advantageous to start the

process  with  a  steepest  descent  based  method,  because  that  has  excellent  global

convergence. And this global convergence property also helps in the utility of steepest

descent steps into other professional algorithms which then generate directions based on

more sophisticated considerations.

The  more  sophisticated  considerations  in  more  professionally  sensible  methods  like

conjugate  direction  method or Quasi-Newton methods  may develop directions  which

most of the time operate better, but there are situations where even those directions turn

out to be weak or poor. In such situations typically one-step of steepest descent method

intersperse  between  steps  of  other  method  helps  in  regenerating  the  progress  in  the

process of improvement of the function in a good manner, so that is considered spacer

steps. Spacer steps in other sophisticated methods are quite often used with the help of

developed with the help of steepest descent method.

Now, the concept of selecting direction and conducting a line search in that direction in

this  manner  based  on gradient  is  inherited  also  in  the more  sophisticated  method of

conjugate directions or conjugate gradient method. But what conjugate gradient method

does  over  and  above  steepest  descent  method  is  at  the  first  step  it  takes  along  the

negative gradient, and then subsequent steps it takes in such a well orchestrated manner

not necessary in the negative gradient direction that the work done in the previous steps

are taken advantage of in the later steps.

For example, this kind of in the narrow contour case, the steepest descent method quite

often does a zigzag motion like this for approaching to a minimum point like this, that

kind of demerit is remedied in conjugate gradient method which is based on conjugate

directions. So, that is a little more advance method, which we will not be discussing in

this course though it is there in the book in chapter 23, but we will be omitting that

chapter in our study here.
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Now, other than steepest descent or Cauchy’s method there is one more method which is

called  a  basic  method  and  that  is  Newton’s  method  that  relies  on  a  second  order

approximation of the function based on a truncated Taylor series. So, for a function f x at

x k in the neigh immediate neighborhood of x k the current iterate,  the second order

truncated Taylor series looks like this. This is the value of the function at the current

point plus first order change plus second order change with the higher order changes

neglected. Now, for the minimum point in the neighborhood, if we try to consider the

condition  for  vanishing  gradient  that  is  the  first  order  necessary  condition,  then

differentiating this we will get this relationship or the first order truncated Taylor series

called the gradient itself which will be g x roughly equal to g x k plus Hessian into delta

x.

Now, we say that in the neighborhood of x k we try to look for that point, where the

gradient vanishes that means, this is 0. If this is zero then we can find out x minus x k

which will be negative of this pre-multiplied with the Hessian inverse that is this. So, that

is x minus x k. So, for finding x we have to add x k to that and that is this. So, this is the

typical iteration which is very much like the equation solving process because this is also

essentially equation solving process the equation to be solved is gradient equal to 0. So,

this is the typical Newton’s iteration formula for minimization. The great merit of this

method  is  that  it  has  got  excellent  local  convergence  that  is  local  convergence  is

quadratic. See the error in the next step divided by error in the previous step into error



individual steps squared that is finite that means at every step you will be expecting two

orders of decrease in the error value.

However, the point to caution is  that this  method does not have global convergence,

something, which is a bare minimum necessary for any optimization method that it must

have  global  convergence.  The  idea  of  global  convergence  is  that  at  every  step  the

function should decrease or there should be an approach towards the minimum point. So,

Newton’s method does not guarantee that. However, if started sufficiently close it has

excellent local convergence in the sense that it approaches the solution at a faster rate, if

it does at all. On the other hand, if stared far away from the optimal point, it may not

approach the optimum point at all it may go somewhere far away. Because there is no

guarantee as such that an x k plus 1 generated through this formula will be a point where

the function value is lower than the function value at x k. That means, it does not have

the property of global convergence.

In  the  special  case,  where  the  Hessian  matrix  is  positive  definite  in  that  kind  of  a

situation also all that we can say is that direction suggested by Newton’s method is a

descent direction. That we can say because if H x k there is a Hessian matrix as the

current point is positive definite then x inverse is also positive definite. And in that case d

k with this formula will give you d k transpose g k as minus g k transpose H x k g k, it is

minus this is the direction d k with that you take the inner product of g k that is g k

transpose added here put here multiplied here. So, you get this

So, if the Hessian is positive definite then this is positive for all g k and that means, with

this negative sign this is negative and that means, the direction suggested by Newton’s

method that is minus H into g k is a descent direction. Even that does not mean that the

entire complete step of Newton’s method will be a descent step. Because if the direction

maybe a descent direction along the direction the function value might start decreasing,

but in the entire complete step in between it might start increasing again. So, it may be a

descent direction only if the Hessian matrix this is inverse.

So, there are two points here one is that if the Hessian is not positive definite then it may

not be a descent step the function value may increase and it may not be even a descent

direction. If the Hessian matrix is positive definite then it is guaranteed that the direction

will be a descent direction though nothing can be said about the complete step. So, based



on this observation, we may think of the modification needed in the Newton’s method for

its  developing  into  a  worthwhile  optimization  method  having  global  convergence

property has then two aspects. One is the necessity of this Hessian matrix being positive

definite which as it is cannot be guaranteed at any point because we cannot guarantee the

positive definiteness of the Hessian matrix at any point. And the second is not to take the

complete  step suggested by the  Newton’s method though we may like to  accept  the

direction, in case this is positive definite. So, these two aspects are addressed in what is

called the modified Newton’s method.
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In  modified  Newton’s method  we  replace  the  Hessian  by  Hessian  plus  gamma  into

identity such that this resulting matrix is positive definite. And that makes sense because

by adding gamma into identity we are basically enriching the diagonal entries of the

Hessian matrix that is trying to make it diagonally dominant which will ensure that the

matrix  is  positive  definite.  And  the  second  measure  that  we  take  is  that  from  the

Newton’s method we take only the direction that is direction is minus f inverse g, but

then we do not take the full Newton’s step, but between 0 and 1 we conduct a line search.

So, we replace the full Newton’s step by a line search.

So, by ensuring the positive definiteness of the effective Hessian we ensured that the

direction suggested by Newton step is at descent direction. And then rather than taking

the full step the descent of which is not guaranteed, we conduct a line search along that



descent direction and the line search process is bound to terminate at a point through a

descent step. So, with these two modifications what we get is modified Newton’s method

in which the algorithm will proceed like this. After selecting the point x 0, we evaluate

the gradient and Hessian and choose gamma in order to make it positive definite. If it is

already positive definite in that case gamma can be chosen as 0; otherwise we select an

appropriate gamma to make it positive definite, and then in place of Hessian we use this

F, F k and then solve this to get a direction not a full step. In a pure Newton’s method,

that would be taken as the full step, but in the modified Newton’s method from here we

take only the direction and then along that direction we conduct a line search as usual

and then update and go for the next evaluation.

The typical termination condition is this that is if no function improvement has taken

place in the previous iteration then we stop. So, this is modified Newton’s method which

addresses the two most important objections of Newton’s method. Yet one disadvantage

of Newton’s method remains that is the task of evaluating the Hessian which may be

costly, because Hessian will require n square second derivatives. Evaluating a second

derivative is costly and evaluating n square of them at least n square by 2 you can say

because half of them you may not have to evaluate. So, even half of them evaluating

such a large matrix of second derivatives is going to be computationally costly.

Now, how to handle this problem this problem is handled in two different ways there is a

family of methods called Quasi-Newton methods that is Newton like methods that these

are some quite sophisticated methods with a deep theory behind them, which we will be

omitting in this course. But the theme of Quasi-Newton methods is the development of a

Hessian through steps that is if we evaluate only gradients, and take steps accordingly

then the step that we took along that step what was the change in the gradient. So, change

in the gradient through a step that gives us a little bit of information about the Hessian.

Why, because Hessian into the step Hessian into delta x is suppose to be delta g gradient

k, change in gradient should be Hessian into change in x.

So, through every step we generate one bit of information regarding the Hessian and

through updates over iterations if we try to construct the Hessian or rather the inverse

Hessian  to  be  used  while  solving  this  then  such  methods  are  called  Quasi-Newton

methods they try to get most of the advantages of Newton’s method. But they do not

work with explicit and actual Hessian all the time they try to develop the approximate



estimate of the Hessian on the way through iterations that is the family of Quasi-Newton

methods. As it is another kind of situation may arise in which we may use Newton based

method and that is in those problems where Hessian is cheaply available.

Not only if the second derivative expressions are easy and cheap in calculation, but also

situations where a good Hessian estimate can be developed based on first derivatives

only. Such situation arise in problems where you have a least square minimization kind

of  problem  or  equation  solving  kind  of  problem.  And  one  such  problem,  one  such

method which utilizes that fact is Levenberg-Marquardt method which has a few other

interesting features also.
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To see those interesting features consider this typical iteration formula which is called

the method of deflected gradients. So, in this single formula actually a large number of

methods are embedded consider this formula in which x k minus alpha k M k g k is the

new point. Now, in place of M k if we put identity matrix and alpha k is determined by

line search then we get what is the steepest descent step. On the other side, in place of M

k, if we put f k inverse and determine alpha k by line search, we get modified Newton’s

method, which we discussed just now. In place of M k, if we put actual Hessian inverse

and alpha k we put as one then we get the pure Newton’s method. So, all these methods

are actually embedded in this formula that tells us that all the three methods that we



considered  till  now  steepest  descent,  Newton  and  modified  Newton  all  these  are

somehow related to each other.

And therefore, it should not be impossible to move from one method to another through

some small adjustments and that maybe of great significance, because in this family we

have  one  method  which  is  steepest  descent  method  which  is  very  good  in  global

convergence  and  very  poor  in  local  convergence.  On  the  other  extreme,  we  have

Newton’s method which is  very  good in local  convergence,  but  very poor  in  global

convergence what about combining both of them through a formula of this kind this is

what is done in a hybrid method called Levenberg-Marquardt method.

How? We consider M k to be Hessian plus lambda into identity inverse. Now, we note

that if lambda is kept very large then with respect to lambda k I with respect to lambda I

the Hessian will turn out to be insignificant and then it will approach the steepest descent

step.  On the other  hand,  if  lambda is  kept  extremely  small  then lambda k I  will  be

insignificant compared to the actual Hessian and it will approach the pure Newton step.

And then we notice that we can tune this parameter lambda over iterations in order to

favor a step which is Newton like or a step which is steepest descent like or Quasi like.

So, since the initial iterations should be more on the steepest descent side, so initially we

keep a large value of lambda and take some initial steps. And after every step if we find

that there has been a improvement in the function value then we decrease the value of

lambda. So, improvement in an iteration will lead to a reduction of lambda by a factor.

On the other hand, if we find that the function value tends to increase in a step then we

reject  that  step we do not  move the point  and we increase the lambda.  That  means,

whenever  we find that  improvements  are  being made good improvements  are  taking

place that means, we are approaching the solution, we are going close to the solution

where Newton’s method is likely to perform better. So, we reduce lambda in order to

favor a Newton like step.

On the other hand, the moment we find that lambda has been decreased too much that is

it has become too small and the Newton’s method is not going to give a good next point

then we reject that step and increase lambda in order to go into the relative safety of the

Cauchy step or steepest descent step. So, this opportunism gives us a method which is

the  Levenberg-Marquardt  method  where  this  tuning  parameter  lambda  is  adjusted



iteration  over  iteration  and we take  advantage  of  the global  convergence  of  steepest

descent method and the local convergence of Newton’s method.

Now a particular  way of  implementing  Levenberg-Marquardt  method is  found to  be

highly successful in non-linear least square problems and equation solving problems in

which a cheap estimate computationally cheap estimate of the Hessian can be developed

based on first derivatives only. And that removes the last bottleneck of evaluating the

Hessian that is for that kind of problems.

(Refer Slide Time: 45:12)

So, suppose we try to see what kind of a least square problem, what least square problem

look like.  A linear  least  square  problem is  like  this,  in  which we trying  to  model  a

function y of theta which is available in this manner phi 1, phi 2 etcetera are known

functions of theta and x 1, x 2. x 3 etcetera are the unknown coefficients which we want

to determine. Now, for that for a lot of measured values of y against theta we try to find

out the values of x 1, x 2 which will make the error minimum in the least square cells.

That is error in the measured data we take and square the errors and consider the sum of

those squared errors and minimize that sum.

If we try to do that then error is this expression minus y measured y. Then this xs are the

unknowns. And when we try to find out the minimum value of the sum of error squares

then we get a problem which we actually solved earlier in chapter 7 and chapter 14 in

earlier linear algebra lectures, where the least square problem was found to be the pseudo



inverse solution of this A x minus y equal to 0. So, that is the pseudo inverse solution that

we  have  already  seen.  This  is  a  linear  least  square  problem.  Now, if  the  unknown

coefficients unknown parameter x 1, x 2 do not appear in a linear fashion like this, but in

a general non-linear fashion.
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Then the typical symbolic representation will be like this y of f and theta y of theta is f of

theta and x in which the unknown parameters x 1 and x 2 can appear in any manner. The

square error function we can still define in the same manner and that will be this theta i x

y i are measured values for a large number of data points. We want that value of x for

which this least square error is least square error is least square error is minimized, this is

why it is called a non-linear least square problem. Non-linear because x 1, x 2, x 3, x 4

affect the function in a non-linear manner not in the linear sense.

Now, if we try to find out the derivatives of this then we find that the gradient of this

function turns out to be half remains outside; from this sum we get twice which will

cancel this half, this stuff which is e; and then that then the derivative of this with respect

to x that is variant of f. So, this is the error into gradient of f. Now, gradient of f at every

data point will fill up rows and rows and rows and we will get the complete Jacobian. So,

J transpose e will be the gradient of this function.
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Where J is the N by n matrix n is larger where capital N is the number of data points and

small n is a number of parameters x 1, x 2, x 3 up to x ns that we want to determine. So, J

transpose e turns out to be the gradient of this error function and the Hessian of that

when we try to evaluate then we will have two parts in the Hessian that is Hessian is the

derivative  of this.  So,  in  the two parts  in  one of the part,  this  will  be differentiated

keeping this  as constant  that  will  give us J transpose J. And in the other  part  of the

Hessian,  this  will  be kept  constant  and this  will  be differentiated that  is  the actually

second order terms error into the second order terms that will be sum of all these.

Now the important issue concept that is in this completes Hessian expression, this term

will  have  a  very  good  reason  to  be  small  in  magnitude.  Why,  because  the  second

derivatives  are  multiplied  with  errors  which  are  going  to  become  small  as  the

convergence process proceeds,  as the convergence process progresses, so that is why

neglecting this part which involves the computation of second order derivatives. We can

make an estimate of the Hessian based on this only J T J. And J - Jacobian is evaluated

based on first derivative as on. So, with the help of first derivative as on sitting in the

matrix J, we work out a Hessian estimate which is quite accurate at least in the later

iterations.

So,  a  respectable  estimate  of  the  Hessian  is  evaluated  based on calculations  of  first

derivatives as on the calculations of this second derivative part we will omit. With this



Hessian estimate, we combine a modified form of the steepest descent and get the typical

Levenberg-Marquardt step, which goes like this. So, this part is the representative of the

Newton’s step of Hessian matrix and this part is actually a reformulated or a modified

form of steepest descent consideration. So, based on the combination of the two, we try

to work out the step delta x for a particular iteration. And this tuning parameter lambda

we keep on tuning iteration by iteration in order to favor the Newton step or the steepest

descent me step as the situation demands that is whether enough progress is being made

or progress is not being made. So, this is the typical Levenberg-Marquardt step used for

non-linear least square problems. And the same can be used when we have an equation

solving problem.
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That is if we have a large number of equations to solve like this, then we formulate the

problem as f 1 square plus f 2 square plus f 3 square as the function to be minimized. So,

that also actually boils down to the minimization of the sum of f u squares right in the

same manner. So, the solution of a non-linear system of equations also can be framed in

this same form and the same method can be utilized. So, Levenberg-Marquardt method is

found to be very useful in the solution of non-linear least square problems and non-linear

equation  solving  problems.  Though  in  ordinary  optimization  problems,  it  has  a

disadvantage  that  the Hessian calculation  is  costly. In the equation  solving  and least

square problems, it has the advantage that a good Hessian estimate can be computed

based on the first derivative first order derivative as on.
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So,  the  algorithmic  steps  of  the  Levenberg-Marquardt  algorithm  is  given  here.  So,

starting from an initial point we evaluate the error, select tolerance, initial lambda quite

high and the update factor which depends on their choice. And then with the gradient and

Hessian estimate based on this we workout delta x error matrix. If the convergence has

taken place then we stop; otherwise if the step offers an advantage then decrease lambda

if the and update; if the step offers a not an advantage, but it leads to a disadvantage then

we do not update and increase lambda and continue.  So, this is a typical Levenberg-

Marquardt algorithm. So, professional procedures professional implementations or sub

routines for non-linear least square problems and also for systems for systems of non-

linear equations in the form typically use this kind of a method.
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So, the important points to note from this particular lesson is the direct methods one of

which we discussed Nelder and mead simplex method steepest descent method which is

global convergence. Newton’s method for fast local convergence and also for the risks of

Newton method which you need to safeguard against. And Levenberg-Marquardt method

for equation solving and least square problems.
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The next chapter of the book which has conjugate direction and Quasi-Newton method

we  will  omit.  And  in  the  next  lecture,  we  will  go  to  the  discussion  of  constrain

optimization problems.

Thank you.


