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Multivariate Calculus

Good Morning, in the last lecture we completed our module of linear algebra. In the

present lecture we start the small module on Calculus this will have 3 lessons topic in

Multivariate Calculus and then 2 lessons on Vector Calculus.
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So,  in  this  lecture  in  this  lesson on topics  in  Multivariate Calculus, we will  briefly

summarize those topics of Multivariate Calculus which are likely to be confused or miss

used inadvertently..
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First issue is the derivatives in Multi-Dimensional Spaces first of all if we have a scalar

function f of a vector variable for that the first order derivative is the gradient which has

these following as the components del f by the del x 1 del x by del x by 2 and so on. So,

the n partial derivative with respect to the n variable x 1, x 2 up to x n. These form a

vector which is a column vector that is a transpose of this rho vector that is called the

gradient. And in what sense it is the first order derivative of the function f in the sense is

this that is the differential change the first order differential change in the function value

is the product of the gradient and a first order change in the value of x. 
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So this will be considered always the notion of first order derivative that is the first order

derivative is something which multiplied with a differential change in the independent

variable produces the corresponding differential change in the function or the dependent

variable. So in this sense the gradient vector forms the first order derivate of the function

f scalar function of a vector variable so this is the meaning of it.

Now, if further multi dimensional Multivariate function in a particular direction you want

to find out the rate of change in that direction then the corresponding rate of change the

scalar value of it is called the directional derivative and the definition of it is like this that

is from the current point x in the direction d if we move in little step alpha and then we

consider the change of the function value between the original point and the changed

point that is this numerator and then divide that by the little step alpha that we took and

then if we take the limit of this quotient as alpha tends to 0, then what we get is the rate

of change of the function along the direction that is called the directional derivative.

Keep in mind that this vector d need not be a unit vector though quite often if we use a

unit vector there then the meaning of the step size alpha is becomes more appropriate,

however, it is not necessary that the vector d is unit vector it can be any vector for that

method. 

In particular you should sometime verify that these relationships always hold that is if we

try to take the directional derivative of the function in the coordinate direction e j the j-th

coordinate direction then that turns out to be the same as the ordinary partial the partial

derivative with respect to x j that is a j-th variable and then you can also verify that the

directional derivative with respect to direction d turns out to be equal to the inner product

of the vector d and the gradient vector gradient.
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In particular this is another important relationship that is if you take the vector g hat as

the  unit vector  along the  gradient  vector  itself  suppose  grad  f that  vector  is  in  this

direction and if you take g, g hat as the unit vector in this direction. Then if you try to

find out the directional derivative with respect to this unit vector then the magnitude that

you get is the same as the magnitude of the gradient of f these relationships you should

workout and verify. 

The points to note are the following among all unit vectors taken as directions the rate of

change of a function in a direction is the same as the component of it is gradient along

the  direction  if  you  take  this  vector  as  the  gradient  and  you  want  to  find  out  it  is

component along this direction and suppose this is a unit vector then if you work out it is

component  along  this  direction  like  this  then  this  component  turns  out  to  be  the

directional derivative of the function f in this direction this is one important point to note.

And the second point to note is that the rate of change along the direction of the gradient

is the  gradient that is among all directional derivatives the directional derivative in the

direction of the gradient is the maximum among all unit vectors taken as directions now

this  is  for the first  order derivative.  Now  when you go to find out  the second order

derivative, then what do we get? We again should have the notion of the definition of a

derivative that is the second order derivative should be a quantity which when multiplied



with  delta  x  should  give  us  a  small  change  in  the  first  order  derivative  that  is  the

gradient. 
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With that  understanding  the  second  order  derivative  the  role  of  the  second  order

derivative is played by  this matrix known as the Hessian which is the n by n matrix

formed  by  the  second  derivative  second  partial  second  order  partial  derivative  of

function f which respect to x 1, x 2, etcetera.

So,  the  diagonal  entries  are  the  direct  second  derivatives with  respect  to  individual

variables say this is del 2 f by del x 1 square this is del 2 f by del x 2 square and so on

and the off diagonal elements will be in the form of del 2 f by del x I del x j right and this

is a symmetric matrix this is a symmetric matrix. 

Now in what sense this matrix is the second derivative of the function the sense is this a

small  change  in  the  gradient  at  x  and  x  plus  delta  x  that small  change  in  the  first

derivative is roughly equal to this matrix into delta x so this is the role of the second

derivative that this matrix plays you can work out you can multiply this complete matrix

with the vector del x delta x and see that what you get we will turn out to be the small

change in the gradient vector that is a column vector. Now so far we have considered the

function f to be a scalar function of a vector variable x, you can also consider a vector

function of a vector variable.
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So, now you can say that suppose we have a vector function of m components like this,

so here the function itself is also vector and the independent variable is a vector variable

that means, the x the variable x is a vector which has so many elements that is x 1, x 2, x

3 up to suppose x n. 

So, then if you try to work out the first order derivative of this vector function with

respect  to  the  vector  variable  then  again  you get  a  matrix  and that  matrix  is  called

Jacobian, then you find that the Jacobian is given by this expression so each member of

this del h by del x 1 then del h by del x 2 and so on each of them is a column vector

because the function h itself is a column vector. 

So, now in this matrix you will find that there are n columns and sorry yeah n columns

and m rows h is a m component vector so there will be m rows so this will be a column

vector similarly this will be another column vector and so on so such n column will be

there and this when multiplied with delta x having members delta x 1, delta x 2, delta x 3

etcetera that will produce delta h that is in it is rows will have delta h 1, delta h 2 and so

on. So this is called the Jacobian of the vector function h. So, that way you can say that

the  Hessian turns out to be the Jacobian of the gradient because gradient  is a vector

function of x it is derivative the n by n matrix is the Hessian the second order derivatives.
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Now in order to see how we get the gradient and Hessian of sum very simple functions,

let us see some examples we will try to find out the derivative of a few simple functions

this is 1 this is another now this is a scalar function of x, x is a vector variable this is a

scalar function of x and then we will consider derivatives of this with respect to x and

with respect to y and in particular we will consider that situation in which y is the same

as x that is another special case that you consider first this, this is a scalar function. So,

we can we can find out it is gradient with respect to x so first of all let us verify that these

2 are actually same.

How do we do that we open it and say a transpose x is equal to a is a column vector so

we will have a 1, a 2, a n and x is a column vector right so a itself is a column vector that

is why a transpose becomes this row vector and as we open this we will get a 1, x 1 plus

a 2 x 2 and so on. If we try to find out x transpose a then here we will have x 1, x 2, x 3,

x 4 etcetera and there we will have a 1, a 2, a 3, a 4 etcetera right so the product will be

the same thing so that is why this a transpose x and x transpose a are actually the same

thing right. 

Now if we try to find out it is gradient then in particular let us try to find out it is partial

derivative with respect to the i-th variable so with respect to i-th variable all these partial

derivative so all these we will go to 0 except the term a i x i so the derivative of that will

be a i right so then as we try to find out del by del x 1 we will get a 1 del by del x 2 we



will get a 2 and so on. So, the when we frame the complete gradient we will get a 1, a 2,

a 3, a 4 etcetera so we will get a which will be the same thing as a gradient of this right.

So gradient of a transpose a or x transpose a will be simply the vector a.
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Now, consider this we want to find out the gradient of x transpose a y we can denote it as

this or you can denote it like this we are looking for gradient of this functions. Now

consider x is an n dimensional vector, a y will also be an n dimensional vector otherwise

this multiplication x transpose a y will not make sense. Now in place of a y, if we can use

this a itself in place of this a if we use a y then what we will find in that same original

expression in place of a if we write capital A y then directly from that expression we get

the gradient this will be A y right. 

Now note that this function x transpose A y is actually a function of 2 vector variables if

we consider y also as variable this derivative is it is gradient with respect to variable x

with respect to variable y also we can find out the derivative when we want to do that we

note that this x transpose A y is a scalar function now a scalar is a 1 by 1 matrix it is

transpose is that scalar itself so we can replace this with it is transpose. 

If  we do  so right we get  y transpose  A transpose x and now we have got  a similar

situation here we were trying to find out derivative with respect to x and x appeared here

we had x transpose something and the derivative turned out to be that something here we

are trying to find out the derivate with respect to variable vector y and the function is y



transpose something. So the derivative will be that something so; that means we have A

transpose x.
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Now, consider this that in the special case where x is equal to y. Then what will happen

then when we want to differentiate this  we will  find that this  derivative  will  have 2

components; one considering this x as variable treating this as constant and the other in

which we will be differentiating this x treating this as constant. So, the first one in which

this is the second this x has been considered as constant. We will find that the derivative

is A x.

On the other hand in the second case where this is differentiated and keeping this as

constant we will have the derivative as a transpose x from here. And that means, we have

the derivative gradient as A pus A transpose x. Note that this matrix this is systemic with

respect to what is A this matrix is symmetric. 

Typically in this kind of a function which is called a quadratic  form which we have

encountered earlier also, A is taken as symmetric but even if originally A is not taken as

symmetric.  Finally  this  will  be  symmetric  anyway.  Now  note  that  this  is  a  vector

function this is a gradient. If we differentiate this then we get the Hessian of the original

function that is the second order derivatives. 



And that will turn out to be A plus A transpose, because a small change delta x here will

produce this into delta x that much change in the gradient in this function so this will be

the Hessian. In the case of symmetric A this will be twice A because A and A transpose

will be same.

Now, the second important issue in this lesson that we explored is the Taylor’s formula

and Taylor’s theorem and Taylor series.
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So, let us try to motivate the discussion through a very practical issue.
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We consider 3 trains all of them at a particular time start from one station and at another

time reach another station. So from the first station to the second station the distance that

is covered the same distance is covered by all these trains in the same duration. So one of

the train go that a constant speed. So, this will be it is time versus distance curve graph.

Now this is constant speed and speed is the rate of change of the displacement. 

So, constant speed means here we get constant slope for the train. This is the first train.

Another train, which initially goes a little slower than the first train so this is train 1 let us

say this is train one. Train 2 initially goes little slower so that means, it is initial speed is

less than this means little lower  slope like this it starts. But  then at the same time it

reaches here.

If initially it was a little slow, but at the same time it reaches the final destination as train

1 then that means, that somewhere else it must have made up. So, if initially it was slow,

but  it could makeup finally, that means that somewhere else train 2 must have moved

faster than train 1 so that means, with higher slop compared to this like this. Now  if

initially  it  was  slow and in between; it  must  have become faster  than the  first  train

somewhere that means, that from slow to fast at some point of time it must have equaled

it is speed with the speed of the first train. For the first train the speed is constant, so that

means that between this initial  time and the final time there must be some sometime

where when the speed of the second train is exactly the same as this constant speed of the

first train.

So, wherever that time happens to be there must be some point  of time. Where that

happened? where the slope of this curve this graph is parallel to this the same slope so,

the tangent is parallel. Similarly if there is a train 3 which initially was moving very fast.

But then finally, it reach the destination station at the same time that means, somewhere

it must have turned from faster to slower. 

So, there must be some point sometime when it is slope was the same as this one. So, the

tangent somewhere must have been parallel. So from faster to slower there must have

been a point of time when if speed same as this right. Now this is necessary because the

speed cannot change suddenly that is because the speed is a continuous function of time. 

If that were not  so, if the speed could suddenly change then this was not necessary. If

speed  could  suddenly  change  that  means,  the  graph  could  have  suddenly  turn  it  is



direction then it would be possible to have it like this. At this point suddenly there is a

change and there is no tangent there is one tangent like this another tangent like this. But

in this kind of situation if we say that the first order derivative is continuous that is speed

is continues, then it becomes necessary that at some point of time between this and this

there must be the slope which is parallel to this which is same as this ok.

So, this in mathematical terms we will mean that if the function is continuous and if the

first order derivative is continuous. Then between the t  initial and t final there must be

some time say t 0, such that at t 0 the slope is equal to the average slope that is this is

Lagrange’s mean value theorem right. So, the Lagrange’s mean value theorem says that,

if the function between these 2 points is continuous and it is derivative is also continuous

then there must be some point in this interval, where the first order derivative is the same

as the rate of average rate of change. So, that is the statement here if we consider only up

to first order that is f of x plus delta x is equal to f x plus here in the place of x, we will

have some x x c here which I have represented as t 0 in that place we have x c.

So, that is  Lagrange’s  mean value theorem first  order derivative. If the function is n

times differentiable  then we can go on extending that and we can include first order

change, second order change, third order change up to n minus one-th order change. And

that final mean value we can write in this form the n-th derivative in the Taylor’s formula

is then evaluated at x c some point in between the interval. 

So, here the way we have written here that is t 0 some value between t i and t f we could

have said that where t 0 is equal to t I plus some parameter into t f minus t i it would be

same thing and that parameter can be between 0 and 1. So, we can say in that sense also,

so if we say that in that sense with up to n-th order derivative included. Then this term is

known as the remainder  term and this  is  Taylors mean value theorem. Taylors mean

value theorem basically assures us of such n x c such a value x c.

Now, if we say that there is a function in which is infinite times differentiable. Then this

reminder term we can go on postponing and we can have an infinite series and that is this

Taylor series it goes on right this is for a scalar variable. Now  what it is a analog for

vector variable or for Multivariate function. For a Multivariate function you will find that

this f x time is same here. This f prime x into delta x that term will be included like this

delta  x  transpose  the  gradient  plus  this  second  order  term will  be  taken  as  delta  x



transpose the Hessian into delta x and so on. So, you can say that this delta x transpose

grad del square when we write it we get when you open it out we get this ok.
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So, the third term third order term onwards terms becomes very complicated and you

cannot write it in the form of matrix multiplicity and that is why most of the sensible

analysis goes only up to second order. So, this is what is written here is the second order

truncated  Taylor series that is we have truncated it up to the second order. This is an

expression which is going to be very useful for many of our analysis later.
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Another important issue that we will need quite often is that change of rule is Chain Rule

and change of variables.

So, we know that for a function for a scalar function of a vector variable we can change x

1, x 2, x 3, x 4 etcetera independently. And if we make several such changes then this

quantity is called the total differential in which the components d x 1 the smaller small

changes d x 1, d x 2 etcetera effect these individual changes in the function value. Now if

we divide this whole thing with dt and then take the limit when dt tends to 0 in the sense

that x the variable vector x itself is a function of p another parameter. 

Then what we get? As the total  derivative d f  by d t  which is  actually  the ordinary

differential coefficient of f with respect to t turn out to be grad f transpose d x by d t. So,

this  is  the  way  we  differentiate  a  scalar  function  f  of  a  scalar  variable  t  when  the

description of the function is available not directly with p but through a vector variable x

whereas, f is a function of x which is a vector and x itself is a vector function of a scalar

variable t. In that sense in that case the application of Chain rule d f by d t in the ordinary

Calculus would be d f by d x d x by d t. 

So the Multivariate analog in which x is Multivariate turns out to be like this gradient of

f transpose d f by d t where, x is vector, t as well as f are scalar. Many situations arise in

which the function f is expressed as a function of p and x f of p and x in which x itself

turns out to be f function of p.

In that case the total derivative of f with respect to t should include the contribution in

the derivative to direct dependence on t and also the contribution through the dependence

by the dependence over t through the vector variable x. Then what we will have we will

have this term as well as the ordinary derivative the partial derivative with respect to t.

So, the total derivative d f by d t turns out to be the partial derivative with respect to t. 

Considering this entire x as constant and then a separate component added to that which

contributes the derivative part which is due to it is dependence over t through this so that

is coming from this expression. Now it may happen that f is a vector function of v and x

in which v is a vector variable and x is another vector variable which is again function of

v. 



So, in a similar model the way in which we worked out this. We find that the derivative

of f with respect to v i turns out to be 2 parts: one by considering v i only as the variable

and  v  1, v  2, v  3  other  v’s  as  well  as  these x’s  this  v  is  kept  constant  and  it  is

differentiated with respect to x and then multiplied with the derivative of x with respect

to v i like this so this is in the same sense as this. 

And when such partial derivatives we assemble together then we get it is derivative with

respect to v ok that is the gradient that is the full gradient of f with respect to v. While

using this kind of expressions you should exercise question to note this transpose and

then the order in which these matrices and vectors are multiplied and so on. 

So, quite often the sizes of the matrices and vectors would give you a quick check. But

sometimes they may not, but always if you try to see what each quantity means and what

you will  get  if  you  write the  components  of  those  matrices clearly  and what  is  the

meaning of the Chain rule applied in  the Multivariate  context you will  find that  the

confusions  get  removed. In  order  to  see  how it  is  used, Let  us  consider  this  small

example.
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We have got a function of 2 vector variables x and w and this is the function in which we

have got a 2 dimensional vector x, x 1, x 2 and x 3 dimensional vector w 1, w 2, w 3 and

the function is like this. Now in this the vector w itself is a function of x which is given

like this. Now from here if we want to find out it is gradient with respect to x then we



can talk of 2 such gradients one is the partial gradient with respect to x that is evaluated

keeping w as constant. So, if we do that then the gradient of this, the partial gradient

keeping w’s as constant will be w 2 cos x 1 and then minus w 3 sin x 2 and that is it

right.

If we similarly construct the gradient with respect to the variable vector w keeping x

constant then we will find the derivative with respect to w 1 is 1, derivative with respect

to w 2 is sin x 1 and derivative with respect to w 3 is cos x 2. Now  this relationship

which gives w as a vector function of x if we differentiate this with respect to x then we

get the Jacobian that is del w by del x and that will be this c by 2 matrix . This is the

derivative of w 1, this is the derivative with respect to x 1 that is derivative of w 1, w 2 w

3 with respect to x 1 derivative of w 1, w 2, w 3 with respect to x 2. 

Now that formula there this formula apply to this particular problem will give us grad f,

the total gradient of f which accounts for the derivative the rate of change because of this

direct change as well as the change through a change in w because of change in x.
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So, that will be this direct change in f because of change in x plus Jacobian transpose this

Jacobian  transpose multiplied  to  this  1. So,  when we construct  this  now see what  it

means this Jacobian what does it mean it means del w 1 by del x 1 ok.



Then del w 2 by del x 2 del x 1 and so on. Then del w 3 by del x 1. Similarly these are

with respect to x 2 now it is transpose will have these 3 fellows in the first row. So, here

we will have in the first row we will have del f by del x 1 plus here we will have the 3

elements that I have written there they will be in the first row of j transpose multiplied

with this. 

So, then we will get del w 1 by del x 1 into del x by del w 1 del f by del w 1 plus the

second one del w 2 by del x 1 del w 2 by del x 1 into from here the second entry that will

be del f by del w 2 plus the third entry from there del w 3 by del x 1 into the third entry

from here that will be del f by del w 3 that is the first element of this.

Similarly, there will be a second element of it in which in place of x 1 we will have x 2.

Now  note that this is a direct variation for x 1 this is a variation with respect to x 1

through variation of w 1 del f by del w 1 into del w 1 into del x 1 and so on. So, the

variations in w 1, w 2, w 3 due to a change in x 1 account for small changes in f through

this, through this and through this. And the direct dependence over x 1 is accounted for

here you can expand this and find out the gradient that you get from this and then try to

do the same thing all over again by first putting those w values here and getting it in

terms x 1 and x 2 only and then finding the derivatives directly.

So, through both methods you should find out the final derivatives and see that they

match. And we proceed to another important issue that concerns such quite often. 
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For that, let us consider a vector of m plus n dimensions and a function of it h of x which

is an n dimensional function that is a vector function h of a vector variable. The variable

x is of m plus n dimension and the function is of m dimensions only. If we partition this

vector into 2 parts n variables in z and the rest of the n variables in w like this. Then this

relationship becomes h of x and w, right. 

And now if we equate this to 0 vectors that will mean h of z and w equal to 0. Now this

gives us m equations. The function h of x is an m dimensional function m components,

so, this equal to 0 gives us m equations in all these unknowns all these variables z and w.

Now note that z has n variables and w has m variables and there are m equations. 

Now if we give the value of z that is the n variables listed in z if we describe their values

then what it becomes, it becomes m equations in m variables in w. Now m equations in

m variable same number of variables can we solve it and then say that for every set of

values for z can we work out w? If we could then we would basically have a straight

forward function w of z this is a question can we work out the function w of z that is by

prescribing z1, z 2 up to z n by prescribing those n variables can we determine the rest of

the variables that is w 1 to w m from these m equations. 

So, in general for the non-linear problems all over the domain we cannot do this through

a single close form expression. But then if we ask for something less that is if we say that

we have 1 valid pair z and w which satisfy this requirement. Then in the immediate

neighborhood can we frame can we form a first ordered approximation this is possible

under a certain condition. 

How? So, for that what we do we consider the derivative of this is a vector function of a

vector variable of 2 vector variables. So, if we try to differentiate this then we get del h

by del z plus we are considering the derivative with respect to z because z is prescribed z

is going to play the role of the independent variable and w is going to play the role of the

dependent variable. 

So, we try to find out it is derivative with respect to z, so it is derivative with respect to z

we will have 2 parts one direct and the second 2 w. So, the derivative of this is del h by

del z direct derivative and plus the other component will be del h by del w del w be del z,

so we have this. 



Now note that h is of size m, w is also of m this will be a square matrix. So, we can talk

of the problem of finding it is inverse so for that we take del h by del z on the other side

try to pre multiply with it is transpose and then we get del w by del z as this that is if this

matrix is invertible. If we can do this then we can say the first order change in w can then

be found out by this that is through a change in z by this amount. 

The corresponding change in w that is w 1 minus w will be given like this del w by del z

into this. So, this is a first order approximation of the function w of z around a point pair

z and w. Now what is why this local neighborhood description in this manner if possible

if the Jacobian del h by del w is non singular if this is invertible. So, that is the condition

and this result is known as the implicit function theorem which is going to be very useful

in many of our applications where at  one point we try to find out a locally valid first

order  approximation  and  continue  with  that  particular approximation  as  the  local

description  of  the  function.  So,  this  will  be  possible  when  the  Jacobian  matrix  is

invertible, non singular.

 After this we have another few small issues that we need to quickly have a look into:- 
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For a multiple integral, when we conduct a change of a variable say the original integral

is in terms of x y z. Now if you conduct a change of variables in this manner x, y, z all 3

of them  are taken as functions  of 3 new variable u v w. Then first of all we need to

transform the domain from A to A prime A bar where A bar is the corresponding domain



in the u v w space. And then here in place of x y and z we put x y and z in terms of u, v,

w and then in place of d x d y d z we have this determinant of the Jacobian into du dv d

w. So, this Jacobian determinant is the element that transforms a volume in the u, v, w

space to a corresponding volume in the x, y, z space. As an example consider this small

case in the 2 by 2 situation. So, quite often for evaluating a double integral we transform

from rectangular to polar.
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And then apart from transforming the limits of integral, when we do the transformation

from rectangular to polar we keep here r cos theta r sin theta and in place of d x d y we

use r d r d theta. What is this r doing here for that you can see that if you take x y as this

vector function of r sin theta. Then if we try to work out it is Jacobian, The Jacobian will

be here 2 by 2 matrix in which we will have del x by del r here and then del x by del

theta here del y by del r here from here and del y by del theta that is. 

So, if you try to take the Jacobian determinant you will find that this cos theta into r cos

theta minus sin theta into minus r sin theta. So, you will find r cos  square theta minus

minus plus r sin square theta that is like this, this is 1. So, the Jacobian determinant is r

that  is  why  while  transforming  the  unit  volume  or  unit  area  in  this  case  d  x  d  y

transformed to r d r d theta.
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The same thing you can find out geometrically also, In the rectangular coordinate system

from this point a small  area  element turns out to be d x into d y. In the case of polar

coordinate the typical area element is like this. Now this is point r theta, this is angle has

changed to d theta. So, this length is r d theta, on the other hand this is radial change this

is d r. So, you find that the elemental area is d r into r d theta. So, that gives you this as

the elemental area ok.
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.



Now, if we continue in our next important issue here this is going to have a lot of use in

the vector  (Refer Time: 50:45) segment. So, here if we have a differential quantity and

then if we ask this question that does there exist a function f x for which this is the

differential that is we can talk about a function f for which d  f turns out to be this or

equivalently  we can  say  that  for  which  the  gradient  is  the  vector  function  t  x. The

components of which are t 1 x, t 2 x sitting here. 

So, if the answer is yes then we say that this particular differential is a perfect differential

or an exact differential and it can be integrated to find f for every differential this may

not be valid. 
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The last point that we consider in this lecture is the formula for differentiation under the

integral sign so that is useful in differentiating a function which is available in the form

of an integral. The integrand here is a function of x and t integral is with respect to t and

the limits of the integral are functions of x.

So, if we try to differentiate this considering this as a function of x u and v u and v

themselves being functions of x again then the straight forward Chain rule will give us

this expression for the derivatives. This first term is the direct derivative with respect to x

which does not consider the dependence of x and t which is here through the limits of

integral so that is simply this in which the derivative is taken into the integral time. But



that is only the first term, in these 2 terms d u by d x and d v by d x are derivatives of u

and v which are known functions of x, but we need to find out these 2 partial derivatives.

So, for that what we do we considered a function capital F whose derivative with respect

to t is this small f our small f here and then phi x turns out to be here itself in the place of

f if we put del f by del t then we get this. And  the integral of that is capital f of x  t

evaluated  at  v  minus  evaluated  at  u.  Now  here  you  see  this  whole  thing  is  the

corresponding function of x u and v. Now if we differentiate this here with respect to u

partially and with respect to v partially then we get these 2 partial derivatives. So, we do

that so derivative of this partial derivative with respect to u will be coming from here that

is minus del f by del u that is minus del f by del t evaluated at t equal to u and similarly

for this.

So, from here we get these 2 expressions and insert these 2 expressions for the partial

derivatives here and then we get  the complete  expression like this, this  is  called  the

Leibnitz rule. The special  case is of course, that  one in which u and v, the limits of

integrals are constants or independent of x, in that case we will have only this first term

these 2 terms will not be there.
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So, this is called a Leibnitz rule and it is used for differentiating under the integral sign.

There is another small topic here in the lesson which we will  omit because it is quite

straight forward, but I advise you to go through it in the textbook and be conversant with



it  because it  will  be useful in many of the applications that  we consider later  in the

course.

So, these are the derivative formulas for scalar functions and for variance and Hessians

the vector extensions of them can be worked out like this.
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So, in this lesson these are the important issues that we have considered, the Multivariate

functions derivative the sense of it:- The  Partial and total gradients, Implicit functions

Leibnitz rule. So, these are the important topics that we will be using again and again in

the rest of the course. In this lesson the necessary exercises that you must complete to

develop the essential amount of understanding are these.

Thank you.


