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Good morning, in this lecture, we will be studying singular value decomposition this

topic embodies a very deep connection between quite a few different topics in the area of

linear algebra.
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Consider this situation we have already studied Eigenvalue problem in which we wanted

to decompose a matrix A in this form with U and V equal, we have already studied

Eigenvalue problem and all the time of our study in Eigenvalue problem we have faced

this question whether the decomposition of this sort will exist or not if it exists, then how

to handle it and so on. So, it would be nice always in the Eigenvalue problem; if we

could make this lambda diagonal with U and V orthogonal and also such things and at

every step our work was made with difficulties of several sorts first among all matrices.
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We could ask this question only for those matrices which are square that is a sub set a

sub set of matrices the sub set of square matrices constitute the only matrices for which

this question arises.

So, for square matrices this question arises to begin with even in the square matrices not

all matrices can be diagonalized not all square matrices can be diagonalized. So, among

square matrices we had a subset which is the set of diagonalizable matrices for which

this is this kind of a decomposition is possible, right.

Even  among  diagonalizable  matrices  we  had  another  sub  set  of  matrices  which  are

symmetric  for  which  this  decomposition  would  be  affected  with  orthogonal  V right

which  is  same  as  U  for  that  matter  with  that  condition  full  filled  even  among  the

symmetric matrices for which we had this valuable theorem that you can work out an

orthogonal digonalization even there the diagonal elements of lambda could be negative

now even among symmetric matrices we had a sub case sub set which is positive semi

definite in which case the lambda i turns out to be non negative. Now this is the best

possible situation which we could sink of and that is a sub case of the sub case of the sub

case of the generalized general form of the matrices.

Now, we can ask this question that we do not ask for a similarity transformation and we

focus on this form of the decomposition when you say we do not ask for similarity we

basically want to allow U and V to be different. So, in that case, we ask this question that

if we do not ask for U and V to be equal then what are these we can ask for and get

results and with just this one relaxation of allowing U and V to be different; different in

content as well as in size if we allow that then we can get a decomposition of this sort

which is guaranteed for all matrices irrespective of size and shape; that means, even a

rectangular matrices with orthogonal U and V matrices and with non negative diagonal

entries in delta in this matrix lambda diagonal matrix lambda that is in that case we do

not  refer  to  it  as  lambda  because  lambda  has  been  already  used  for  the  matrix  of

Eigenvalues.

So, we show that as sigma; that means, that just by allowing this U and V to be different

we  can  effect  a  decomposition  of  this  sort  with  all  the  other  phase  sets  that  is  the

decomposition  will  be  possible  for  all  matrices  and  it  will  be  always  possible  the

question  will  arise  for  all  matrices  including  rectangular  that  diagonalized  that



decomposition  we  cannot  call  it  diagonalization  that  decomposition  will  be  always

possible with orthogonal U and V not same anymore and the diagonal entries of this

matrix  sigma  will  be all  non  negative  such  a  decomposition  is  the  singular  value

decomposition  and those  diagonal  entries  are  called  singular  values  of  the  matrix  A

underline  is  this  very  important  theorem called  the  SVD theorem  or  singular  value

decomposition theorem.

The theorem says for any real matrix A of size m by n there exists orthogonal matrices U

which is m by m and V which is n by n both orthogonal such that U transpose AV is

diagonal  matrix  of  size  m  by  n. Now, what  is  this  idea  of  a  diagonal  matrix  of  a

rectangular size? So, its diagonal entries are sigma 1, sigma 2, sigma 3, etcetera, all non

negative which you obtain by getting f square matrix first of size p by p in which p is

lesser of the 2 dimensions m and n.

Now, if you want this diagonal matrix to be m by n size, then whichever is larger m or n

that many extra rows below rows or that many extra 0 columns you append and these

diagonal  entries  sigma 1 to  sigma p are called  the singular  values  of  this  matrix  A.

Similar result is there for complex matrices then for that the as many theorem will read

for any complex matrix A belonging to c m by n they are exists unitary matrices U and V

such that U star AV where star is a conjugate transpose is real sigma this is always real

and so on. So, now, this theorem gives the basis for the decomposition in this manner for

a matrix A.
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Now, the question arises how to construct U V and sigma the 3 components the 3 factors

the way we work out their construction at the same time provides  a proof also of the

SVD theorem that such factors U V sigma will always exists. So, let us quickly look at

the construction. So, construct the singular value decomposition the factors U sigma and

V you first say that if we would decompose a in this manner A as U sigma V transpose

then it transpose a transpose will be this V sigma transpose U transpose and then we can

just multiply it as we multiply it; U being orthogonal U transpose U will be identity and

we have got V sigma transpose sigma V transpose; now sigma transpose sigma.

We have already discussed that sigma is a matrix of this shape in which if m is less then

it will have only m columns which will mean that the matrix will be only this much these

rows will not be there since m is less, then it will have this shape if n is less, then it will

have this shape. So, extra 0 rows or extra 0 columns there will be no question of anything

here because one of these 0 blocks will be here not both.

So, if sigma is of this shape then sigma transpose sigma will be a square matrix in which

the diagonal entries will be sigma 1 square sigma 2 square up to sigma p square and then

since this matrix is n; n size. So, if n is larger than there will additional 0 entries in the

rest  of the diagonal position and all  the of diagonal entries will be 0. So, that is the

description  of  this  sigma transpose  sigma now here  this  sigma transpose  sigma this

matrix  is  being called  lambda which has a reason you see a  transpose a is  certainly



symmetric not only symmetric its positive a semi definite also you cannot say a priori

whether it is positive definite or not, but positive semi definite it is certainly be.

Now,  if  this  is  a  symmetric  matrix  then  this  certainly  has  a  diagonalization  and

orthogonal diagonalization for that matter and this V lambda V transpose is actually the

decomposition that you do when you solve the diagonalization problem of a symmetric

matrix so; that means, this V which you want in singular value decomposition is in fact,

the matrix I can vectors of a transpose a and this lambda then is the diagonal matrix of

Eigenvalues of a transpose A if so, then we already know how to determine V n lambda

because we have studied the Eigenvalue problem of a symmetric matrix in good detail,

we can effect this diagonalization so; that means, by effecting the diagonalization of a

symmetric matrix we determine V and lambda the moment V and lambda determined we

can work out sigma because each diagonal entry of lambda the first png s are nothing,

but sigma 1 square, sigma 2 square, sigma 3 squared and up to sigma p squared, right.

So, from the first  p lambdas from here which are all  non negatives we can take the

square root. So, when you take the square root there are 2 square roots.

For a positive number 1 positive 1 negative. So, you collect only the positive ones which

you put as sigma  1, sigma 2, sigma 3, etcetera, up to sigma p. So, all the non trivial

entries of this matrix sigma as sigma 1, sigma 2, sigma 3, etcetera, up to sigma p. So, all

the non trivial entries of this matrix sigma is now our hand then and then we append that

with appropriate number of 0 rows or 0 columns depending upon what is the size of a

which is the same as the size of sigma; that means, V and sigma are now in our hand.

Now, remember a is U sigma V transpose and V is orthogonal so; that means, we can

post multiply that original definition of the singular value decomposition with V and then

we de transpose V will identity from here you will get only U sigma and on this side you

will get a b in which in this entire equation a was originally given V and sigma we have

determined and we are left with the problem of determining this matrix U the columns of

the matrix U.
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So, 4 situations will arise when we go to determine the columns of matrix U. In fact, 4

situations may arise in any particular case only 3 of them will arise the there either the

third will arise or the fourth will arise depending upon whether the matrix A has more

rows or more columns. So, first situation is actually the one in which you will have some

information to determine if you equate the 2 sides column by column, then you will find

that the left side will give you columns which is Av 1, Av 2, Av 3 where v 1, v 2, v 3 are

columns of matrix  V and from the right  side you will  get you will  get  columns the

corresponding columns as U 1 into sigma 1 plus all 0s, then U 2 into sigma 2, then plus

all 0s and so on; that means, you will get this kind of column equations when you break

this column by column that will be the first R columns if R is the rectangle; that means,

for the Nonzero singular values.

So, out of these p singular values some of them may be 0, right. So, for Nonzero singular

values corresponding column equations will give you this kind of equations and if sigma

k is Nonzero the determining the corresponding columns of U is easy you just divided

AV k by sigma k and you get the columns of U. So, these columns developed from here

are bound to be mutually orthogonal.

You can verify that suppose 2 columns U y and U j have been developed like this and

you want  to  find  out  U y  transpose U j.  So,  they  are  not  only orthogonal  they  are

orthonormal that is each of them is a unit vector also. So, being orthonormal this has to



be 1 if i and j is same and 0 if i and j is i and j are different. So, you can see this that

when  you  consider  U  y  transpose  U  j  from these  expressions  from  here  you  have

determined U y U j, then here you will find that you will get V i transpose a transpose

AV j. Now a  transpose  A is  the  matrix  for  which  we actually  solve the Eigenvalue

problem, right. So, V j is its Eigen vector corresponding to Eigen value lambda j that is

sigma j square.

So, when you write this here 1 by sigma i is here 1 by sigma j is here, right.
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So, we collect the scales together and then we are left with vi transpose vi transpose a

transpose avj. So, write vi transpose and a transpose a vj is lambda j vj this is lambda j

this is vj. So, lambda j that is sigma j square is scalar which we can bring here and we are

then left with v i transpose v j here from there you find that if i and j are different then vi

transpose vj is 0 because v and lambda together give the orthogonal diagonalization of a

that means.

Columns of v are mutually orthogonal right. So, if i and j are different then v i transpose

v j is 0 and you have got the orthogonally of u i transpose u j right here on the other hand

if i and j are same then vi transpose vj transpose vj you will get which is 1 because v is

orthogonal. So, each column v j in particular is of size 1. So, in that case v j transpose v j

will be 1 and this sigma j transpose square cancels with this square i is equal to j in this

case. So, you will get 1 here; that means, u j transpose u j will be 1. So, that shows the



orthonormality of all the columns that we have determined from this; this much for those

singular values which are not 0 right for Nonzero singular value.

For the singular values which are 0 we have got this AV k equal to sigma k u k and sigma

k is 0; that means, you are talking about AV k equal to 0 right. So, the corresponding u k

is left in determinant so; that means, that you cannot determine uk from this relationship

because the coefficient is 0, but it is left in determinate; that means, you are free to chose

a suitable uk what is a suitable uk a unit vector that is orthogonal to all the other columns

that we have already determined right now in a case where m is less than n; that means, u

has less number of columns and v has more number of columns right; that means, in that

case you will get further equations AV k for k greater than m for which on this side you

will get 0s right and from that there is no corresponding column of u to determine right.

So, this is gone the fourth case is where m is greater that is the matrix A has more rows

than columns in that case after all this calculations there will be further row columns of u

which are left indeterminate. So, just like the case 2 in this case also there are additional

2 columns additional columns of u which are left indeterminate. So, just this case in this

case also the additional u vectors are determined to make the entire u matrix orthogonal;

that  means,  additional  columns  of  this  case  with  0  singular  values  and additional  u

columns corresponding to this case with additional singular values additional columns

which have no matching.

Singular values. So, these 2 cases are determined based on the orthogonality requirement

of u so; that means, in one line you can say we extend the columns of u determined from

here to an orthonormal basis and that full set of m vectors will give you the square matrix

u.  So,  this  way  after  the  3  factors  of  the  singular  value  decomposition  have  been

constructed you have a equal to u sigma b transpose each other c you have in hand after

constructing the singular value decomposition like this you would like to  see what are

the properties  of such a decomposition.  So, first question after verifying existence is

uniqueness is it unique.
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The actual answer is that it is actually not unique for example, you can apply several

changes  in  it  and still  the changed U sigma V will  constitute  another  singular  value

decomposition of the same matrix so; that means, that you can do several changes.

So, those changes are here and then you can say for a given matrix the SVD is unique up

to these changes; that means, it is actually not unique it is determinate, but such changes

will not disturb the requirements such changes will not disturb the fact that the matrices

the decomposition is still and SVD of the given matrix. So, what are these changes which

are possible the same permutation of columns of U columns of V and diagonal elements

of sigma; that means, if you interchange sigma 2 and sigma 5 and at the same time

interchange columns U 2 and U 5 and interchange v 2 and V 5 then the resulting U sigma

and V will still give as SVD and so on.

Now corresponding to  equal  singular  values  you have  got  columns of  U and v. So,

among them if you work out an orthogonal re organization that is suppose sigma 2 and

sigma 3 are same then you say that I will work out this now this will be my new U 2 and

this will be my new U 3 and corresponding for V also between v 2 and v 3 also you will

make the same transformation this will be still the resulting you and V matrices with the

same  sigma  will  still  give  you  a  singular  value  decomposition  which  is  valid  the

particular case particular transformation that we worked out here is cos theta sin theta sin



theta cos theta here that is cos theta minus sin theta note that this is minus. So, that

matrix is an orthogonal matrix.

So, such orthogonal linear combinations for columns of U and corresponding columns of

V is fine that will not disturb the singular value composition for 0 or nonexistent singular

values you can do any linear combination any arbitrary orthonormal linear combinations

among  the  columns  of  U  or  columns  of  V.  So,  that  will  still  be  alright.  So,  these

reorganizations in an already existing SVD can be done and the result will be still an

SVD.

Now, if this can be done, then we can do something better than what we have done till

now that is we have determined sigma 1 sigma 2 sigma 3. Now if the permutations can

be appropriate in that then we can order them that is we can organize columns of U and

V in such a manner that the sigma the singular value comes first is the largest magnitude

and. So, on this we can do. So, this is typically done when we work with singular value

decomposition so; that means, the Nonzero singular values come at the top with this

order and after that the 0 singular values come and after that of course, additional rows or

columns may come depending up on the rectangular size and shape of the given matrix

right now here what is R? R is the rank and this is a very simple result which you can

immediately establish that is rank of the given matrix is a same as rank of sigma which is

R here other properties.
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You would have already noticed that matrix of matrix A is of size m by n; that means, it

maps vectors from R n to R m right in which this is the domain and this is the co domain

right now you can see that V being an n by n orthogonal matrix can give a basis which is

orthonormal basis the columns of V are actually n dimensional vectors and they are all

mutually orthonormal so; that means, that the columns of V give us an orthonormal basis

for the domain similarly columns of U will give an orthonormal basis for the co domain

and now here we see how these new basis V and U decompose the domain and codomain

in to orthogonal sub phases. 

So, you consider the application of a on a arbitrary vector x with a written as U sigma V

transpose now if you represent the vectors in the domain the vector x in the domain in

this new basis  V, then the expression the coordinates of that those vectors in this new

basis will be V transpose x actually V inverse x, but since V is orthogonal. So, it will be

same as V transpose x right.

So, if we call that y then will have U sigma y U is written here and recognizing that

sigma is a diagonal  matrix  which sigma  1, sigma 2, sigma t  written on the diagonal

entries among which the top R are Nonzero, you will have sigma y as sigma 1 y 1 sigma

2 y 2 etcetera up to sigma R y r below that everything else is 0 right and U has been

broken and written in this fashion R columns here and then rest of them here now when

you consider this product you will find the product is sigma 1 y 1 into U one plus sigma

2 y 2 into U 2 and so on up to this.

After that everything else is being here now see what is happening in this some you will

notice that this has nonzero components along only the first R columns in this product

the component along U R plus 1 U R plus 2 U R plus 3 etcetera are all 0; that means, that

a x has nonzero components along only the first R columns of U right; that means, U has

given as an orthonormal basis for the co-domain in which the range the vectors ax are

contained only with the first R columns of u; that means, U gives an orthonormal basis

for the co-domain such that the range is exactly described by the first R members of U

and  the  rest  of  them  described  and  orthogonal  component  of  range  orthogonal

complement of range so; that means, the entire co-domain has been decomposed into 2

orthogonal  subspaces the first one is  the range which is  x described with the first  R

columns of u.



Which  are  corresponding  to  the  nonzero  singular  values  and  the  rest  of  them  are

components  in the orthogonal complement  of range which are not in the range right

similarly on the domain side if you see this V transpose x is y right. So, V transpose what

are the rows of U transpose rows of V transpose are v 1 transpose v 2 transpose v 3

transpose and. So, on right and where v 1, v 2, v 3 are columns of v. So, the entries the

coordinates in y; y 1, y 2, y 3 are actually v 1 transpose x, v 2 transpose x, etcetera. So,

that is V k transpose x is y k that us the coordinate y k is found like this, right. So, that is

component of x along the unit vector V k.

So, the full x is component of it along v 1 into the v 1 unit vector plus its component

along v 2 into unit vector v 2 and so on like this now in this you will find that those

vectors which are here only make a contribution in the ax mapping those here we will

not make any such contributions because y r plus 1, yr plus 2 etcetera are 0s that we have

already seen, right; they are made 0 by the in this product sigma y. So, whatever is y r

plus 1 y r 1 plus 2, etcetera sigma y will kill their contributions; that means, whatever is

y r plus 1 yr plus 2 etcetera their contribution in the product here will be 0 because sigma

multiplied  to  them will  kill  their  contributions  so;  that  means,  V here  gives  you an

orthonormal basis for the domain.

Such that the components v r plus 1, v r plus V n they area actually constitute the null

stage. So, you find that on the co-domain side range is constructed by the columns of U

corresponding to nonzero singular values and on the domain side the null space is spend

by the other columns other columns of V that is columns of V which are corresponding

to the 0 singular values or non existence singular values and that is it. Now with this

understanding in the background we proceed.



(Refer Slide Time: 31:40)

And find a few more interesting things in particular we work out the revised definitions

of a normal matrix and the condition number of matrix in basis V if we write a vector in

the domain in this manner then this can be written as V c right where V is the matrix with

columns v 1, v 2, v 3, etcetera up to V n and c is the vector with this scalar components

then from the definition of norm which we have seen earlier in the chapter 7 of the text

book in an earlier lecture we discussed. So, from the definition of the normal matrix we

say that norm square is maximum over V of norm Av square by norm V square now in

this if we insert this description of the general vector V that is V c. So, then first of all

from the norm definition we get this and there in place of small V we insert V c then we

get this for V we have V c and for V transpose we have c transpose V transpose now here

we have already seen that a transpose A.

Diagonolazation was carried out with the basis matrix V and the corresponding diagonal

matrix sigma transpose sigma right. So, in place of this whole thing we can write sigma

transpose  sigma  right  now here  sigma transpose  sigma diagonal  matrix  with  entries

sigma 1 square sigma 2 square up to sigma p square and then perhaps additional 0s right.

So, this numerator based on to basically this right and now you say that we want the

maximum of it when it will be maximum if sigma 1, sigma 2, sigma 3, sigma 4 are non

all of the same magnitude then this is will be maximum when c k is a vector when c is a

vector in which the only component is along the largest one which gets magnified by the

largest amount then only you will get the maximum value of this and. So, you get the



norm as norm square as the case where only that c k has a Nonzero value for which

sigma k is maximum that is sigma max.

So, when you put sigma max there then you got this. So, norm is now found as the

largest singular value of the matrix. So, this is the new revised definition of the norm of a

matrix now for a non singular square matrix we worked out condition number right. So,

here  again  we try to  do that  for  a  inverse we get  this  which is  V sigma inverse  U

transpose which is this now you notice that by the same definition if we try to work out

the norm of a inverse then it  will  be the largest singular value of a inverse and the

smallest singular value from a will actually in its reciprocal will give the largest singular

value for a inverse. So, you find that the norm of a inverse is  1 by sigma min of the

original matrix a. So, the condition number is norm of a into norm of a inverse that is

sigma max into  1 by sigma min.  So,  you get  this  and that  brings  us  to  the revised

definition for norm and condition number of a matrix.
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The new revised definition of norm and condition number will be like this the norm of a

matrix is the largest singular value and the condition number is the ratio of the largest

singular value through the least now note that this revised definition of condition number

can equally cater to rectangular matrices also the old definition based on inverse would

not be able to do that now note one more important issue if you can arrange the singular

value increasing order as we have been talking about then with rank of the matrix has r

you can write it in this manner.

So,  in  which  U  r  is  that  sub  matrix  which  has  all  the  columns  of  U  which  are

corresponding to Nonzero singular value similarly v r are the corresponding columns of

V and U bar and V bar constitute the rest of the columns in that case this matrix A which

is U sigma V transpose can be multiplied in this block form in which the 3 components

that you get out of it will be 0 base because of these and the Nonzero component is only

this U sigma U r sigma r v r transpose. So, the other components are 0 and this gives you

this summation that will  mean that  if  you can store the components of U and V the

columns of U and V which are corresponding to Nonzero sigma then that alone will be

the sigma values of Nonzero sigma; sigma k s will be able to reconstruct the matrix A

and; that means, that for a large matrix which only a few top singular values as nonzero

and significant you can effect a very efficient storage and reconstruction. So, with this

background now go ahead and see what is the application and what is the particular

advantage.



Of singular value decomposition for solving linear system of equations  A x equal to b

and we again revise the definition of pseudo inverse compared to what we did earlier in

the chapter 7.

(Refer Slide Time: 38:15)

So, in the background there is this term called generalized inverse for any matrix you can

define a generalized inverse or G inverse if for a vector be in the range a G b is a solution

of this that is for a matrix A; A matrix G can be considered a an inverse of some sort

generalized inverse if for a consistent right side vector b; G b gives you the solution that

way G operates something like an inverse. So, pseudo inverse is actually a special case

of generalized universe.

The pseudo inverse or the Moore Penrose inverse is defined in this manner and in order

to differentiate it from the ordinary inverse we write it with this symbol a hash. So, a

hash is U sigma V transpose hash now here when ever an inverse is actually possible we

take the a hash we take the pseudo inverse as same as the actual inverse. So, the pseudo

inverse of this will be V transpose hash sigma hash U hash now V transpose and U are

orthogonal. 

So,  for them actual  inverse is exists. So, for V transpose hash we write V transpose

inverse which is V and similarly for U hash which is U inverse which is U transpose that

actual problem which like actual problem is with this right. So, this is the one which

requires a definition. So, that is defined like this for this structure of sigma in which there



is a diagonal matrix of r by r size here with r Nonzero singular values and everything else

is 0 sigma hash is defined as this.

So, now that will mean that those diagonal entries which are Nonzero their reciprocals

will come here and those diagonal entries which are 0s. So, their reciprocal rather than

infinity we put 0 here this is very interesting in place of 1 by 0 which should come as 1

by 0 by the ordinary rule here we are actually writing 0. So, this is how we define the

pseudo inverse or Moore Penrose inverse in elaboration you can write sigma hash in this

manner. So, sigma 1 to. So, in place of the diagonal entries row 1 to row p, you write

where row k is the reciprocal of sigma k when sigma k is Nonzero and sometimes in

practical cases even if sigma k is very small then we consider it as good as 0 that is here. 

So, for those cases where sigma k is 0 or extremely small we put row k as 0 rather than

putting 1 by extremely small number or 1 by 0 we actually put it 0 there. So, this is the

definition  of  pseudo  inverse. Now sometime  at  leisure  you  should  compare  this

expression and this a description of the pseudo inverse with the special cases full rank

cases which we worked out in chapter 7 as right inverse and left inverse. So, in those

cases where the matrix is full ranked those definitions will appear as special cases of this.
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Now, what  are  the  inverse  like  properties  or  qualities  of  this  pseudo inverse  first  is

pseudo inverse  pseudo inverse  of  the  matrix  id  the  original  matrix  considering  only

actual 0 cases being put 0 here and not he truncations second important point which is



like inverse that if a is actually invertible, if it is a square non singular matrix, then this

will boiled on to the ordinary inverse and A hash b will give the correct unique solution

of ax equal to b on the other hand if the situation is not. So, good and if A x equal to b is

an under determined, but consistent system that is full rank case of more unknowns and

less equations, then A hash b selects that solution x star which has the minimum norm

out of an infinite possible solutions.

On the other hand if the system is inconsistent then this A hash b defined with the same

formula then this A hash b will minimize the least square error that is if the system is

inconsistent there is bound to be some error a x equal to b in ax equal to b ax will never

be exactly equal to b, then this same A hash b will find you an x star which gives the

minimum error now if that minimum error giving solution is also not unique if there are

invite of them then at the same time, it will give you that solution out of those infinite

possible  solutions  giving  the  minimum  error  which  has  the  least  size.  So,  all  these

sensible things the pseudo inverse does with the help of a single definition now you

should  contrast  this  with  the  solution  which  is  obtained  earlier  from  Tikhonov

regularization.

So, pseudo inverse solution is typically used when you want precise values and also for

diagnosing a linear system whether it has any such inconsistency or under determinacy

problems and s, on; on the other hand, Tikhonov solutions can be used when the position

matrix A changes over a domain and you want continuity of solutions. 

So,  Tikhonov  stations  is  preferable  for  continuity,  but  diagonals  is  and  for  precise

solutions pseudo inverse solution is better Tikhonov solution will always inhibit some

error. Now in he exercises of this chapter in the text book actually the reason its exercise

which asks you to determine the Tikhonov solution and the pseudo inverse solution and

compare then for a matrix A which has one of the components variable now we want to

know how this whole thing is accomplished by a single formula.
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So, for that first, we note down what is the pseudo inverse solution that we find that is

this is the pseudo inverse of A and when we multiply it with b we got this sum where the

summation is over k from one to r that is for all the Nonzero singular values. So, for that

we get this expression and when we reduce it, then we have U k transpose b which is

scalar divided by sigma k because row k is 1 by sigma k. 

We can if we write it like this then we will find that the pseudo inverse solution that we

are  getting  is  actually  a  linear  combination  of  r  basis  members  v  1  to  b  v  r  the

corresponding components of these scalar values written in the parenthesis now we want

to pose the problem as first minimization of the error and then if the solution is infinite

then further minimization of the size if the solution and then see whether we get this

same solution. So, if we want to minimize the error these square error half norm square

of the error a x minus V, then as we open this we have already encountered this earlier

ones then the minimalist condition first order condition is that its derivative its gradient

with respect to x must be 0. So, when we do that we get this as we got last time here now

in place of a we write U sigma V transpose and through few steps we come to this point

now note that this is a matrix equation.

And this is the corresponding scalar equation for each component of that vector equation

right. So, this  is  for each k from k equal to  1 to r where r is the rank that is Nonzero

singular values. So, from here that you find that V k transpose x that is component of x



along the unit vector V k turns out to be U k transpose b divided by sigma k this sigma k

square goes down in the denominator and this is what is actually sitting here right. So, in

this  solution  x star  is  composed of  several  vectors  v  1  v  2  up  to  v  r  in  which  the

component of V k is this right.

So that means, x star is actually giving you this combination of these vectors with these

components  now this  first  order  condition  for  the  minimality  of  this  tells  you what

should be the components of the solution along the basis vectors v 1, v 2, v 3 up to v r

along v r  plus  1, v  r  plus  2, v  r  plus  3; what  should be the  component  that  is  not

mentioned  here;  that  means,  those  components  can  be  anything  the  error  is  still

remaining  because  the  condition  is  satisfied;  that  means,  the  general  solution  for

minimum error you can constitute with the components along v 1 V to v r as specified

here and any component  along the rest of the directions  that will  give you this with

components as prescribed along the first R directions along the first R basis numbers and

anything in the rest; that means, y is free here. So, v r plus 1, y 1 v r plus 1 R plus 2 y 2

and so on.
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Since these y 1, y 2, y 3 can be anything the V bar is the basis for the null space that you

will appreciate because any null space member will not change anything in the solution

in the right hand side. So, now, we say that out of all these infinite possible solutions

which one is the one which is of least size. So, then what we ask for we ask for how to



minimize the size of the vector subject to this error being minimum anyway; that means,

the solution you take from here and minimize it with respect to y that is which y to select

to minimize the size of the vector this. So, we say minimize the size that is x norms

square that is this.

So, now you find that x star this part is a linear combination of v 1 to v r and this part is a

linear combination of other basis members and all other basis members are orthogonal to

the basis members of the first family that will make this x star sitting in one sub space

and this part V bar y sitting in another sub space 2 sub spaces being orthogonal to each

other. So,  how do you find the square of some of this  if  the 2 members are in a in

orthogonal sub spaces. So, since they are mutually orthogonal this will be simply x star

square plus V bar y norm square now you find that if we then want to ask that which y

will give this as minimum where this is already available and cannot be tempered only y

can be changed then y equal to 0 will give you this as 0 and this sum as minimum.

So; that means, that y equal to 0 will you give you the minimum size vector x which is of

this form which minimizes the error.
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Now, how  this  whole  thing  happens  that  you  get  all  the  optimal  conditions  in  the

suggestion that you construct with the help of the pseudo inverse. So, for that let  us

investigate the anatomy of this optimization through SVD if we use basis V and basis U

for the domain and co-domain then the variables x and b under question x unknown b



right hand side unknown they are transformed  as this  that  is  in the new basis V the

expression of x will be this y and in the new basis U for the co-domain the vector b will

be represented as c which is U transpose v.

Now, if  we write  the system of  linear  equation a  x equal  to  b and a  is  U sigma V

transpose then V transpose x is y and U brought here as U transpose multiplied with b U

transpose b is c. So, then you basically get the equation in the new bases V on this side

and U on this side as sigma y coequal to sigma c and this is a completely decoupled

system because if we write this system of equations sigma y is equal to c we will find

sigma 1 sigma 2 up to sigma R like this y 1 y 2 up to y r and below that possibly more

variables up to y n and on this side we will have c one c 2 V up to c R and below perhaps

more things now the way the singular value solution has been constructed you get the

useful information only from the first R rows first R equations and they are completely

decoupled because y 1 simply c 1 by sigma 1 y 2 is simply c 2 by sigma 2 up to this y i is

c R by sigma r.

What happens below; you find that all 0s here; that means, right left side of the equation

will give 0 question is what is here in c if there are corresponding 0s here then that will

means that  the system is  consistent,  but  that  information  0 equal  to 0 is  completely

unusable if it does not have any information content on the other hand if some particular

values  here  R  Nonzero  that  will mean  we  are  talking  about  0  equal  to  something

Nonzero; that means, that is the conflict that is the source of inconsistency in the system

of equations.

So, in this situation we find that for k equal to one to R this is what we determined and

that is the only useable component and for c k greater than 0 for k larger greater than one

R that is below for c k greater than Nonzero for c k is Nonzero you will find that you

have purely undesirable conflict s that is simply the inconsistency decompose into an

orthogonal sub space and which cannot be compensated for by any other component and

c  k  equal  to  0  will  give  you  completely  redundant  information  that  is  again  the

completely redundant information is also collected over an orthogonal sub space which

cannot be changed from any other component from outside.

So, by setting the appropriate diagonal entries of sigma hash as 0 SVD extracts this pure

redundancy and inconsistency and rejects that. So, it rejects the redundancy it rejects the



inconsistency and gives you that solution which is the best possible achievable at the

same time since these were free skill because the usable component gave you the value

of only this much setting this variables as 0 minimizes the norm of y and since the norm

of  x  will  be  the  norm of  V y  V is  orthogonal.  So,  though  the  multiplication of  an

orthogonal matrix the norm of the vector does not change. So, minimum y will mean

minimum x for the norm.
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Now, the points to notice here important points to note are the following the first SVD

provides you a complete orthogonal decomposition of the domain and co-domain and it

separates functionally distinct subspaces on this side the null space from the rest on that

side the range from the rest it offers a complete diagnosis of the pathologies of a system

of linear  equations  and then pseudo inverse solution A hash b gives you a the most

meaningful solution of a linear system in all cases apart from these what has not been

noticed still now clearly is that with the existence of SVD guaranteed that any metrics

real or complex you can write as U sigma V star or V sigma V transpose many important

mathematical  results  and  many  other  formulations  can  be  worked  out  in  a

straightforward and direct manner in many of the cases in coming lectures based on this

existence of SVD you will find that you will be able to appreciate the deductions of

many of the results quite easily.



So, here we in this lecture we have actually connected 2 important problems systems of

linear  equations  and  Eigenvalue  problems  together  through  the  singular  value

decomposition in the next lecture which will be the last lecture of our linear algebra

module we consolidate a few important issues based on the abstract fundamental ideas of

linear transformations.

Thank you.


