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Vector Space: Concepts

Welcome. This is the last lecture in the module of linear algebra. This lecture is a little

abstract. In this lecture, we try to consolidate all the conceptual ideas on which we have

worked till now from a fundamental concepts of vector spaces.
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We  quickly  recapitulate  the  definitions  of  group  and  field  and  then,  continue  the

discussion on vector, space,  linear  transformation  etcetera  in  which  we find that  the

mathematical and computational tools with which we have been working till now are all

the product of the basic abstract ideas in this area.
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First the group, the mathematical structure of group is defined with the help of A set G

and a binary operation say denoted by this sign plus fulfilling these relationship. First

relation is the closure. Basically that is the definition of the binary operation that is two

members in the set through this binary operation produce the result which is also in the

same  set  G.  That  means,  the  binary  operation  is  defined  within  that  set.  Other

requirements are associativity of the binary operation existence of an identity element

that is, there must exist an element in the set which added to any other element from the

left side or the right side produces the same element back. So, that identity element we

can denote as 0 and finally, the existence of an inverse that is for every element A in the

set G, there must be another element can be denoted by minus a which added to a from

this side or this side gives the identity element that is 0. If these are fulfilled, then we

have what is a group that set G and the operation plus together define the group. You can

take  these  examples  of  integer  with  the  ordinary  addition  examples  of  the  set,  the

members of the set of real numbers with the same edition or the set of rational numbers

other than the 0 that is the set of non-zero rational numbers with the modification, then

verify real matrices with matrix addition. 

So, all these constitute examples of group, the group structure is evident in all of these

rotations. Also, rotations in the geometric shape, geometric space is also an example of

group that is if you compose two rotations, the resulting complete movement is again a

rotation. So, that also fulfills these conditions. Now, if a plus b and b plus a are equal for



all a and b, then in particular you have got what is called a commutative group. All these

are  actually  commutative  groups,  but  rotations  are  not,  that  is  pre-rotations  are  not

commutative. So, this is an example of a non-commutative group.

There is something called sub-group, a subset of G with the same binary operation can

constitute a group itself. If it fulfills these requirements, in that case that is called a sub

group of the original group. Now, with this definition of the group in the background in

the definition of field becomes easier. 
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A set F with two binary operations, one of them we can denote as plus resembling the

ordinary  addition  and  the  other  we  can  denote  as  dot  resembling  the  ordinary

multiplication that satisfy these requirements, we will define a field.

What are these requirements? One is that F set and plus binary operation together is a

commutative group for which we will denote the identity element as 0 and then, from the

set  F if  we remove this  0,  the relative identity  element  of the group here then what

remains with that the multiplication dot forms. Another commutative group and apart

from  these  two  commutative  groups,  we  have  the  distributive  property  that  is  the

multiplication is distributive over addition. If this also holds for all abc in the set F, then

we call this together, this F with the two binary operations define what is called a field.



Now, this concept of field is actually the abstraction of a number system. So, whatever is

defined here formally applies to all the number systems that we use the rational numbers,

real numbers conflict numbers. All these full fill these requirements. So, all of these are

examples of fields, they are complete number systems. Complete in some sense and here

you find that we already have an example of sub field. The set of real numbers is a sub

set of the set of complex numbers with the same addition and multiplication rules of

complex numbers, you can define real addition and multiplication as well and therefore,

this is actually a sub field of this c.

Now, we have got groups and fields defined with the help of these, we can define what is

called a vector space.

(Refer Slide Time: 07:08)

A vector space is defined by first a number system a field F of scalars. Elements of this

set F are quite often referred to as scalars, then a commutative group V of vectors. There

is a commutative group V of vectors with its own addition rule. Apart from these we

have got  a  binary operation  between this  field  and this  commutative group that  is  a

binary operation between a scalar and a vector and that binary operation we will call as

scalar  multiplication,  such  that  called  alpha  beta  scalars and  a  b  vectors  these

relationships  hold.  That means,  the first requirement  is that a scalar multiplication,  a

scalar multiple of a vector is also a vector that is you take a vector a from V and an alpha



from the number system a scalar alpha from F, then this scalar multiplication result alpha

a is again in the set V of vectors.

So, that tells us that the scalar multiplication operation is defined, there is an identity

element,  there is  a  reason a  scalar  that  unity  that  multiplicative  identity  of  F which

multiplied to the vector gives the same vector back associativity. If we have to multiply a

vector say with 3 first and then, with 2, if the result is same if we multiply in one shot

with 6 and if such things happen for all alpha beta in F and all a in V, then we will say

that  the  scalar  multiple  operation  is  associative  as  well  and  then,  there  are  two

distributive properties; scalar distributivity and the vector distributivity. 

When all these conditions hold, then we say that what we have got is a vector space V in

which lot of vectors are there and all these vectors are defined over the field F of scalars.

Now, note that all these conditions here are expressed in only this much, but actually if

you open the definitions of commutative group and field and so on, then it is actually

much larger  here.  In  one  shot  we have  actually  got  11 small  conditions  here,  again

another 5, 16 and 5. So, 21 conditions are actually written one side V here in terms of

field and group.

Now, R n C n that is n dimensional real coordinate vectors, then n dimensional vectors

space with complex coordinates R n C n, these are all examples of vector spaces over the

field of real numbers over the field of complex numbers and so on. M by n real matrices

will again form a vector space of their own and so on. From here you will note that the

way  field  is  an  abstraction  of  the  number  system,  the  vector  space  is  actually  an

instruction of the ordinary geometric space in which we leave.
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Now, that we have got this formal definition of vector space, let us try to examine its

contents. First of all we already know that there must be zero vector in the vector space.

That  is  necessary from these requirements  that  we set  is  a commutative group. That

means it has its own identity element.

So, there must be a zero element in the vector space, that is essential otherwise it will not

be a vector space at all. Other than 0 if possible we take a vector xi 1 in the vector space,

then with this xi 1 this vector which we have picked up from the vector space, we get a

lot of scalar multiples take a scalar as a 1 and for all such alpha 1 from the underlined

field F, we can get several other vectors alpha 1 xi 1. All such vectors we develop and

from the definition of the scalar multiple operation, we know that all of these are vectors,

that is all of these are in V. 

So, these vectors which can be generated from the vector xi 1 through a scalar multiple

alpha 1, all these vectors are said to be linearly dependent on xi 1. Now, after we finish

all these vectors like this, now we ask the elements if we exhausted, have we finished all

vectors, all the elements in V. If not, then we take another vector xi 2 in V which cannot

be expressed like this because we have not exhausted it. We have not exhausted V by

taking all of these. So, we take an outside element xi 2 which we could not express like

this. So, that is linearly independent of xi 1. 



Now, alpha 2 xi 2 will give many other vectors and in alpha 1 xi 1 which gave the earlier

vectors and alpha 2 xi 2 which gave many other vectors, now they can be added together

in all combinations and we get lots and lots of vectors in V. Suppose we pick up all of

them. After that we ask the same question again in these two rounds, have we finished all

elements of the vector space V, right and like this we keep on asking. Now, before asking

again and again and again the same question, let us ask the multiple question as when

this process ever end. It may not. On the other hand, it may. Suppose it does. Suppose

this process of asking and picking up another, picking up another, suppose this process

ends. If this process ends, then we have got what is called a finite dimensional vector

space. The dimension of the vector space is finite. So, if this process ends, then we will

say that V is a finite dimensional vector space. On the other hand if this process never

ends, then what we would have got is called an infinite dimensional vector space.
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So, in this  particular  case for the time being suppose we consider finite  dimensional

vector spaces. So, in our instance suppose this process ends after n, such choices of fresh

linearly independent vectors. So, that will mean that all the vectors in V can be expressed

in  this  manner  because  in  n  rounds,  we  have  added  this  n  contributions,  right  and

exhausted the contents of V. That means, that all vectors in V can be expressed as this

linear combination that is a general vector pi in this vector space has this expression.

Nothing else is there in the vector space which cannot be expressed in this manner. 



So, then we say that if this process ended with n choices of linearly independent vectors,

then we say this  n, this number is that dimension of the vector space.  So, n lineally

independent vectors we could find more than that, we could not find. So, this n is the

dimension of the vector space, these vectors chi 1 chi 2 chi 3, sorry xi 1 xi 2 xi 3 etcetera

up to xi n. These n choices that we picked up, they are an ordered basis, they are in the

ordered set. They formed a basis to represent all vectors in the vector space and for a

particular vector chi, the corresponding co-efficiencies alpha 1 alpha 2 alpha 3 etcetera

turn out to be coordinates of the vector chi in that basis.

Now, we know that R n R m etcetera vector spaces over the field of real numbers which

we have already studied are such finite dimensional vector spaces for a vector space. If a

sub  set  of  it  forms  a  vector  space  is  in  its  own  rights  with  the  same  underlying

operations,  then  we  say  that  constitutes  a  sub  space.  For  example,  in  the  three-

dimensional space with this frame of a plane passing through the origin  will actually

define a subspace because zero identity element will be there and all the operations that

we could define in this space, we can define the same operations within this plane itself.

So,  in  that  space  we  say  that  plane  actually  constitutes  a  subspace  of  this  three-

dimensional vector space which is R3.
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Now, with this understanding of vector spaces, we consider two vector spaces. V is one

vector space and W is one vector space and we consider a mapping P from vector space



V to W and then, we will define what is called linear transformation is the mapping has

this property. Then, we say that this mapping represents a linear transformation. Now,

you see you take two vectors a and b in V, then P of a mapping of a and mapping of b

will be vectors in the vector space W. Now, in V if you make a linear combination of a

and b in this manner alpha a plus beta b with alpha beta lying in the underlined field F,

then this is also be a member in c. So, this can be mapped through the same mapping P.

So, that mapping will find now this is essentially is the relationship between the mapping

of a linear combination of a and b and the individual mappings of a and b. Now, if the

linear combination of a and b gets mapped to the vector W which is exactly the same as

the same linear combination of p a and p b on that side, then we say that if this happens

for all alpha beta in F and all a b in V, then we say that this mapping is actually linear

transformation.

It is as in one side we mix two liquids in a particular proportion and then, boil in other.

For instance, we boil two liquids of the same quantities and then, we mix the vapors. If

the results in both cases is exactly same, then the whole process is behaving something

like  a  linear  transformation.  So,  this  is  the  underlined  requirement  for  a  linear

transformation in which V and W are vector spaces over the same field F because this

alpha beta which is used here in composing a vector in the space V is the same alpha beta

here which is also used to compose a vector here in the space W. So, the two vector

spaces must be over the same field. 

Now, that we have defined a linear transformation like this with this requirements, now if

we want  to  describe  the  linear  transformation,  how do we describe  it?  One way to

describe the linear transformation is to describe how several vectors get mapped. If we

have a big bunch of vectors in V and for each of them if we can establish the mapping ,if

for each of them we can say where these vectors can get mapped and through that if we

can find out the mappings of all vectors in V, then you would say that we have described

that linear transformation space, but then in the vector space V, there are infinite element.

We are not going to numerate the mappings of each of them. 

So, we want a description which is complete, but not that detailed. So, for that we again

take the help of the basis that we have defined for vector space V, there is a basis say xi 1

xi 2 xi 3 up to xi n say it n dimensional vector space for W. Again similarly there will be

a basis say eta 1 eta 2 eta 3 up to eta n, then for xi 1 in V which is a vector in V, xi 1 is



vector in V gets mapped to T, xi 1 which is in W, now how do we describe that T xi 1 in

W. So, that description is as a linear combination of the basis members of W. Suppose it

is like this where a 11 a 21 a 31 etcetera are the scalars in F, then this is a description of

how xi gets mapped and that will immediately gives a description of how all alpha 1 xi 1

type of vectors in V get mapped, right. Similarly if we can describe how xi 2 xi 3 xi 4 get

mapped to the vector space W, then up to  xi n if we define like this, then in effect we

have described the complete mapping, complete transformation because all other vectors

in V are actually linear combination of these only and we can map them individually and

workout the same linear combination in the target domain target space W. So, now you

find that a 11 a 21 a 31 etcetera a m 1 describe how the image of xi 1 is described in the

target space W and such other elements a 12 a 22 etcetera, all these kinds of scalars a i j

will similarly describe how all the basis members of V get mapped to W and how they

are described in terms of eta 1 eta 2 eta 3 etcetera. 

So, that tells us that these coefficients of here are actually collected to whether in vector

a  1  coefficients  of  other  ones,  other  mappings  are  similarly  collected  in  the  other

columns in this matrix such that we find that this matrix a which we have been working,

all these files is actually the cord of the description of the linear transformation from

these vector space W to the vector space from the vector space V to the vector space W.

So, this matrix essentially has the elements scalar elements m n of them from F which

encodes the description of a linear transformation.
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As we have earlier discussed, there we wrote this coordinates as alpha 1 alpha 2, now if

we write them as x 1 x 2, then we say that a general element chi of V can be expressed as

a  linear  combination  of  the  basis  members  of  V,  right  and  that  in  our  ordinary

representational tool we represent as a column vector x 1 x 2 up to x n transpose, right.

So, this column vector is actually a listing of the coordinates of a vector chi in the vector

space in terms of the basis members, right. 

Now, similarly the mapping T of chi will be this and consulting T xi 1, T xi 2 which we

just now worked out, we will find that the coordinates of this will be the same as what

we have as the elements of a x. So, the mapping will be found two coordinates which are

elements of a x, right. So, thus we find that the basis vectors of V, the domain of the

mapping  domain  of  the  linear  transformation  get  mapped  to  vectors  in  W  whose

coordinates are listed in columns of the matrix and a vector V having its coordinates in x

will  get  mapped to a vector  there in W whose coordinate  will  be obtained from the

product multivariate product A x.
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So,  the  understanding  here  in  this  whole  discussion  is  that  vector  chi  is  an  actual

mathematical object in the set V. It is a vector and the column xn dimensional column

vector  in  R,  n  is  nearly  a  least  of  its  coordinates  and  T from V to  W is  a  linear

transformation which is an event which is a situation. The description of it is actually

stored in the rectangular area of numbers which is the matrix A. Therefore, by changing



the basis of V and W if you find that the coordinates x gets changed in order to describe

the same object which is the vector, which is a geometrical entity, which is a geometrical

object and similarly the linear transformation which is a geometrical event that remains

same,  but  with  the  change  of  basis  of  the  vector  spaces,  the  corresponding  matrix

encoding or the matrix representation changes as we have seen earlier in the context of

basis change. 

Now, in this entire scheme, we find that the matrix representation emerges as the natural

description of a linear transformation from one vector space to another. So, this unguent

of writing the matrix in the form of a rectangular array is something that is a natural

outcome of the way we think of linear transformations from one vector space to another

which has a deep geometric meaning. Now, as an exercise you can consider this all linear

transformation that  you can define from one vector space V to W, they also kind of

collected together to form a set. So, all of these T s from one surface space V to W, you

can define several linear transformations.

So, all of these linear transformations if you collect and then, the collection of these

linear transformations that itself forms a set of linear transformations, it forms a set and

you can verify that this set in itself actually defines a vector space forms. A vector space

you  can  analyze  and  describe  that  vector  space  in  the  context  of  its  dimension,  its

element, the way its elements get added and so on. So, that I am leaving for you as an

exercise.

So, all linear transformations from one vector space to another, they together actually

form a vector space of its own.
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Now, let us continue this discussion into other very important point that is Isomorphism.

Consider a linear transformation T from with respect V to W and a transformation of the

kind which establishes a 1 to one correspondence, that is for every vector in V, you find a

vector  in  W and for  every  vector  in  W, you find  a  vector  in  V. That  is  one  to  one

correspondence.  One  element  of  here  is  directly  related  and  linked  to  exactly  one

element from there. So, in that case you will find that the linear transformation T will

define a 11 12 kind of mapping and this mapping is invertible and for that the dimension

of the two vector spaces must be equal.

If from here for whichever vector you take,  you get exactly  one there and for every

vector there, you get exactly one here. That is a mapping which is invertible and so, you

can represent, you can denote the inverse linear transformation like this. In this type of

equation, this in this kind of a situation we say that T defines or T is an isomorphism

equally  organized,  similarly  organized.  So,  that  means that  V and W are  two vector

spaces which are similarly organized isomorphism. 

They define T defines a an isomorphism and you say V and W are two vector spaces

which are isomorphism to each other and from the definition of equalization relation,

you can show that isomorphism turns out to be an equivalence relation and therefore, we

can call V and W was not in practice in the ordinary sense of the term equivalent of V

and W to be equivalent to each other and they are equivalent in practice in the ordinary



sense of the transform equivalent. Also in the sense that if we want to perform certain

linear operations among vectors in V, it will be equivalent, it will be same. 

If we first map these vectors to W and then, conduct the same operations in W and the

result  we map back through the inverse mapping, so in that sense it  will be actually

equivalent whether we conduct our actual operation here or there as long as we have two

way communications through the isomorphism.
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Now,  consider  two  vector  spaces  V  and  W  over  the  same  field  and  of  the  same

dimension. Then, can we define an isomorphism between them? Answer is of course we

can. In fact, we can define as many isomorphism as we want. You will find upon the little

reflection  that  any  square  non-singular  matrix  will  actually  give  you  one  such

isomorphism which connects. This is the element of this vector space with element of

that vector space in a 11 12 passion in a one to one correspondence. So, as many as we

want, we can define isomorphism. 

So, any non-singular matrix we will actually define one such isomorphism. The simplest

one  is  identity  where  n  basis  members  from  V get  mapped  exactly  to  the  n  basis

members in W in the same order that is the identity transformation which in the matrix

terminology  is  the  identity  matrix.  So,  you  find  that  the  underlying  field  and  the

dimension together actually completely specify the vector field because other than that

even if you define two vector fields which are vector spaces, which are defined over the



same filed F and same dimension n that means whatever you can do in one, you can do

in the other. So, in all practical terms, they are actually the same vector space. So, that is

why we say that the underlying filed and the dimension together completely specify the

vector space for all practical purposes and one is say for all practical purposes that is

another way of saying up to isomorphism that is other than that whatever difference is

there, that is basically only in the details. From one of the vector space, you can always

go  to  the  other  vector  space  and  come  back  through  that  isomorphism  one  to  one

correspondence.

So, you find that all n dimensional vector spaces over the field F are actually equivalent.

So, they can be considered as same in particular. The vectors with which we have been

dealing the representation, the column vectors in which the coordinates are the just listed,

so in particular all of these n dimensional vector space are isomorphic to F n itself. The

column vector, the listing of coordinates that representation is also a vector field to that is

also a vector space. So, with that it will be equivalent and therefore, we find that the

representations,  the column vectors,  the listing  of  the  coordinates  themselves  can be

taken as the objects. So, for practical purposes there will be actually no difference in

between and that is why we after studying one vector space of n dimensions over a scalar

field, we do not have to study another such vector space of the same dimensional over

the same field again.
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We have actually studied all of them in one shot. So, till now we have found a lot of

geometric  ideas  in  the  algebraic  description  of  the  vector  space.  Now, we  bring  in

another  idea  from geometry  into  the  algebraic  representation  and that  is  the  idea  of

directions and angles and that we get from the definition of inner product in a vector

space over the set of real numbers, over the field of real numbers or complex numbers.

We can define a linear product which is denoted with this sign a, b in parenthesis and the

definition of that is this, that is it is a function which takes two vectors from the vector

space V and as a result produces a scalar in the field F. 

It can be R, real or complex numbers, such that it is defined for all vectors a b and it has

the property of associativity. If you multiply one of the components with alpha, then the

product also gets multiplied with alpha. There is associativity, it has the distributivity and

it  has  conjugate  commutativity. This  is  this  operation  is  not  just  commutative,  it  is

conjugate commutative that is for real field. It will be commutative. The inner product b

and a will be the same as inner product of a and b for the complex field. It will be bar of

a b, b a will be the bar of a b, that is will be a conjugate of a b. Now, this essentially

means that if you take a as the two vectors and try to work out this inner product, then

that can be a, a as well as a, a conjugate and these two have to be equal.

So, this conjugate commutativity forces this a, a inner product to be real, then you can

talk of its being positive or real negative real number and this is another requirement

which makes sense in that context that it has to have positive definitions that is this must

be positive or 0 and it will be 0 only if a is equal to 0. So, a product satisfying all these

requirements is defined as the inner product. These are all examples of inner products. In

this  you will make note of this particularly a transpose W b while defining an inner

product as a transpose W b in the field of, over the field of real numbers. 

One must  be very careful  about  ensuring that  this  weight metrics  W is positive  and

symmetric and positive definite. This is another point which we have discussed earlier

and this is the reason of that, that is if the matrix W is not positive definite, then this

condition may get violated for all a. This will not be correct and that is why for defining

a weighted inner product, one must ensure that the weight matrix W is positive definite.

Now, a vector space processing an inner product is called an inner product space called

the field of real number. We call  that space as Euclidean space and over the field of



complex number, we call the space as unitary space. Most of the time we have been

talking about actually Euclidean spaces of several dimensions.

Now, I make this point that for the rest of course also most of the time our discussions of

multi-dimensional vector spaces will be mostly associated with the Euclidean space. So,

R n R m etcetera are actually all n dimensional m dimensional Euclidean spaces. So, we

find that inner product bring in ideas of angles and length in the geometry of the vector

spaces.
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You know that the inner product a, b will have if you consider your ordinary definition of

that product that will have size of a into size of b into the cosine of the angle between the

two vectors. So, the idea of angle something to pictures in particular, we say that the two

vectors  a  and  b  are  at  right  angles  if  their  inner  product  is  0.  So,  the  question  of

orthogonality comes into picture, then the size of a vector norm comes into picture that is

norm is again a function from the vector space to the set of real numbers, such that the

norm is actually equal to the square root of the inner product of the vector with itself and

see it must be positive and you will find these are some properties of the inner product

and norm taken together associativity. That is the norm of alpha times a vector is model

for times the norm of the original vector and so on. 

What  is  the  difference  which  we  have  already  seen?  These  are  two  important

inequalities. Triangular inequality a plus b norm is less than equal to norm of a plus norm



of b and this is Cauchy Schwarz  inequality. The inner product will have an associate

value which is the less a which is less than or equal to the product of the sizes of the two

vectors. This is known as Cauchy Schwarz inequality. Based on these you can also work

out a distance function or a matric. So, if you have two vectors, then you can work out a

distance function between the two vectors in the sense of joining the arrowheads and

working out the size of that vector, that is with this much on the vector spaces of finite

dimensions.
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Now, let us go little into the discussion of infinite dimensional vector spaces. The set of

continuous functions over an interval provides such a vector space of infinite dimensions

and that is known as the function space. Suppose we are working with a lot of continuous

functions and we want to represent a function like that real valued continuous function

on an interval by the listing of its values over several values of x like this from a to b,

right.  The true presentation  of  the  function  will  require  this  capital  N to  be  infinite

because the function is continuous function over the entire continuous domain of a to b

for the interval. Now, this vector that we written here and n dimensional vector capital N

column vector, so if we take several functions and for each functions, we work out its

values at these n points and get such column vectors, then will all these possible column

vectors together form a vector space.



Answer is yes, because they are column vectors and all sort of continuous functions over

that interval  we  can  keep  in  the  discussion.  So,  they  will  form  a  vector  space  of

dimension capital N and for more and more precise true representation as we keep on

increasing capital N and try to take it infinity, then we will have an infinite dimensional

vector  space  to  set  this  capital  F  of  continuous  function  over  continuous  real  value

functions over a b form a vector space which is infinite dimensional.
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You can verify that infinite dimensional vector space if you can just check whether these

forms a commutative group and whether the vector space conditions are met. So, that is a

basic verification with the definitions of group and vector space with it is interesting to

conduct once.
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So, whereas commutative group is concerned suppose a and b in place of a and b you

think of f1 x f 2 x. Now, f 1 x f 1 and f 22 continuous real value functions, so there is

another such continuous real valued function defined over the interval a b and similarly,

they fulfill these requirements and there is a zero function and for every function F, you

can define a function minus F and then, f 1 plus f 2 will be the same as f 2 plus f 1. So,

they will form a commutative group and apart from that for being vector space, these are

exactly the vector space conditions which we have in a way copied from there. So, you

can verify all of these and find that all of these conditions hold. So, that way mean that

the set capital F of all such real valued continuous functions over the interval a b among

themselves form a vector space of infinite dimensions and listing of values at selected

points is actually just a basis to describe all such functions.
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We can talk of linear dependence and linear independence of these functions. So, two

functions f 1 and f 2 if they have this definition or this definition which is equivalent

actually, then we say that they are linearly dependent and if it happens that this linear

combination equal to 0 necessarily implies that all k 1 and k 2, this k 1 and k 2, both are

individually 0, then you say that f 1 and f 2 are linearly independent from each other. In

general, among n such functions you can say that if you can find k 1 k 2 k 3 k 4 up to k

n, not all zero together such that you can make their linear combination 0, then you say

that these functions among themselves are linearly dependent. 

On the other hand, if you cannot find such non-zero set k 1 to k 2 that is not all zero

together  with  that  understanding  that  is  if  you  find  that  f  1  and  f  2,  this  linear

combination  is  0  essentially  implies  that  all  of  them have to  be individually  0.  You

cannot find any non-zero set making this linear combination as 0. Then, you will say that

these functions are linearly independent. So, these notions will be using later in detail as

tools when we study differential equations. So, you see 1 x square x cube etcetera are

actually a set of linearly independent functions and quite often this is used as a basis.

To describe such function for example, when you say that I have taken a function F and

we want to describe f x as a 0 plus a 1 x plus a 2 x square plus a 3 x square x cube

etcetera, basically you are using this set of functions as a basis.
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You can define inner product between vectors a between functions. So, suppose f and g

are two functions and then, for f and g we can work out those large column vectors v f

and v g which among themselves have this inner product. Then, as v f and v g are the

function values, then this will be same as this f x 1 plus f x 2 g x 2 and so on. Like this

you can work out a weighted inner product also which will be something like this if this

weight matrix W is a diagonal matrix which is w 1 w 2 w 3 etcetera existing on the

diagonal positions. 

Now, as the number n, the number of atoms become 16, this large and then, this large

number of terms getting some dot gets replaced it an integral and you say that the inner

product in the function space is defined in this manner f x g x and this w i gets replaced

with w x d x x varying from a to b. So, summation gets replaced with an integral and this

turns out to be the definition of the inner product in the function space. You can similarly

define  norm,  you  can  similarly  talk  about  orthogonality.  So,  you  will  say  that  two

functions f and g are orthogonal when their inner product turns out to be 0. In that case,

you say f and g are orthogonal functions. Orthogonal with respect to the weight function

W, you can talk about norm. So, if f and g in both places if you put f, then you will have

W into F square, right and that integral value evaluate and take the square root of it that

is the norm, right. 



You can talk of orthonormal basis if you have taken the basis as functions f 1 f 2 f 3 f 4

etcetera each of which has a unit norm in this sense and every pair which is orthogonal in

this sense, then you say that we have got an orthonormal basis for describing functions in

that set f. So, for ortho normality of a set of functions, you require this condition that is

the inner product between each pair f j s k in that basis must be delta j k if j and k is

same. Then, this should be 1 and if del and if j and k are different, they should be 0 for

all j k, right. That way you will get an orthonormal basis for that function space. 

Now, how many such f 1 f 2 f 3 f 4, you will ask for? Since the dimension of the vector

is infinite, you will need infinite members in the basis. That means that basis you will

require a familiar functions which is of infinite members.
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Now, from this discussion we have these important points to note. First is that matrix

algebra  provides  a  natural  description  for  describing  vectors,  spaces  and  linear

transformations  and whatever  R n till  now we have studied is  actually  the complete

representation or a norm representation for all n dimensional vector spaces over the field

of  real  numbers.  The third important  issues  that  we have seen in  this  lesson is  that

through  the  definition  of  an  inner  product,  the  key  ideas  of  angle  and  length  from

ordinary geometry are brought into the discussion of vector spaces. So, these incorporate

the key geometric features of physical space. Another important issue discussed in this

lesson is the topic of continuous functions forming a vector space of their own and we



can talk of the function space of infinite dimensions later when we study differential

equations. We will also see how linear operators or linear transformations get a meaning

in this kind of a function space.
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So, with this our module on Linear Algebra gets over and again I will quickly remind

you that it  is important to go through these  lectures along with the exercises because

many of the ideas are actually left from the discussions in the lectures because we are

trying to squeeze in a lot of topics into a single course and therefore, a lot of issues, a lot

of  conceptual  details will  become clear  when you try to  work out  the exercises  and

consult the solutions there off. 

So, till now we have completed 15 chapters of the book and if you find it little too hectic

to complete all examples, then a selection is given here in the tutorial plan which appears

in the slides of the first chapter. So, if you complete this much, then you would have got

sufficient background to continue with the rest of the lectures that we take up later and

you will find that since one of the essential features of this course is the interconnections

among  several  areas,  so  you  will  find  that  though  this  module  on  linear  algebra  is

formally over, but the ideas developed here will be used throughout the other modules of

the course. 

So, after this in the next lecture on wards, we will be handling the module, small module

on vector calculus and multivariate calculus and vector calculus.
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That will constitute of these 3 chapters of the book chapter 16, 17 and 18.

Thank you.


