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Good morning. Towards the end of the previous lecture, we saw the del or nabla operator

operate  on  ordinary  scalar  and  vector  functions.  Now,  we  will  consider  composite

operations involving the del operator.

(Refer Slide Time: 00:33)

Always keep in mind that the operator del is a linear operator and therefore, whether

applied as gradient divergence or as curl, they distribute over a sum of functions.

Next we consider the del operator applied over products of field functions. Four cases

may arise. The product of 2 scalar fields is again a scalar field, the product of a scalar

field and a vector field is a vector field and the product of 2 vector fields can be in 2

ways; one is the dot product which is a scalar and the other is a cross product which is a

vector. When we apply the del operator on these four composite functions, these are the

way to apply the operator. So,  the gradient  of  phi  into psi  turns  out  to  be this.  The

divergence of phi into V turns out to be gradient of phi dot V plus phi into divergence of

V.



The cross product, a curl of phi V turns out to be gradient of phi cross V plus phi into

curl of V and so on. So, these representations, these expressions you can work out. If you

open,  if  you expand these expressions term by term and then simplify, when we go

further and operate the gradient divergence and curl of a scalar or a vector function by

the del operator once more, then we get what we call as the second order differential

operators.

(Refer Slide Time: 02:22)

Now, grad phi is a vector quantity. It is a vector function. So, you can apply del in 2

different ways through the dot product or the cross product and accordingly, you get

divergence  of  grad  phi  and curl  of  grad  phi.  When you consider  the  curl  of  V and

consider applying the del operator over that curl of V, then again you can apply it into 2

ways; one is to dot product and the cross product. Therefore, you get 2 further second

order operators; one is div curl and the other is curl curl.

On the other hand, the divergence of V happens to be a scalar function and the only way

you can apply del over that is through gradient. So, that gives you these 5 second order

differential operators and 2 of them give us very important information that is curl grad

phi is identically 0 whatever may be phi. Similarly, div curl v turn out to be identically 0

whatever is the vector function V. So, what these 2 mean is that curl of a gradient is

always 0 and divergence  of  a  curl  is  always 0 and then,  divergence  of  the gradient

function grad phi turns out to be the Laplacian del 2 phi. The curl curl and grad div, these



2 have this relationship between them. So, this give you some of the relationships that

the second order differential operators always the first is the line integral along a curl.

(Refer Slide Time: 04:05)

So, if you have a vector function V, then along a curve if you take its integral, that means

you have this curve and from this point to this point.

(Refer Slide Time: 04:19)

If you want to take the line integral of a vector function, that means you take V dot a

small length element, a small vector element replacement element along this curve. So, V

dot dr, so such V dot dr components if you keep on adding from the starting point to the



end point, then you get the line integral along a curve of this particular vector function

along curve p. So, that is defined like this V dot dr which will be V x dx V y dy plus V z

dz  and  this  will  be  integrated  all  over  the  curve  continuously.  So,  if  the  curve  is

parameterized in this manner over an interval a to b for t, then this line integral reduces

when ordinary definite integral from t equal to a to b like this. So, V dot d ir becomes V

dot dr by dt into dt. So, V dot dr by dt comes out to be a function of t which you can

integrate from t equal to a to b. These are some important statements which mean the

same situation.

So,  all  of  these  are  equivalent  statements  for  simple  non-intersecting  curves  or  path

contained in a simply connected region. All of these are equivalent statements V x dx

plus V y dy plus V z dz. This quantity here, this differential quantity here is an exact

differential that will mean the same thing as that the vector function V is the gradient of

some scalar function, some scalar field phi and that also means that if this is a perfect

differential,  that means it can be integrated and the integral of this will be something

which does not depend on the path along which the integral has been performed. So, for

that kind of a function V which is the gradient of some scalar function whether you

integrate from this point to this point through this curve or along this curve or along this

curve, the result will be same and this also means that if the curve field is a cross curve,

then the point from where you start, then it is the same point where you end.

That means, the integral line along a closed curve circulation represented with this circle

on the integral sign that turns out to be 0 around any cross path. It also means that curve

V is equal to 0 that is clear because V itself is the gradient of some scalar field. So, it is

called must be 0. So, this in terms of relevant physics means that the corresponding field

V is a conservative field.
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The second integral  that we define is a surface integral.  This is defined over surface

element. Now, dS is a differential surface element and its magnitude is the area of that

small surface element and the direction is along the normal to that surface element. So, if

you affect this dot product and an integer that over a surface patch, then you get the

surface integral of the vector field V over that surface patch S and for this the surface

patch S must be orientable, that is which should be clear which side of the surface we are

talking about. That is only those surfaces for which one side of the surface and the other

side of the surface are clearly identifiable.

Now, there is a parametrization. All the surface in terms of 2 parameters u and w, then

this small  surface area element  dS can be found from this and we can work out the

normal. Also, unit normal which is r u cross r w divided by this magnitude and therefore,

when we insert the relationship between this expression, then V dot n dS in place of n,

we get this cross product divided by its magnitude and this dS the magnitude of that

small differential area element, you get this magnitude into d u d w. So, that magnitude

gets  cancelled and finally, we get  this  as the indigent  and we can integrate  over the

region are in the u w plane, the parametric plane.

Finally, we have got the volume integral which operates over a differential volume. So,

volume integral  you can evaluate  for  a  scalar  field  functions  as  well  as  vector  field

functions.
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So, in terms of these integrals, we have quite a few important theorem which are called

the integral theorem. The first among them is Greens theorem. In the plane consider R as

a closed boundary region in the F y plane like this. This region is R bounded by a closed

curve C. C is the boundary of R. This curve a, c, b, d is the curve V. Now, F1 and F2 are

2  first  order  continuous  function.  First  order  continues  means  that  F1  and  F2  are

continuous functions of x and y and they are first order derivative also continuous. Then,

Greens theorem in the plane states that the line integral of the vector function F having

F1 and F2 as components turns out to be same as the double integral of this quantity on

the entire region R. Now, this gives you a relationship between the double integral over a

region and a line integral over along its boundary. Now, among the three theorems that

we are going to discuss the line of proof for the first of these the green theorem in the

plane.

So, we will discuss in detail to give you the proof of these theorems and for the rest of

them, we will summarize the theme of the proof only. So, the way you try to prove, the

way you tend to prove Greens theorem in the plane is  first  by considering  a  simple

domain in which any line parallel to the coordinate axis parallel to y axis or parallel to x

axis cut the boundary of the region or cuts the curve c only at most 2 points, say if you

draw a vertical line like this, it  will cut here and here, 2 points only at most 2 point

because if you draw this line, then you get a single point and if you draw like this, you

get no point because we consider such a simple region first. So, that will mean that the



entire curve C can be split into 2 parts; one is acb and the other adb. First one can be

called  the  lower  half  and the second one can  be  called  upper  half  because  any line

parallel to y axis cuts it only at 2 points; one is a lower point and the other is the upper

point.

Similarly, since a line parallel  to x axis like this also cuts it at most 2 points. So, in

another way we can subdivide the boundary into 2 parts; one is cbd, the right half and the

other is cad, left half.

(Refer Slide Time: 12:57)

Now, if we can do that, then consider one of the double integrals from here say del F1 by

del yd F dy. So, first we consider that and del F1 by del y dx dy, this double integral over

the region. So, what we can say is that first we will integrate it respect to y and then, x.

So, we interchange the order of these differential dy dx and as we do that first integral is

with respect to y and y varies from the lower part to the upper part. So, let us represent

this lower part as a function y of x, call it y 1, x the lower part of already is a curve that

can be represented as y 1 of x, the upper part as y 2 of x. So, that means for the first

integral with respect to y, the lower limit is y 1 of x and the upper limit is y 2 of x. So,

that is this y 1 x to y 2 x and this integral will be next integrated with respect to x from x

equal to a x equal to b. That means, all these verticals will be then added together from

this end to that end, right.



If we do that, then del F1 by del y integrated with respect to y. So, that will simply give

us F1 at the upper limit and minus F1 at the lower limit. So, F1 at the upper limit is F1 of

x and y 2 and F1 at the lower limit is F1 of x and y 1, right. Now, note this that this has to

be integrated with respect to x from a to b over along y 2, the first one.

So, first one along y 2 has to be integrated from a to b. We can say that we will integrate

its negative from b to a. That means, F is equal to b x equal to a. If we do that, then this

gets  changed  to  negative  of  this  with  the  corresponding  swapping  of  the  limits  of

integral, right. Now, see F1 of x y 2 and here F1 of x y 1, both signs negative. So, you

find that b to a is this integral and a to b is this integral. This is along y 2 and this is along

y 1. So, what this is going to mean from a to b along y 1 and then, from b to a along y 2.

So, you get the first part gives you this line integral and second part gives you this line

integral. So, you have got a closed line integral over the entire boundary, right. So, that

means these 2 terms together mean minus, common minus sign the line integral of F1

over the entire curve C. That chose that del F1 by del y double integral over R turns out

to be minus the cyclic integral or circulation of F1 dx, right.

So,  the  second term here  turns  out  to  be  equal  to  the  first  term here.  Similarly, by

dividing this curve into 2 parts, the left half and the right half as x 1 y from here to here

and x to y from here to here, you can establish the equality of this part with this part.

That is the first double integral from here as the same as the first line integral from this

side and second line integral  from this  side.  So,  as you do that  in  this  manner, first

integrate with respect to x from this limit to that limit and continue together next integral

with respect to y and then, we add them together, then you find that there this turns out to

be same as this and as you take the difference of the two, you get the final result which is

this.

Now, if you carefully evaluate, if you carefully check this, you will also find that this

turns out in alternative form. This one is the line integral F dot dr. F is F1 i plus F2 j n the

plane. There is no k component. So, then this is F dot dr and on this side you find that

this turns out to be the magnitude of the curl F and its direction is k because i and j are

both in the x y plain. So, curl will turn out to be in the direction k and if dx dy is an area

element the xy plane, then its direction as a as area is vector quantity. The corresponding

direction will be again in the k direction. So, the magnitude will remain and k curves k



dot k will turn out to be unity. So, curl F dot k you will find turns out to be the same

thing.

So, in alternative form this same relationship, the result of Greens theorem in the plane

means that the line integral of a vector function turns out to be along a closed curve. C

turns  out  to  be same as  the surface  integral  of  the  curl  of  f  over  a  surface  element

bounded by this same closed curve C. Later we will see that this n, a more general form

turns out to be the statement of Stokes theorem. So, that way Greens theorem in the

plane is actually a special case of Stokes theorem which is more general. Now, recall that

we consider this entire proof for a simple region. Simple region in the sense, simple

domain in the sense that any line parallel to one of the any of the coordinate axes cuts the

curve C in at most 2 points.

Now, if that is not the domain, the domain is like this not only general, but also multiple

connected. There is a whole. Also this part is not included in the domain. So, for that also

we can have Greens theorem and the proof is not very complicated because for this kind

of  a  domain,  we  can  always  decompose  this  domain  into  simpler  regions,  simpler

domains in such a manner that each of the component domains satisfies this kind of a

requirement and then, over every component domain we can prove this and then, we just

some up all these components; 1, 2, 3, 4, 5, 6, 7 components we sum up together. The

double  integrals  are  directly  additive.  They add up totally  and  we get  the  complete

double integral by the simple sum.

Further, line integrals  here what  we find is  that  as we add them up, then the actual

boundary of the original domain,  both the outer boundary and the inner boundary is

covered only once. On the other hand, the  spurious boundaries which was due to our

subdivision of the domain gets actually circulated twice. As a part of this sub domain, it

got circulated ones from lower end to upper end as a part of this region. It got circulated

once,  it  got  included  once  from upper  point  to  lower  point.  That  means,  this  inner

boundary, this spurious boundary between 2 sub domain which was not part of original

boundary gets included in the integral twice; once along this way and the next time along

this way and in the algebraic sum, they get canceled for each of the inner boundaries.

The spurious boundaries that is the same thing that is going to happen. So, in the final

sum, the line integral that remains status to the actual original boundary of the given



domain and removes all the contributions from the spurious boundaries because they are

traversed twice  in  opposite  senses.  So,  they  cancel  each  other.  So,  this  way  Green

theorem in the plane can be applied to these kind of domains also.

(Refer Slide Time: 21:41)

Now, the next important theorem is Gauss theorem which has a lot of application, lot of

fundamental interpretation in physics.  So, for that we have a closed boundary region

represented  as T and its  boundary S which is  a piece  twice smooth close orientable

surface and over the entire region, we have got defined a vector function F which is first

order continuous.  That means,  it  is  continuous and  its first order  derivatives are also

continuous.  So,  for  that  kind of  continuation,  the  Gauss  theorem are  the  divergence

theorem says that the volume integral of the divergence of the vector function F over the

entire  volume is  the same as  the surface integral  of the function  itself  of  the vector

function itself over the boundary of the region that is the surface integral is over the

boundary's.

Now, this is actually direct result of the interpretation of the definition of divergence to

the  finite  domain,  that  is  whatever  is  the  meaning  or  interpretation  of  the  quantity

divergence for an infinitesimal domain around a point, the same theme when extended to

finite domains, the corresponding extension turns out to be this divergence theorem. So,

when you open these expressions, then you get this divergence of F is this. The volume

integral of that is this over T and F dot n gives you this scalar quantity and you get the



surface integral of that with scalar surface area element dS. So, this equality is the result

of Gauss divergence theorem. If you want to establish this result, what you try to do is

that you try to establish the equality of this term. By term is a third triple integral from

here is going to be equal to the third double integral from here, the z component to z

component and so on. The term by term equality you can establish that is del F by del z

triple integral will be equal to the surface integral of this part and so on for all three parts.

So,  for  this  also  first  we  consider  a  region,  a  volume  metric  region  such  that  the

boundary of which is cut by any line parallel to x axis, y axis, z axis at most 2 points and

not more than that. First we consider that kind of a region over that we establish the

equality  and then,  for  extension to  general  regions,  we again  sub divide the  general

region into many such simple regions which satisfy this requirement and sum up the

contributions and in the case of Greens theorem, in the plane the direct additive sum was

on the double integrals here. The same thing happens for the volume integral and there

the boundaries where segments of lines or curves which were traversed in inner spurious

boundaries where traversed twice in opposite senses here, the boundaries will be surface

elements and then, whatever spurious element is going to be used from one side, in one

of the double integrals, one of the surface integrals for one region, one sub region, it is

going to be considered in the other sub region as from the other side and that is why

those  spurious  surface elements in the  final  sum get canceled out and you get actual

surface integral over that surface which is the part of the original domain.

(Refer Slide Time: 25:56)

.



Now, we will omit the detailed proof of this step by step and you can follow the proof at

leisure later and work out the proof in the same lines.

(Refer Slide Time: 26:10)

There are 2 further important  identities  or results called Greens identities which also

work with a region, volumetric region T with its closed surface boundary S as required in

the premises of Gauss theorem and when we apply Gauss theorem over certain functions

in certain manner that is once on phi grad psi and then, on psi grad phi, then as direct

consequences of Gauss theorem, we can establish these relations which have a lot of

important applications in many field.



(Refer Slide Time: 26:59)

The  third  important  theorem  of  vector  calculus  is  the  Stokes  theorem  that  makes

reference to not a closed surface, but an open surface.

(Refer Slide Time: 27:11)

So, suppose this is an open surface S and this is the boundary of the open surface. Now,

note that this same boundary of the open surface with the same boundary being a closed

curve, you can have many different surfaces. For example, if you have a ring and then,

here is a net with which you try to catch something. So, now you can go on changing the

shape of this net, but the ring which is the boundary of the net remains the same. So, all



these surfaces will have the same boundary and these are all open surfaces. This side is

open. So, that is why you get these boundary. Note that a close surface will have no

boundary where in open surface, there is a boundary.

So, even the planar region if this curve is a plane curve, then the planar region bounded

by this curve is also one such surface and that kind of a surface we encountered in the

case of Greens theorem in the plane. So, this is in surface S1 of these is taken as S and

the boundary of the open surface S is this curve, this closed curve C. Now, if there is a

field function first ordered continues vector function F defined over this entire region,

then Stokes theorem tells that the line integral of the function F over this closed curve

like this turns out to be the same as the surface integral of the curl of F over this entire

surface S. That is a statement of Stokes theorem in which the unit normal that you need

to use here is given by the right hand class rule on C that is since it is an open surface.

So, whether to take the normal in this way or in this way has to be decided. Both are

valid, but it will depend on which way we will be traversing C. So, as we are traversing

C, so if we put our right hand along the arrow like this, then whichever way the thumb

will point out that works out to be n ,not this, ok.

So, if we point through the arrow by the clasping of the right hand, in whichever way the

thumb points through the surface, that is the direction of n to be used here in this context.

Now, with again omit the proof of this and as a special case, the Greens theorem in the

plane, the proof of that we have already seen.
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.

So, here you will find that if we consider the surface region S to be a region in the x y

plane itself, then you will find that we will recover the Greens theorem in the plane as we

have studied earlier. So, we will bypass the proof of this.

(Refer Slide Time: 30:55)

.

So, the important points to be noted from this lecture are, this lesson are the del operator.

The del operator applied in three different ways on scalar and vector functions. On scalar

function you get gradient, on vector functions through dot and cross product you get



divergence and curl the way we have the composite and second order operators on field

functions.

Then, next the line surface and volume integrals and the three important theorems which

are Greens, Gauss and Stoke theorems and these theorems are important in Physics and

Engineering of large number of systems through their applications. So, in the exercises

of this chapter in the book, you will find several important problems from physics as

well as from applied mathematics where some of these theorems are applied directly to

break the problem or reduce the problem into much simpler situations. In these 2 lectures

on the vector calculus by avoiding some of the long proof, we have saved some time. So,

let us take some examples on vector calculus, some examples on physics and engineering

problems as well as on applied mathematics problem pertaining to the scalar and vector

field are given in an exercise in the text books in chapter 18. I strongly advise you to

attempt  those exercises,  particularly  the exercise on Maxwell's  equation  because that

takes you through a complete exposure to almost all the important issues discussed in

this lesson.

(Refer Slide Time: 33:20)

Now, we considered one problem on parametric curve. This is actually the problem 17/6

of  the text  book that  we are following in the appendix  of  the corresponding to  this

problem.  Three  approaches  have  been  outlined  here.  I  will  elaborate  one  of  the



approaches.  The problem is  to  verify or  check whether  these 2 parametric  equations

represent the same curve or not.

This is the first curve and this is the second curve. Now, you will note very easily that the

first curve is evidently a circle with origin as the center and  radius three lying  in  the

expression y plane. That much is very clear. Now, we need to check whether r 2 of t also

represents the same curve. So, for that we try to transform r 2 in such a manner that it

gets started from the same point, where the first curve starts. So, first for r 1 for the first

curve.

(Refer Slide Time: 35:45)

Let us see what r 1 at t equal to 0 at starting point is. So, if you put t equal to 0 here is i,

yes  if we put t equal to 0 here, then we get r 1 0 as 3 i and its derivative r 1 t. The

derivative of the first curve, the tangent vector that you will get as 3 sin t i plus 3 cos t j

at t equal to 0. If we evaluate this tangent vector, then we get this as 0 and from here we

get c j. That means, that the curve starts here at 3 0 3 0 0 actually in 3 d 3 0 0.

So, in x y plane this curve is in planar curve in x y plane. So, we are making the diagram

only in the x y plane. So, it starts from 3 0 and since it is a circle, it must start like this

and that is why the tangent vector is found to be in the direction j. So, this s, the vector

circles cross ends. So, this is the point of our interest right now. Now, if this is a tangent

vector, then what the unit tangent is. So, the unit tangent at the starting point for the first

curve is j, right. At the starting point, note that you can write u 1 of 0, but to make the



notation simple, currently we are writing here. Understood it is the fact that it  is the

starting point which is being analyzed right now. Similarly, we can find out the second

derivative of r 1 t and then, we put the value t equal to 0 in the second derivative which

will give us this as minus 3 i which will mean that the unit principal normal is minus i for

the first curve. So, if unit tangent is there, unit principle normal is there, then from these

2 we can work out what bi normal is, right. U 1 cross p 1, so j cross minus i will get that

as k. Now, this much we have in hand. Now, we will try to find out the same quantities

from r 2 and then, try to work out the transformation which will bring u 2 to u 1, p 2 to p

1 and b 2 to b 1 and r 2 r 1 at pi by 4 to r 1 at 0. That means, we want to match the

starting point and we want to match the Serret Frenet frame at the starting point.

So, we want to match the point r 1 and u p b point r u p b at the starting point of both the

curve. So, you leave the first curve as it is placed and the second curve we try to bring

here. So, for that purpose please make note of this and let me mark here unit tangent is

here, unit principle normal is here and of course, b 1 is perpendicular out of the board,

right because of the cross product. So, now we get rid of this because all the information

from here is actually available here as well this is the starting point. Now, the same thing

we try to evaluate from here. So, for the starting point we put t equal to pi by 4 as we put

t equal to pi by 4 here.

(Refer Slide Time: 40:29)

.



So, pi by 4 into 2 that s pi by 2. So, sin pi by 2 is 1 cos pi by 2 is 0. So, from here we get

3 i from here, we get 2 plus 2, 4 j  and from here we get 1 plus 4, 5 k. So, this is the

starting point for the second curve as it is given.

Now, if we develop the second derivative, first derivative and second derivative that also

you can similarly do finding derivative is not very complicated. So, I am omitting that

and giving you the result. If you evaluate the first derivative of this that is r 2 prime t and

then, at t equal to pi by 4, you evaluate that, then you find that you get this as minus 4 i

plus 2 j plus 4 j y. You must evaluate this expression for the derivative and then, verify

that this indeed is what you get.

Similarly, differentiating that again for the second derivative and inserting the value pi by

4 in case of t you would find minus 8 i minus 8 j minus 4 k. So, from here you can work

out the unit tangent and unit principle normal between these two, right. So, from here

you will get u 2 at the value pi by 4 at the value t equal to pi by 4, that is at the starting

point as now this is minus 4 to 4, right. So, what will be the magnitude? Magnitude will

be 6, right. So, you divide by 6. So, you get minus 2 by 3 i plus 1 by 3 j and plus 2 by 3

k. This turns out to be the unit tangent at the starting point for the second curve.

Now, this in the first case as you saw it was very clear that the tangent vector came to be

in the direction j and the second derivative appeared in the direction minus i which are

orthogonal to each other, perpendicular to each other anyway. So, you did not have to

subtract  the component of r double prime from the direction of u.  If the same thing

happens here also, then it is fine otherwise we will have to subtract that. So, whether this

r prime and r double prime are perpendicular to each other that you can check, otherwise

we would have to subtract.

So, you get 32 minus 16 minus 16, it is 0. So, the dot product between these 2 is 0. That

means, this is indeed perpendicular to this. So, that makes our life easy. So, the unit

vector  as along this direction itself  is the unit  principle  normal.  So, you get the unit

vector in this direction and divide by 12, right. Yes the magnitude of this is 12. So, you

divide by 12 and you get minus 2 by 3 i minus 2 by 3 j and minus 1 by 3 k. So, this you

get as the principle unit, principle normal and from these 2 you can work out b 2 as the

cross product which turns out to be 1 by 3 i minus 2 by 3 j plus 2 by 3 k.



Now, we have the starting point of the curve r 1 here and its u b p Serret Frenet frame

oriented in this manner and for the second curve also, we have got the corresponding

pieces of information r 2 at the starting point and u 2 p 2 b 2 at the starting point and the

Serret  Frenet  frame.  Now, if  the  2  represent,  if  the  2  parametric  equations,  these  2

represent the same curve, then through a rigid body motion a displacement and a rotation

if we can bring this r 2 and this u 2 p 2 b 2 in the location and orientation of the first

curve r 1, then the complete  curve should match.  So, let  us try to do that.  So, what

rotation transforms these three vectors in the direction of these three vectors, this is the

question we ask.

So, suppose that rotation matrix 3 by 3 rotation matrix is r. So, r transforms u 1 p 1 b 1 to

u 2 p 2 b 2. We could do the other way also that is what rotation would transform u 2 p 2

b 2 to here, but they are not very different because the 2 rotation matrices transposes

each other. So, if we try to do this, we are going to do it like this because the matrix that

will appear here will be easier to invert the matrix that would come from, there will be

more complicated to invert and we must invert one of the 2 matrices. So, r into u 1 what

is the column representation of this vector u 1. It is u 1 is j. That means, 0 1 0 0 i plus 1 j

plus 0 k. So, u 1 is 0 1 0 0 1 0 p is minus 1 0 0, that is minus i minus 1 0 0 and b is the z

vector k, that is 0 0 1. We find that we want the rotation matrix which transforms u 1 to u

2, p 1 to p 2 and b 1 to b 2, right.

So, u 1 to u 2 r into first column of this should be here that is the vector u 2. Similarly r

into p 1 should be p 2 and finally, r into b 1 should be b 2 that is this. Now, we want to

determine r. So, we need to post multiply the matrix on the right side with the inverse of

this which is quite simple. So, let me give you the expression for that r which you can

verify later. Now, it is actually quite simple what we need to do is to interchange these 2

columns on both sides. So, as we interchange these 2 columns, we get 1 here and minus

1 here. Then, the first column we should make negative because this is minus 1, ok.
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So, that will immediately make this identity matrix and whatever is there will be the

product of this with its inverse from the right side, right.

So, this tells us that the matrix r is the negative of this column comes first, this column

goes next, right and the third column remain in its own place because this is 0 0 1. So,

those  column  operations  which  will  make  it  identity  the  corresponding  column  of

operations done here give the value of the rotation matrix r. Now, this is the matrix r

which operated over u 1 p 1 b 1 takes it to u 2 p 2 b 2 and what we are looking for is

actually the inverse transformation because we want the second curve to come and merge

here, right if they turn out to be the same curve, right. So, we need the inverse of this

rotation  matrix  and inverse  of  rotation  matrix  is  just  transpose.  So,  it transpose  this

matrix.  So, these 2 exchange their  places. In this  case,  we do not have to make any

change because they are same and these 2 exchange their places.

So, this transformation applied on the second curve will bring it to the first curve if they

turn out to be the same curve. So, that is the check that we have to perform. So, the

second curve transformed through now first orientation till  now we ave not given the

position transformation, right. So, the orientation of the second curve is changed in order

to match the orientations at the starting point. So, let us call it r 2 tilde that will be r

transpose into what is r 2 given. So, that means this matrix multiplied to the vector. Now,

this i j k the way it is written, the first entry will be here, the second entry the j entry will



come here and k entry will come here. If we multiply this matrix with this completely,

then we get r 2 t r 2 tilde t this one as 3 sin 2 t plus 10 by 3 minus 3 cos 2 t plus 8 by 3.

This is after turning it. 

So,  now the  orientation  of  the  second curve  at  its  starting  point  is  the  same as  the

orientation of the first curve at its own starting point. That means, now if they are the

same curve, then this curve and that curve now have taken parallel position. Now, to get

the second curve here we need to apply a displacement. So, what displacement we will

need? The displacement that is needed the delta r will be this, r 2 tilde at its starting point

which is pi by 4 minus this r 1 at its own starting point and earlier we saw the starting

point of this r 2 at pi by 4 and that was 3 i plus 4 j plus 5 k from that we subtract this

which is 3 i. So, the rest of it we get 4 j plus 5 k. So, r 2 has been transformed. So, better

we evaluate this. We evaluate r 2 tilde at pi by 4 from here fresh because during rotation

its starting point has gone to some other location. So, put pi by 4 here. So, that means sin

pi by 2 is 1. So, 3 plus 10 by 3 from which we subtract this 3 i. So, only 10 by 3 will

remain and then, minus 3 into cos pi is 0.

So, this 8 by 3 minus 0, so 8 by 3 remains and finally, that k part which is 3 minus 0. So,

we have got 3. So, this is the displacement which we have to give in a negative direction

to r 2 tilde to bring it here, right. So, now let us call this; now this r 2 tilde was a rotated

version of r 2.
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Now, r 2 bar will be the translated, further translated. So, this r 2 bar will be this r 2 tilde

minus this delta r. So, what will be find from here? If we subtract this, then we will get 3

sin 2 t i minus 3 cos 2 t j and 0 0 k. So, now we find that this is also a circle in the x y

plane starting from here. No question about all these, but still you find that the equation

of this and the equation of this do not exactly match because there is a change of the

parameterization. If you now try to re parameterize this same curve with a little different

parameter say with tau equal to 2 t minus pi by 2, then you will find that the equation of

this transforms exactly to the equation of this in terms of tau.

So, whatever is this equation in terms of t, the same equation here you will get in terms

of tau. You will get 3 sin 3 cos tau 2 t minus pi by 2, you will get 3 cos tau i plus 3 sin tau

j and that will also transform the starting point in the first curve. The starting point was 0

in the second curve till this point the starting point is pi by 4. When you put that pi by 4

here, you will find that the starting point of tau will be 0. So, that way you will find that

through these changes rotation to make the Serret Frenet frames of the 2 curves parallel,

then translation to make the merge at the initial point and then, reparametrization we will

show that the 2 curves exactly have the same equation. So, up to this stage the curve has

actually  come here,  but its  parametrization is different.  So, at  different  values of the

parameter, it is going to different points rather than reaching the same curve at the same

diameter values. So, this reparametrization will convince that the 2 equations are found

to be exactly same. So far in the discussion on vector calculus and next lecture onwards,

we will start our next module on numerical analysis starting from polynomial equations.

Thank you.


