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Welcome. In this lecture we will start our study of non-linear Optimization Techniques.

And in this topic we will devote 3 to 4 lectures. And in the current lecture I will first

summarize the general methodology of optimization and briefly recapitulate the topic of

single variable optimization which you are already conversant with, and continue into

developing  the  conceptual  background  of  Multivariate  Optimization.  The  actual

Multivariate Optimization methods will be taken up in the next lesson. 

(Refer Slide Time: 01:03)

First, in any typical situation where you encounter an optimization problem: to begin

with you will have a number of variables which you can choose in order to minimise or

maximize something some function that function which you try to minimise or maximize

is called the objective function. And among the variables which you can choose in order

to  have  the  minimum or  maximum value  of  the objective  function  those underlying

variables are separated into 2 parts: one of them that is sum of the variables you can see

it as parameters which are kept constant for one particular study. In a particular problem



you may choose to keep all variables as designed variables in hand and process all of

them together.

On  the  other  hand  some  of  the  variables  at  some  situations  are  kept  constant  as

parameters. After fixing the values of the parameters, the remaining variables which in a

particular study you want to explore in, to get the best possible value for the objective

function  those  only  are  treated  as  the  variables  of  the  optimization  problem.  And  a

typical statement of an optimization problem goes like this in which you say you want to

minimise a function of x subject to certain constraints. 

So, there may be an optimization problem in which there are no constraints or there may

be  one  in  which  there  are  constraints.  Constraints  are  again  of  2  kinds:  one  is  in

inequality constraint, the other is equality constraint. Now after formulating the problem

now this formulation part comes from the domain in which you are going to apply the

optimization methods. Now after studying the optimization methods, you would notice

that in almost every branch of science and engineering and even humanities quite often

you come across situations where many problems can be solved through an optimization

formulation.

The problem may be one of explicit optimization where you actually want to minimise or

maximize something or many times it happens that the actual problem is something else,

but you can reformulate it in the form of an optimization problem. For example, in the

last lecture we formulated an equation solving problem in the form of an optimization

problem. 

So,  there  are  many  such  problems  which  can  be  formulated  in  the  form  of  an

optimization problem and then optimization methods can be used in those problems with

advantage. Now after the formulation is made from any given field then you look for a

suitable optimization method or algorithm to find a solution of this problem. Now any

point  x  any  variable  value  any  set  of  values  for  the  variables  x  that  satisfies  these

constraints g x is less than equal to 0 and hx equal to 0, the given constraints for any such

point is called a feasible solution that is it is allowable it is permissible by the constraints

in both on the problem definition itself. 

And out of those feasible solutions you try to find the one in which the function value is

minimum,  if  it  is  a  minimization  problem.  The  optimization  problems  can  be  of



minimization or maximization type, but in most of the theory that we discussed you will

find that most of the time we are talking about minimization.

Fixing our  attention  to  minimization  problem helps  to  keep the entire  theory  in  one

standard form. If a problem is of maximization then we can always try to minimise the

negative of the objective function. So, this is typically done in order to avoid the hassle

in the notation sectors. 

Now after  you apply some optimization method a good number of them we will  be

studying in this course. So, after you apply that method you get a solution which is the

solution of this  optimization problem that  means,  it  minimises  the function objective

function and satisfies all these constraints. Now after getting that solution in hand quite

often you want to find out whether the parameters that is that subset of variables which

you kept fixed whether it was a nice idea whether it was wise idea to keep those values

fixed. 

So, in that case after you have got the solution in hand then you conduct a sensitivity

analysis you try to find out that how sensitive is this solution that we have got in hand

how sensitive it is to the values of those parameters if they are found to be very sensitive

then you try to see whether those parameters can be also changed in order to get a much

better solution.

On the other hand if you find that the solution is quite insensitive to the parameters that

you have fixed as parameters, then you say that fixing that is a vice idea unnecessarily

we  need  not  conduct  the  optimization  process  with  too  many  variables.  Now

optimization  problems  as  I  told  you  just  now  can  be  unconstrained  without  these

constraints in which case the entire space of x is feasible or they may be constrained.

And in that  way we classify optimization problems and for that  correct  optimization

methods  into  unconstrained  optimization  and  constrained  optimization.  Obviously,

unconstrained optimization problem is easier to solve compared to constrained ones. 

Then you also classify optimization problems as linear and non-linear problems, if both

the objective function and the constraint functions g x and h x are all linear functions

then  you  call  the  optimization  problem  a  linear  optimization  problem  or  linear

programming problem l p problem. On the other hand if either the objective function or



any of the constraint functions is non-linear, then it is a non-linear optimization problem

or non-linear programming problem n l p problem.

Then  you  could  also  classify  the  optimization  problem  as  single  variable  and

multivariable problems. Single variable problem has a single variable and in multivariate

problems you have several variables in hand with which to play around to minimise the

objective functioning. 

Now you will notice that when you classify optimization problems as unconstrained and

constrained and in another way we classify them as linear and non-linear in total we do

not get 4 kinds of problems that is any of the 2 above and any of the 2 below we cannot

combine.  Because  in  the  case  of  a  linear  optimization  problem  you  cannot  have  it

unconstrained, because linear functions go on reducing in a certain direction in certain

directions. 

So, if there is no constraint on the variables in x then they are unbounded on the lower

side as well as on the upper side. So, linear unconstrained optimization problem does not

exist. So, if it is a linear programming problem then constraints will be there in any case.

So,  you  get  linear  programming  problem  which  are  linear  constrained  problems  or

unconstrained  non-linear  problems and constrained  non-linear  problems which  is  the

most difficult.

Now before, going to the methods for multivariate optimization which is going to be our

main focus.
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Let us quickly recapitulate the ideas of single variable optimization which with you are

conversant already to a good extent, say for a function f of x a single variable a point x

star is defined as a local minimum point. If there is some epsilon such that the value of f

x at all other points that is all points in that neighbourhood in this epsilon neighbourhood

that is epsilon on this side and epsilon on that side in at all other points the function value

is greater than or equal to the function value at the current point x star then you will

define the point x star as a local minimum point.

Now schematically let us have a look at this there is a function which is defined over the

interval a to b in this particular case x 1 is a local minimum point and then x 2 is a local

maximum point, x 3 is neither a local minimum point nor a local max maximum point.

Because there is some point close to x 3 on the right side at which the function value is

likely to be lowered and this will not be satisfied so this is not a local minimum point.

It is neither a local maximum point because on the left side of it the function value is

likely to be higher, so this is a point of intersection. Now here you find it is again a local

minimum point. So see the difference between this point, this point and this point here it

is a clear local minimum point here it is not here it is here the function profile comes

from upward and then becomes constant for a while and moves up again. 

So, this is a minimum point here the function profile comes downward becomes constant

for quite long and then goes down, but then whenever we say that it becomes constant



for quite long it is not necessary that over an interval around x 3 it is constant it is just

that it touches it is tangent more smoothly that is possibly first order and second order

derivative both are 0. Here you find that a constancy kind of situation lingers for a little

more smoother interval around it and then it goes up so it is a minimum point you will

notice that even b is a minimum point. Now here the curve does not become flat, but

since beyond b the function is not defined. So, this is also a local minimum point the

function is defined only on the left side and all  points on the left  side are above the

current point so b is also a minimum point.

So, in this schematic x 1, x 4 and b are 3 minima. On the other hand a x 2 and x 5 are

maximum x 6 is neither a minimum nor a maximum. Similarly x 3 is neither a minimum

nor a maximum now that is according to this definition.  And those points where the

function is differentiable there you can find out certain optimality criteria based on the

derivative and that is the first order necessary condition says if x star is a local minimum

or maximum point and if the first derivative exists then it must be 0. 

If the first derivative is nonzero at that points, then if it is positive then on the right side it

will be it will go up the function value will go up on the left side the function will go

down. Similarly if the derivative is negative then reverse will happen one side will be

higher other side will be lower. So, that way it can be the point can be neither a minimum

point nor a maximum points. Therefore for being local minimum or maximum point the

first derivative can neither be positive nor negative and therefore, it must be 0.

Now, note in this case what is happening the first derivative is 0 the tangent is horizontal.

What is the tangent before and what is the tangent after that is, what is the slope before

that point and after that point. Before that point the slope is negative going downwards

after that point the slope is positive at that point the slope is 0. 

So, you find the first derivative is 0 and first derivative as x changes, as x increases the

first derivative is first negative then 0 then positive that means, the first derivative is an

increasing function of x which means that the second derivative is positive. So, that gives

you the second order condition.  Second order necessary condition  is  that  the second

order derivative is non-negative positive or 0 that is why this is also a minimum point

this is also a minimum point. But this is not so it is necessary but not sufficient. Second

order sufficient condition will be that the second derivative is positive. Now if the second



derivative is 0, then it satisfies the necessary condition but not the sufficient condition.

So, to resolve the situation you need to go further the way to go further is through Taylor

series.

(Refer Slide Time: 14:50)

So, if you write the Taylor series of f of x around a given point x star the candidate point,

then you get f of x star plus delta x is equal to f of x star plus first order term plus second

order term plus third order term and so on. Now keeping f x star that is transposing f x

star on the other side you talk of the change in function value. 

So, the change in function value from x star to x star plus delta x at that neighbouring

point the change in the function value from Taylor series is given like this. Now here you

find that as long as the first derivative at that point is not 0 for small enough interval for

small enough delta x this first term will dominate these things and the sign of this first

order difference will depend on the sign of delta x that is whether you are taking the

other point on the positive side or on the negative side, whether delta x is positive or

negative. Depending upon that the first order term will change it is sign and that term is

going to dominate the series for sufficiently close points for sufficiently small delta x.

That will mean that on 1 side this will be positive and the other side it will be negative.

And therefore, the difference being positive on 1 side and negative on 1 side will include

the possibility of the current point being a minimum or maximum point. Therefore for

the current point to be a minimum or maximum point it is necessary that this derivative



vanishes, the first ordinary necessary condition as we saw just now. If this point vanishes

then for  sufficiently  small  delta  x values  this  entire  series will  be dominated  by the

second order term, and the sign of the second order term does not depend on the sign of

delta x because delta x is appearing as a square. 

So, irrespective of whether you go this way or that way delta x square is positive it will

depend upon that derivative sign, if the derivative is positive then this will be positive for

sufficiently closed points. Now if it is positive that means, the neighbouring point both

sides have higher function value right, so that will qualify the current point as a local

minimum point right.

Similarly, for negative values of value of this it will be a local maximum point, and that

is why the second order derivatives being positive with the first order derivative 0 is

sufficient condition for the current point to be a minimum point. If it is 0 if the second

order derivative is also 0, then again the series will be dominated by the third order term

the sign of which will again depend on delta x because you see delta x cube appears or

power, so this goes on. 

So therefore, now looking at the pattern you can say that for an extremum to occur at

point x star the lowest order derivative with nonzero value should be of given order. If up

to 3rd order it is 0, 4th order is positive, then again it is a local minimum point. So, that

gives you a working rule for determining candidate points, and then classifying them as

minimum maximum and so on. So first of all you evaluate the first derivative and set that

equal to 0, and solving that you try to find out candidate points x star, so such a candidate

point is to begin with a stationary point, it may be a minimum point or a maximum point

or it can be a saddle point an inflection point.

So, after we have captured certain candidates for further tests, then at that point at those

point we evaluate higher order derivatives till 1 of them is found to be nonzero. If we go

on finding derivatives and several of them are found to be 0 2nd order, 3rd order, 4th

order, 5th order, then we stop at that point where first non 0 derivative is encountered, if

it is order is odd then the current point x star is an inflection point coming like this going

like this, or coming up and then going further up like this. 

If the order of that first non 0 derivative is even that is either the 2nd or the 4th or the 6th

and so on, then that will be a local minimum point or a local maximum point depending



upon whether that derivative is positive or negative. So, this much you have studied long

back in (Refer Time: 19:46) standard calculus itself, and this was the working rule for

finding  maxima  and  minima  at  that  stage;  however,  it  requires  the  solution  of  an

equation.

Now, solution of an equation is always not an easy task in the previous lecture, we also

discussed the situation where for solving an equation we formulate it as an optimization

problem. So, equation solving is also not always extremely easy, there may be equations

which are very difficult to solve. So quite often we do not try to rely on the equation

solving process to capture the candidate  points, but we follow an optimization based

algorithm directly to find the minimum point. 

Now for that there are several methods now there are some of these methods depend on

gradient 1 way or the other and some other do not depend. That is some of them depend

derivatives, some of them do not depend even those which depend on derivatives some

of them use derivatives explicitly and others do not.

(Refer Slide Time: 20:58)

For example Newton’s method which is reminiscent of the Newton Raphson method of

equation solving. 
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So, in the case of equation solving we had, when we required the solution of an equation

like this, then our typical iteration was x k plus 1 is equal to x k minus phi of x k divided

by phi prime of x k right.

Now, here are talking about minimizing the function f, now we know already that at the

minimum value at the minimum point f prime is going to zero. So, why not try to solve f

prime x equal to 0. So if we want to solve this equation x prime x equal to 0 then in case

of phi, if we put f prime, then we get f prime here f double prime here that is second

derivative.  That  is  the typical  Newton’s method for optimization of a single variable

problem single variable function. 

1 difficulty of this is that this formulation will not differentiate between a minimum point

and a maximum point, or an inflection point with 0 derivatives 0 first derivatives. Now

here itself in the case of second derivative if we replace that with a finite difference kind

of derivative formula, then we get this formula which is the second method. Now in this

second method you will notice that we do not need the second derivative, but we need

the first derivative and the function value at two points. So, Newton’s method work with

a single point up to second derivative which also means that the secondary derivative

should exist, second method works with two points at a time; that means, in the initial

guess we need to give it two points, and only up to first order derivative. Method of

cubic estimation is another method which uses function values and derivative values at



two points. Starting with two points it evaluates the function value and the derivative

value at  these points and then;  that  means,  that  we have got 4 total  number of four

conditions four conditions in total, two conditions at this point and two conditions at that

point function value derivative value, and with this kind of four conditions we can fit a

cubic function in the local neighbourhood ok.

That is for the local neighbourhood we can approximate the actual function by a function

of this kind a cubic feet. So, as we impose the conditions that is at x 0 and x 1 we are

prescribing the function value, and the derivative value as we prescribe these conditions

on this, we essentially get four conditions four equations for linear equations for that

matter in the coefficients a 0 a 1 a 2 a 3 from that we can determine these coefficients. 

And then we say that we look for that point where this cubic function is minimised or it

is derivative is zero. So, that we will get in terms of a 1 a 2 a 3 etcetera and that becomes

another point, now out of the two original points and this third point we retain two points

and drop 1 of the old points, again at two points we evaluate the derivative and some

derivatives and functions values are already there at a new point we evaluate the function

and derivative and continue

So, this is this method is called the method of cubic estimation. Similarly there is a also

method of quadratic estimation, that operates not with derivative at all that operates only

with function values, but at 3 points. So to being with you need to prescribe three points

to this method and through those three points only with the help of function values the

algorithm frames a quadratic, a 0 plus a 1 x plus a 2 x oh this is square a 2 x square only

up to this and by fitting that quadratic with three coefficients because of with the help of

three function values, and then asking for it is gradient to vanish it gets the new point. 

So, this method of is quadratic explanation, so in which only function values are used no

derivatives not note that whether some of these methods used derivatives here, up to

seven derivatives here, and here up to first derivative, here no derivative, but then still all

these four methods in indirect manner refers to the vanishing of derivative, because that

is the test that is the requirement based on which the new point is generated.

So, the these are disadvantage of all these methods is that it treats all stationary points

alive,  and  does  not  differentiate  between  a  minimum  and  maximum  that  is  a

disadvantage in these methods. So, if the problem is such that it has a minimum and



perhaps not a maximum, then any of these methods will work out nicely on the other

hand for a problem which has lots of minima and maxima this kind of a method runs the

risk of reaching a maximum points. 

There are some other methods which first insist on a bracket and second do not make any

difference not even an indirect one to the derivative. First what is this bracketing in the

case of equation solving or root finding problem, we refer to the continuity of a function

and said that if there are two points x 0 and x 1 and the sign of f x 0, and sign of f x 1 are

different 1 is positive the other is negative; that means, due to continuity it is necessary

that at one point in between x 0 and x 1 the function is bound to cross the 0 line and that

is  the root,  so that  was the  way bracket  the  solution  of  an equation.  In  the  case  of

minimisation problem the bracketing has a slightly different meaning.

(Refer Slide Time: 27:39)

If there are three points x 1 x 2 x 3 x 1 less than x 2 which is less than x 3, such that at x

2 the function value is lower than both x 1 and x 3 then we say that between x 1 and x 3

there is a solution ok.

So,  if  we have a  pattern of  the function which is  like  this,  then we can say that  in

between these there must be a minimum point, because it is known that from this point

the function value has gone down, and then it is known that from this point the function

has gone up. So, in between what is the point here or somewhere where that actual trend



is made, now these three could be like this in this case a minimum is here or it could be

like in this case a minimum is here so, this is important. 

So, bracketing in the case of minimization problem requires three points and the pattern

or trend of downward and then upward should be established to identify a bracket. Now

once  such  a  bracket  is  there  some of  the  optimization  methods  some  of  the  single

variable  optimization methods try to continuously squeeze the bracket,  bisection is 1

possible way for example, if we know that in between these there is a minimum point,

then in a similar manner of bisection we can try to see that whether this half is going to

constitute a bracket or this half is going to constitute a bracket, that is which half of the

complete interval is going to retain the nature of a bracket. And then like that we can

squeeze and find the solution; however, compared to bisection two other methods are

found to be more efficient that is they conduct a same job with the same accuracy with

less number of function evaluations.

One of them is Fibonacci search in which the interval reduction is not true half at every

iteration but in a variable size in a variable fraction the interval is reduced the squeezing

takes  place  at  a  variable  rate,  and  the  subintervals  are  decided  based  on  Fibonacci

numbers. So, f n minus 1 by fn in this way you try to reduce the size and through this

measure  what  you ensure is  that  for  this  interval  if  you evaluate  one  point  here,  at

evaluate the function at one point here, and at another point here at same distance from

the two endpoints of the interval, and then either you retain this point and throw all of

these or you retain this and throw away these. 

So, out of these whichever is larger than whichever maintains the bracket that is retained

and the other is removed from here, and that way what happens is that in the next the

way the fractions are generated with the help of Fibonacci number it becomes obvious

that the, in the next round in this interval the two points that will be needed where the

function will be evaluated out of that 1 will be this (Refer Time: 31:24) and the other will

be symmetrically placed here, so at every new iteration the two new points the two new

internal points integer points that will be needed one of them is one of the old points. 

So at every in iteration only one new function evaluation is made and every function

evaluation is used twice on an average, now from the Fibonacci search method itself one

particular another search is developed which golden section search, in that the interval



reduction fraction is not variable, but it is constant and it is equal to this golden section.

When golden search a similar operation is done but at every iteration the interval reduces

by this fraction which is the golden section ratio. 

Now though this squeezing of the bracket; though this interval reduction, at every step

there will be a stage where the interval is so small, that is smaller than your requirement

of accuracy for example, if you wanted the solution up to an accuracy of 0.01 then by the

time the size of the interval itself is less than 0.01 you say that any of these points is

good enough as a solution. So, that is the way Fibonacci search and the golden section

search method follow operate, and they keep on squeezing the bracket and finally make

the  bracket  so small,  that  any point  in  that  bracket  is  good enough for  the  required

accuracy.

Now, with this much background of single variable optimization recapitulated now, we

will go to discuss the actual problem of our focus which is multivariate optimization.

First unconstrained optimization in this lecture and the next, and then will study a little

constrained optimization.

(Refer Slide Time: 33:36)

Now, in an unconstrained minimization problem, a point x star is called a local minimum

of the function, if there exists a delta whatever small you would like to choose. If there

exists some delta such that within a ball cantered at the current x star and radius delta all

points have the function value which is greater than or equal to the current point under



question, then the current point x star is called a local minimum point. Now this is the

basic  definition  of  a  local  minimum point,  and note  that  we are  talking  about  local

minimum point and most of the algorithms which we will be discussing scattered to the

problem of finding a local minimum point only. Now you can talk of finding all the local

minima several local minima, and then out of them choose the smallest one and hope that

that is the global minimum that is one option.

If you want if your problem demands to find the global minimum, now if the function is

differentiable then you can work out some optimality criteria as we did in the case of first

in  the  case  of  single  variable  problems  based  on  derivative,  say  again  making  an

approach to the Taylor series we find that if x is a point neighbouring x star, then the

difference or function values f x minus f x star will  be the first order change, where

which is gradient transpose delta x where x minus x star is delta x plus half  delta x

transpose  hessian  the  secondary  derivative  matrix  into  delta  x  plus  the  higher  order

terms. 

So, up to this is the truncated second order truncated Taylor series, now for extra to be a

local  minimum again you argue in  the same manner  that  as  long as this  gradient  is

nonzero, there will be some directions delta x along, which the function will increase and

some directions along, which the function will decrease. Now a direction along which

the  function  increases  will  ensure  that  in  the  opposite  direction  the  function  will

decrease. So the current point cannot be minimum or cannot be maximum.

So, for minima or maxima for any extremum the first order term must vanish, which

means the gradient as a vector the complete gradient vector must vanish all the partial

derivatives  should  vanish.  And then this  second order  term dominates  the  series  for

sufficiently  small  delta  x,  and  in  that  case  the  sufficient  condition  is  the  positive

definiteness of this hessian matrix at that point, which will ensure that for all delta x it is

positive that is sufficient condition. 

Necessary will be that it is positive semi definite and indefinite sufficient matrix with

some eigenvalues positive and some eigenvalues negative will characterise what is called

a  saddle  point.  Note  that  we  can  talk  of  the  first  order  condition  or  second  order

condition  only  when,  the  function  is  first  order  differentiable  and  second  order

differentiable and so on. So, only for first order functions which are differentiable up to



that first order we can take of you can talk of first order condition, and only for functions

which are differentiable  twice you can talk of the second order condition.  Now with

these optimality  criteria  we will  proceed towards  a  few further  issues  which will  be

found quite useful when later we consider multivariate optimization methods, and the

most important issue in that direction is convexity.

(Refer Slide Time: 37:48)

So, there are two aspects of convexity, a convex set, or a convex domain and a convex

function.

Now, in the r n that is n dimensional real space a set S or a region is a region is called a

convex set, if for all pair of points belonging to that set the complete state line segment

joining them is also inside the in the set that is this region is not convex. 
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Because in this you can find two points which are which belong to the set, but the state

line segment joining them does not completely lie within the set. Now on the other hand

this region is convex because for every two points inside the set the straight line segment

joining them will be completely inside the set inside the region, now for unconstrained

optimization problem the region question will not arise, but it will arise in constrained

optimization problems, but then it will be important because further we will defining a

convex function, which can be sensibly defined only in a convex set or convex domain. 

Now saying that the straight line segment joining the two points is saying this that is for

a alpha belonging 0 2 1 interval alpha x 1 plus 1 minus alpha x 2 that is for alpha equal to

0 you get x 2 for alpha equal to 1 you get x 1 and for any intermediate value you get a

point in the line segment joining x 1 and x 2.

So, such a set for which in which for every two points this will  hold that the entire

straight line segment joining the two points also, we can will be will belong to the set

will belong to the region such a region is called a convex region or a convex domain.

Now over a convex set over a convex domain, you can define a function F x which will

be a convex function if for every two points belonging to that region and alpha again

between 0 and 1 the function value at an internal point in that line segment is less than

equal to the corresponding linear interpolation between the function values at the end

point. Now if this is not very clear then think of it this way, that is you have the function



value at x 1 that is f x 1 and you have the function value at x 2 that is f x 2, and you want

the function value at a point which is intermediate between x 1 and x 2 say at 0.2 fraction

of the distance from x 1 to x 2 that is from x 1 to x 2 in that line segment 0.2 distance

from x 1 and point eight distance from x 2. 

Now 0.8 into x 1 plus 0.2 into x 2 is that point you evaluate the function at that point, and

that is the function value here, now rather than evaluating the function value at that point

if you had tried to interpolate it from the function values at that two endpoints then you

would get this approximation right, 0.8 into f x 1 plus 0.2 into f x 2.

Now, the function is called a convex function if in every such situation, this interpolated

function  value  is  always  an  overestimate,  that  is  chord  approximation  interpolated

approximation if it is always an overestimate compared to the actual function value at all

intermediate points, then it is called convex function equality is permissible that is it can

be equal. 

So, schematically seeing this is a convex domain because any two points that you can

take in this will ensure that the straight line join of those two points is completely inside,

now this is an example this graph of the function that is shown is a convex function

because you see that if you take two points x 1 and x 2 and the function values here, now

a linear interpolation between them a chord approximation will be given like this. 

So, at this point the function value through a chord approximation will be found to be

this whereas, the actual function value is here, actual function value is lower and the

chord approximation is higher chord approximation is an overestimate. So this kind of a

function is called a convex function that is for being a convex function such a thing must

happen at every intermediate every pair of points for every intermediate value ok.

Now, you will see that other than the chord approximation if  you wanted to make a

tangent based approximation, that is you know the function value here and you want to

you know the derivative  also at  this  point  and based on the function  value,  and the

derivative through a first order Taylor series you want to approximate the function values

somewhere else that is the tangent approximation. And the tangent approximation will be

always an underestimate it will be lower see the tangent is going lower, on this side as

well as on that side compared to the actual curve actual graph the tangent approximation

is lower on left side as well as on the right side. So such is the property of a convex



function and the chord approximation is an overestimate that actually in a way implies,

that the tangent approximation will be an underestimate.
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And that you can show through a few small steps which we are we will not going to the

detail currently, the only thing that we need to stress at this point is that this gives you a

first  order  characterization  of  convexity. This is  the 0 third order characterization  of

convexity which is the definition in terms of only function values and this is equivalent

to the first order characterization of convexity, which you can talk of if the function is

first order differentiable, that is f x 1 is greater than equal to f x 2 plus gradient transpose

x 1 minus x two.

You can work out a second order characterization also, through another few small steps

and that is actually quite straight forward. The second order characterization of convexity

is that the hessian matrix the second order derivative matrix is positive semi definite, it is

the function is strictly convex if it is positive definite on the other hand if it is possible

semi definite,  then it is just convex there is a certain class of problems in which the

region  the  domain  the  feasible  domain  is  convex  and  the  function  that  we  want  to

minimise is also convex, such a problem is called a convex programming problem. 

That is we try to minimise a convex function over a convex set, and in that kind of a

situation  a  local  minimum is  also  a  global  minimum and all  minima  are  connected

together in a convex set. So convexity is a very strong condition on a function further we



know nicely  behaved function  we will  find  in  a  quadratic  function,  which  could  be

convex or could be non convex also, but a convex quadratic function turns out to be a

benchmark problem.
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Against which all optimization algorithms are qualified. A quadratic function is like this

and if you try to find out it is gradient and it is hessian, then you will find very easily

through first order and second order derivatives, and the variant is this A x plus b and the

hessian A is constant quadratic function, so second order derivative should be constant

and hessian is this matrix A the second order derivative. 

Now what kind of a matrix is this hessian A, if it is positive definite then you will say

that it is a convex quadratic function, and quite often when we use a quadratic function

as  a  benchmark  problem,  then  we  consider  convex  quadratic  function  in  which  the

hessian a is positive definite. Now if A is positive definite then it is non singular as well

which means that this equal to 0 will have a unique solution A x equal to minus b will

have a unique solution,  and that unique solution will satisfy the first order condition

gradient is 0, and the hessian is positive definite anyway that together will satisfy the

sufficient condition for that particular point to be a local minimum, and that is the that

since 0 gradient has that as the unique solution. 



So, that unique solution is the only minimum point of the function, if A is positive semi

definite,  then it  is  singular as well  and in the case of singularity, and this  system of

equations this equal to 0 this may be constant or may not be ok.

so if it is consistent that is minus b is in the range of A, then in the case of singularity of

A once it is semi definiteness you will have infinite solution and all those points, all

those solutions, all those infinite solutions of this are local minima, and global minima as

well and they are together connected that is they are distributed over an entire line or

entire plane like that. 

So, that is again a convex set if A is a positive semi definite, but it is this system of

equation this equal to 0 is inconsistent that is f minus b is not in the range of A that will

mean  that  the  convexity  is  not  a  problem,  but  0  gradient  condition  is  not  satisfied

anywhere. So, in that case the function is unbounded, and A minimization problem has

no solution, these second and third cases the first case is very simple the first case is like

this ok.
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This is the shape of the function. So, this is the minimum point 0 gradient 0 derivative

condition  is  satisfied  only  here,  and  the  function  is  convex  everywhere  so  second

derivative  matrix  is  positive  definite  everywhere  it  is  constant.  So,  this  is  the  unit

minimum.



On the other hand the second case here, A is positive definite positive semi definite that

is singular and minus b is in the range of A; that means, that there are points where the

gradient vanishes, that is a function profile which is like this cylinder. In this cylinder

you find that  it  is  convex semi definite,  because you see along these directions  it  is

straight and along this direction it is convex like this. 

So, this is a semi definite case and when you try to solve a x plus b equal to 0 zero

gradient 0 slope slow, then all these points satisfy the 0 gradient condition and therefore,

this entire line is the solution of the minimization problem, all these are the points at

which the level of this function is lowest. On the other hand the third case here, this 1 is a

same cylinder, but not placed horizontally, but like this. In this  case again it is semi

definite because there are directions in which there is no convexity concavity and there

are directions in which there is con convexity.

So, here 0 gradient condition this A x plus b equal to 0 that condition is not met that it is

there is no point which satisfies the 0 gradient condition, as you can see on this surface

there is no point at which gradient is zero, so that is why the function is unbounded that

is along this direction you can go on going downward and there is no end to it, compared

to this case, where you cannot go downward. 

So 0 gradient condition is not met in this kind of a situation at any point, so that is why in

this case there is no solution now as benchmark problem we typically consider those

quadratic functions for which the hessian is positive definite non singular (Refer Time:

51:08).
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Now, for an optimization algorithm we need to have a good picture, a clear picture of

how  a  typical  optimization  algorithm  operates.  Typical  way  to  operate  for  an

optimization algorithm is to start from a current point move to another point which is

hopefully better than the first. Now there are three questions that arise in this process

first is which way to go, second is how far to go, and which decision is taken first. If we

first decide the direction which way to go and then decide how far to go in that direction

this gives us 1 strategy of automation algorithm that is called the line strategy.

On the other hand if we first decide that within this much distance we are ready to go and

then, we decide that within this much distance in all directions which direction to take,

and how far to go that is how far we are ready to go, if we take that decision first and this

decision we take later then that is a strategy which is called trust region strategy. Now

there are some algorithms which can be implemented in both the strategies some of them

can be implemented in only 1 of the strategies. For any optimization algorithm there are

two questions that arise one is the question of global convergence, that is whether at

every  step  the  algorithm  makes  an  improvement  in  the  function  value  whether  it

approaches a optimum point and that is the issue of global convergence.
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It is in terms of guarantee whether there is a guaranteed decrease of the functional value,

whether there is a guaranteed approach towards the minimum point.

The other issue that arises, in terms of convergence of algorithm is the local convergence

that  is  what  is  the  speed  of  approach  is  if  we  start  sufficiently  close,  so  global

convergence refers to the guarantee of approach from anywhere in the solution space,

local convergence refers to the speed of approach if started sufficiently close. So, some

of the methods have linear  convergence rate  which are typically  the slower methods

some have quadratic convergence rate, which have which are typically first methods and

there are algorithms which are in between. 
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Now with this much background, in the next lecture. We will try to study optimization

methods and currently the points to note are here, and quite a few exercises are there in

this lesson in this chapter of the book, and some of them you must attempt on your own

to be very conversant with the idea behind this subject matter.

Next lecture we continue into optimization method

Thank you.


