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In the previous 2 lectures  we have considered two ways of finding suitable  similary

transformation  for  solving  the  algebraic  eigenvalue  problem.  In  this  lecture  we will

briefly discuss the other two. The first that we discuss now is method based on matrix

decompositions or factorizations.

(Refer Slide Time: 00:41)

The  most  important  matrix  decomposition  for  eigenvalue  problem  is  the  QR

decomposition.

In these 2 chapters of the book you will find that there are quite a few sections with

asterisk. These star marked sections are a little advance, so we will not cover these topics

in depth and rather we will try to concentrate on methods so far as its use is concerned. 



(Refer Slide Time: 01:24)

First idea of QR decomposition, the decomposition itself is quite straight forward the QR

decomposition is the decomposition of a matrix into 2 factors Q and R in which the first

one the Q factor is orthogonal and the second one the factor R is upper triangular. The

good point about QR decomposition is that it always exist whatever matrix you give one

can decompose it into Q and R factors. So, as long as you give a square matrix the Q and

R factors will be square. So, for every square matrix you have QR decomposition, it will

always exist.

Next performing this decomposition is pretty straight forward. In fact, if you have come

to this point through the exercises in the previous chapters  of the textbook then you

would have already decomposed one matrix into Q and R factors. In chapter 4 one very

simple QR decomposition problem was a set for you as an exercise in which the steps for

the  decomposition  were  also  suggested.  And  the  third  important  issue  in  QR

decomposition is that it has a number of properties which are extremely crucial for the

solution of eigenvalue problem.

First we see how we conduct the QR decomposition of a given matrix.

Say  this  is  the  matrix  a  in  which  a  1,  a  2  etcetera  are  columns.  So,  this  is  to  be

decomposed into Q and R factors this matrix is orthogonal; that means, its columns q 1,

q 2, q 3 are all unit vector vectors which are mutually orthogonal and this is an upper

triangular matrix below the main diagonal everything else is 0. Now first we quickly



review the same process of affecting this  decomposition which was suggested in the

exercise  of  chapter  four,  this  method  is  based  on  the  procedure  of  Gram  Schmidt

orthogonalization and Gram Schmidt orthogonalization process itself is actually another

very simple algorithm which was introduced even earlier in the exercise of chapter 3.

Now, here we again just like our normal decomposition processes we try to determine

this decompose parts through term by term multiplication. So, first we then write a 1 as

the first column of this matrix product and that will be this matrix multiplied with the

first column, now that will give us r 11 into q 1 plus everything else is 0; that means, we

get, r 11 q 1 as the first column of the matrix a.

(Refer Slide Time: 04:33)

Now, the matrix q is supposed to be orthogonal; that means, this vector column vector q

1 should be a unit vector and that will mean that the entire magnitude of this vector a 1

should be r 11. So, what we do? We take the norm on both sides and we find that the

norm of a 1 is r 11. Once we find r 11 then we can divide this vector a 1 by r 11 that

gives us the unit vector q 1. Precisely this step you will find when you try to conduct this

whole thing for j equal to 1 plus, this part this part is missing for j equal to 1 because

there is only 1 term in the sum and there is no previous i. So, this terms is this part is

missing. We start from this part, here also this sum is completely missing and you have

this aj itself a 1 itself sitting in the place of a j prime and then r 11 is this norm as I just

now mentioned and when you divide that column vector a 1 with r 11 you get q 1.



After that you equate the second columns second column a 2 is r 12 into the first column

here plus r 22 into the second column here right, other terms are 0. So, from here the

actual work starts. So, r 12 into q 1 plus r 22 into q 2 is the second column you do not

know anything on this side except q 1 on this side you know a 2. Now, if you know q 1

and you also know that q 2 is supposed to be orthogonal to q 1 then both sides if you take

inner product is q 1 that is you multiply this both sides of the equation with q 1 transpose

then here q 1 transpose q 2 will become 0 and here you will have q 1 transpose q 1 is 1

and then what will remain on this side is r 12 and that is q 1 transpose a 2 that is what

you find here.

For j equal to 2 only i equal to 1 is possible and r 12 you get as q 1 transpose a 2. After

you have found that, after you have found that you can subtract that from a 2 and in this

particular case this summation will include a single term this q 1 transpose a 2. After you

remove that that is this r 12 into q 1 this part r 1 to q 1. Now that you have got r 12 r 12 q

1 you subtract from a 2 what you are left with is this that is demarked at here as a 2

prime, and if you are left with this thing only then its norm will give you r 22 right its

normal give you r 22. Once you have found r 22 then you can divide the remaining thing

a 2 minus that stuff with r 22 and you get the unit vector q 2 that is here. This way you

keep proceeding.

So, in the next step you will find r 13, r 23 and then the 2 terms subtracted from a 3 will

give you r 33 into q 3 its not will give you 33 and when you divide with r 33 you will get

q 3. The trouble will arise if you find that r 33 or r kk at the kth point if r kk turns out to

be 0 then what. So, you cannot divide this still r kk equal to 0 is a valid output which you

will place in this location wherever in the diagonal entry it is supposed to come. That

will signify that the given matrix is singular.

Apart from that so far as the question of determining qk is concerned it is not a problem

at all because qk in the sum for ak is actually not making a contribution because it is

suppose to get multiplied with 0 to give the contribution. The trouble started because this

entire vector aj prime are turned out to be 0. At that stage you cannot divide it like this

and therefore, you cannot get qk by this formula, but that does not means that the process

stops  there.  This  r  jj  or  r  kk  being  0  only  means  that  qk  is  left  unconstrained,  qk

expression is not available from here and; that means, that as long as q k satisfies that

column satisfies the orthogonality requirements it is fine.



So, what you do, till now whatever columns of matrix q you have found q 1 q 2 q 3 upto

q k minus 1 any new unit vector which is orthogonal to all this k minus 1 all column

vectors is acceptable as q k. So that means, that r jj is non zero then this is a constrain

based on which you determine q j, if rjj is 0 then that constraint is revoked and in that

situation any vector satisfying this orthogonality requirement is acceptable for q j. With

this process till the end you can go and decompose the matrix into Q and R factors.

Now, this  is a very simple straight forward method by which can you effect the QR

decomposition. However, I should mention for record that the sophisticated or practical

methods which are utilized in most of the computational algorithms is actually not this,

though this is a valid method, but actually the your decomposition is affected in most

professional programs is through householder transformations. The same house holder

transformations which we studied in the previous lecture, but with a little difference.

(Refer Slide Time: 11:28)

Here  there  are  2  small  differences  compared  to  the  way  we  applied  household

transformation in the previous lecture. In the previous lecture we were using householder

transformation matrix on both sides left as well as right because we were concerned with

similarity transformations. Right now we are concerned with actually factoring a given

matrix  into  2  factors  Q and R we are  not  yet  so  much concerned with  a  similarity

transformation will be talking about similarity transformation based on this a little later,

but right now our focus is on effective a QR decomposition and therefore, there is no



compulsion for us to multiply on both sides to maintain the similarity, our main focus is

to effect a QR decomposition is one point.

Second point we arrive at when we consider this situation that we apply a householder

transformation on a given matrix in which we do not consider, we do not consider this

much as u, but because of this whole thing as u.

(Refer Slide Time: 12:37)

If you consider this whole thing as u and workout the corresponding v as we did in the

previous lecture, then what happen is that v will have its first entry same as the norm of

this entire vector from top to bottom and all other entries below that will be 0. That will

mean that contrary to the case of the previous lecture where this much of the first column

was converted to 0 was annihilated now this much will be annihilated in the first step

that is why here I am saying not u 1, but u 0.



(Refer Slide Time: 13:21)

So, u 0 is the entire  first  column. v 0 is  a matrix  of the same a vector  of the same

dimension with only the first entry being non zero and having a magnitude same as the

norm of u 0. And based on that we work out w 0 and then h n and therefore, P 0 in this

manner and when we apply that only on the left side not on the right side, then from here

to here all of these become 0.

(Refer Slide Time: 14:08)

And next we will apply P 1 based on h n minus 1 to be operating on this much to get

everything below a 22 to be 0 and so on. Note that this same thing we could not do in the



previous case when we were trying to effect similarity transformation because the way

the  left  side  multiplication  with  the  householder  transformation  matrix  effect  these

entries and these entries if over the full thing. So, the similarity transformation in the

previous case would require us to multiply the householder transformation that is on this

is also that would spoil the 0s set in the left side multiplication. And that is why in the

case when we were using householder transformation for tri diagonalization then we did

not want the already established 0s to be spoilt by post multiplication that is why there

we left 1 extra term free and applied householder transformation with 1 dimension less,

but here we are not going to multiply the same matrix from this side we are applying the

householder  transformation  only 1 sided,  so we can take the 2 vector  and therefore,

under the diagonal all terms we can make 0.

So, with one step we with the u 0, u 0 and therefore, with P 0 we get the subdiogonal

entries in the first column 0 and then we get this the entire magnitude of a 1 the first

column sits here below that everything else is 0. And then P 1 is applied which will make

a 32, a 42, a 52 etcetera upto an an 2 all 0 and so on that will look like this. Here there

will be some non zero i term and so on and then we apply P 2 to get everything under a

33, r 33 as 0 and so on. Like that by the time we come up to P and minus 2 then we have

got a completely upper triangular matrix.

Now, note that all this transformations from P 0 upto P n minus 2 are orthogonal matrices

and therefore, this entire product P n minus 2 to P 0 is orthogonal, product of orthogonal

matrices is also an orthogonal matrix.  And now if we call  Q as the transpose of this

whole  thing  which  is  this  then  whatever  we  have  pre  multiplied  can  be  called  q

transpose. So, what we have got we have got Q transpose a as r upper triangular matrix

which means A is equal to QR and Q we have got stored by cumulative multiplication of

the intermediate householder transformation matrices. So, this is one practical method of

effecting a QR decomposition.
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There is one more based on the givens rotations through one sided plane rotations.

Now, before going into the application of QR decomposition in eigenvalue problems let

us quickly have a look quick look at a side ratio. If you already have the Q and R factors

of a matrix then even in the solution of a linear system of equations Ax is equal to b it

can  be  utilized  because  in  case  of  A if  we write  QR with  Q and R factors  already

available in our hand then first step is pre multiplication with Q transpose that will mean

R x equal to Q transpose b. And transposing A matrix and multiplying that to a vector is a

task of very little computational effort. After that what remains is Rx equal to a known

vector  R  being  an  upper  triangular  matrix;  that  means,  only  a  sequence  of  back

substitutions  will  give  us  a  solution.  The solution  is  actually  extremely  cheap  if  we

already have Q and R factors in hand, but otherwise in order to solve this problem Ax

equal to b typically you would not go into the process of Q and R, QR decomposition

method  because  other  methods  that  we  have  studied  earlier  in  the  course  are

comparatively better.

The actual use of QR decomposition algorithm is in solution of eigenvalue problem. 
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Let us study the decomposition in that light. First point is that if we multiply the Q and R

factors in reverse this is a very weird preposition to begin with we have decomposed a

matrix into QR factors and the Q and R appear Q first R next and now we are suggesting

that let us see what we get if we multiply them in rivers RQ. It a weird preposition to

begin with, but if we do that then we notice something interesting.

Just now we have seen that R is Q transposit because A is QR. So, R is Q transposit. So,

if in case of R we write Q transpose A then see what we have got, Q transpose AQ wow,

what we have got is a similarity transformation. That means, that if we factor a given

matrix a into Q and R factors and then multiply them in reverse then what would happen

is  that  would have a  matrix  new matrix  A prime which  is  the  result  of  a  similarity

transformation over a itself the similarity transformation matrix being this same Q.

So,  this  is  similarity  transformation  not  only  that  it  is  an  orthogonal  similarity

transformation because Q is orthogonal with a few interesting properties. First is that if A

is symmetric then A prime is also symmetric that we can see because we have multiplied

from both sides u and Q transpose that results the symmetry.

Second is if A is in upper Hessenberg form then A prime is also in upper Hessenberg

form. That you can see very easily because in the factorization of A into Q and R factors

u 1 the first column of Q, Q 1 must be in the direction of a 1. Now if the original matrix a

is in upper Hessenberg form which is this; that means, if the first column of the matrix A



has only the top 2 terms then first column of Q also will have only top 2 terms below that

everything else is 0.

Next the second column of a has 3 term right, but then that is the linear combination that

is a linear combination of the first 2 columns of Q. Now first 2 columns of Q through a

linear  combination is  giving us the second column of a and the first  column is only

having 2 top terms. So, the second column can have only 3 top terms which are non zero

and so on.

So, that way proceeding that way we find Q also will have the same shape as a, if a is

assembled,  so  if  a  is  assembled  then  Q  is  also  assembled.  Now  in  the  reverse

multiplication what is happening is that we are multiplying RQ right, RQ it is this. So

that means, this matrix the first column of this matrix having only top 2 entries will mean

that the first column of the product will have only top 2 entries because the this matrix

multiplied with the first column gives us the first column of the product. So, this number

into first column plus this number into second column and first column has only 1 entry

and second column has only 2 entry at the top which are non zero. So, the composition

will have 2 top entries as non zero

Next the second column of the product will be this 3 things into these 3 columns and

these 3 columns have upto only third entry. So, the second column will have only top 3

entries which are non zero and so on. So, that way we will find that if the original matrix

is assembled then so is Q and so is RQ. So that means, if A is in upper Hessenberg form

then  so  is  A prime.  And  now  symmetry  preservation  and  upper  Hessenberg  form

preservation together will mean that if the original matrix is symmetric tridiagonal then

the new matrix is also symmetric tridiogonal.

So, till now we have found through these properties that through this transformation that

is  factoring QR and then pre multiplying in the multiplying in the reverse order RQ

nothing is going wrong, that is if you have given a matrix to begin with we have got a

similarity transformed form of it. If we have given a symmetric matrix then we get back

another symmetric matrix, if we have given an upper Hessenberg matrix we get back an

upper Hessenberg matrix, if we have given a symmetric tridiagonal matrix then what we

get back is also a symmetric tridiagonal matrix. That means, in the form and feature of

the matrix nothing is spoiled nothing is lost, but the question is what is gained and in that



we find that there is a deep result which shows which establishes that if we follow this

algorithm in one iteration not much will take place, in one step like this not much will

take place, but the advantage accrues when we follow this repeatedly.

(Refer Slide Time: 25:17)

What is the algorithm? Algorithm is very simple set A 1 is equal to A and then for k equal

to 1 2 3 4 5 6, go on doing these 2 steps. Decompose A k in to Q k, R k factors and then

multiply in reverse call it A k plus 1 R k, Q k. So, algorithm is just 22 step algorithm.

Factorize, multiply in reverse what you get? Factorize that multiply that in reverse and so

on. So, from A 1 through these 2 systems you get A 2, again from that through these 2

steps you get A 3 and so on, you go on doing this and the deep result assures you that as

k tends to infinity that is as you go on doing this step again and again and again and till

by you reach a convergence situation where the matrix A k approaches a quasi upper

triangular  form. Not really upper triangular, but quasi upper triangular  form and this

happens for any kind of matrix. Now, what is this quasi upper triangular form? It is this

form.
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Quasi means almost. So, in this quasi upper triangular form it is almost upper triangular

except for some diagonal job that might remain which is spoiling the diagonal which are

diagonal form because some of its elements maybe below the diagonal and sometimes

this kind of 2 by 2 diagonal blocks may come. And in this quasi upper triangular form

there is another interesting feature that the largest magnitude eigenvalue gets organized

here, next here, next here and so on. So, the magnitudes of the eigenvalues that you get

here along the diagonal are in decreasing order.

So, whenever there is a convergence to upper triangular form you know that eigenvalues

will  appear  in  the  diagonal  entries,  but  the  eigenvalues  gets  sorted  also.  Now such

diagonal blocks actually correspond to eigenspeces of eigenvalues which have almost

equal or very close magnitudes. The decoupling,  the dissociation of subspaces that is

actually behind this arrangement does not work so efficiently in the case of eigenvalues

which are which have extremely close magnitudes, that is why some times such diagonal

blocks may appear.

Two by two diagonal blocks can appear when there are complex eigenvalues complex

pair of eigenvalues and that will happen only for non symmetric matrices; obviously, so

for such cases this kind of blocks may remain which do not break further because for

breaking further complex arithmetic come needs to come into play to get complex values



here. As long as we are operate with real arithmetic this kind of 2 by 2 block will remain

or non symmetric matrices if there are complex pair of eigenvalues.

In particular for symmetric matrices a quasi upper triangular form actually will mean a

quasi  diagonal  form because for a symmetric  matrix  we have seen that  symmetry is

preserved. So, all these 0s will also mean that here also we have got corresponding 0s.

So, we will get actually quasi diagonal form all right. Symmetric matrix and such things

are anyway not possible for symmetric matrices. So, this is the form to which the qi

iterations will make the process converge and finally, after we have got this kind of a

form eigenvalues are mostly available with us except for this kind of situations where we

may need to conduct a little further post processing.

Now, I have told you what happens, but how this happens this I have not told you. In my

teaching typically  in mathematics  teaching particularly  I  try  to  establish most  of  the

results, but this particular result I will not try to establish in the class rather I will tell you

what actually happens behind because this is very time consuming and it is important

that when you got ready for appreciating the actual process that is happening behind, you

should actually conduct the analysis on your own possibly guided with the book. So, if

you are ready for going deep into it then I will suggest that you go through the section in

the book and try to work out the whole thing on your own then you will get better (Refer

Time: 30:33).

In  a  nutshell  what  actually  happens  in  the  background  in  QR  method  in  QR

decomposition method is that it operates on the basis of relative magnitudes or different

eigenvalues,  almost  the way the  power method is  used to  work.  But  here the crude

operation of power method is actually conducted in a much more sophisticated manner

and at  a global level,  at  every level the same refinement  of such cases based on the

magnitude for their eigenvalues and the segregation of eigenspaces of small eigenvalues

from the large once take place at all levels.

So,  as  iterations  proceed  this  separation  take  place  over  the  entire  spectrum  of

eigenvalues and that is how the eigenvalues gets sorted, eigenvectors get arranged in

suitable  subspaces.  The  way  power  method  works  on  a  single  vector  here  the  QR

decomposition method at the same time operates over a multitude of eigenspaces and

inside each eigenspace it  was for finer adjustments finer sorting and so on, all  these



processes take place together. And this is the reason why the diagonal blocks it cannot

break down completely if quit a few eigenvalues are of almost equal magnitude that is

the only limitation. 

(Refer Slide Time: 32:08)

So, if you follow through these, this conceptual basis then you will find that towards the

end  you  get  subspaces  which  are  sort  of  separated  from each  other  based  on  their

eigenvalue magnitudes.

(Refer Slide Time: 32:23)



There is another important thing in relation to it is that the rate of convergence depends

rate  segregation  of  different  eigenspaces  is  actually  directly  related  to  the  ratio  of

eigenvalues lambda i by lambda j and this observation you can make if you go through

one actual process of QR decomposition. For that what you can do is that you can take a

square matrix and write a small procedure to asset the QR decomposition perhaps based

on the method that we did discussed earlier and then actually apply this algorithm and at

the end of every iteration you see the result intermediate results, then you will see how

the subspaces are getting separated.

Based  on  this  observation  of  convergence  rate  there  are  also  some  sophisticated

algorithms we try to shift the matrix, shifting all its eigenvalues leftward and rightward

in order to artificially decreases lambda i minus lambda j which will mean that if this is

very small then for successive iterations the errors will drop at very fast rate for such an

algorithm is called QR algorithm with shift. It is a little complicated and that is why we

will not be discussing it here, but that is what is professionally implemented in most of

the professional software library routines.

But we will not go into this, what we will do rather is that just like this brief introduction

of  the  QR decomposition  method  or  general  matrices  it  general  and  for  symmetric

tridiagonal matrices particularly we will consider the last topic also the fourth method of

effective suitable similarity transformation. Now one point that needs a special mention

is that QR decomposition algorithm will operate on any matrix and try to give this kind

of a quasi upper triangular  form. It operates on hall  matrices it is effective,  but is it

efficient, when you ask that question we need to notice that implemented properly the

QR decomposition  algorithm the  iterative  algorithm is  a  linear  time  algorithm for  a

symmetric  tridiagonal  matrix,  a  quadratic  term  algorithm  for  an  upper  Hessenberg

algorithm and cubic algorithm for the general matrix. This is why we say that if you have

got a symmetric matrix then it is very important that you first use it through tridiagonal

form and then apply QR decomposition, if you want to apply even though on the full

matrix also QR decomposition method would work.

Similarly, in the case of a non symmetric matrix it is better to reduce it first to upper

Hessenberg form and then apply QR decomposition.  This is  the issue which will  be

considering next. 
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The eigenvalue problem of general matrices that is non symmetric matrices is relatively

much more complicated and therefore, we find that the theory is much more involved

and computational algorithms are a limited and b relatively unstable compared to the

orthogonal  transformation  based  method  for  symmetric  matrices.  Therefore,  in  this

course we will not go deep in to those theories, rather on these star marked sections will

very briefly gross over and try to discuss the basic points here and the important post

processing issues here.

(Refer Slide Time: 36:41)



First point regarding non symmetric matrix is that it may not be diagonalizable, a fact

that we have discussed earlier. A symmetric matrix is always diagonalizable, but not so

for a non symmetric matrix. So, therefore, rather than trying to diagonalize the given

matrix if it is non symmetric what we try here is first to triangularize it and get then

upper triangular part.

Next point is  that  with real  arithmetic  we cannot avoid 2 by 2 diagonal  blocks; that

means,  even  if  the  matrix  is  actually  triangularizable  and  that  also  with  unitary

transformations if we stick to real arithmetic and do not go to complex arithmetic then

even triangularization process will not be really complete because 2 by 2 diagonal block

will remain which will signify complex pair of eigenvalues. So whenever complex pair

of eigenvalues are there such blocks are inhabitable.

Next is that the computational complexity of the algorithm is higher, convergence is low

and sometimes the numerical process may turn out to be unstable. These are the typical

difficulties with non symmetric matrices.

And what we say is a non symmetric matrix is usually unbalanced. You see if the norm

of ath row and kth column of a matrix is same for every k then you call that matrix as

balanced.  A  symmetric  matrix  begin  with  is  balance  and  through  orthogonal

transformations it remains balanced a non symmetric matrix is usually unbalanced and

therefore,  it  is  going  to  numerical  round  of  errors  more  than  the  symmetric  matrix

algorithm therefore, in the case of non symmetric matrices as a preprocessing step we

sometimes use balancing we try to balance the given matrix a little.  And one way to

balance it is that if a row is of much higher norm then the corresponding column then we

can try to adjust that by multiplication of the row with some number and division of the

corresponding column with the second number so that we can balance their norms little

bit.

Now, only multiplication to a row is not correct, is not the right step to do because that

will be a transformation which will not be a similarity transformation. If we multiply a

particular  row  with  half  and  the  corresponding  column  with  2  then  that  will  be  a

similarity  transformation  because  the  multiplication  of  the  k-th  row  with  half  is

equivalent to a premultiplication with a with an elementary matrix the corresponding

inverse as post multiplication matrix involves the multiplication of the corresponding



column with  2  and so  on.  So,  balancing  is  a  preprocessing  step  for  non symmetric

matrix.

Now, through the similarity transformations which are orthogonal a balance matrix does

not  go on balance,  but  if  the similarity  transformation  that  we apply  if  they are not

orthogonal then even an originally balance matrix may go unbalance again. Now, what

we do with the matrix in order to triangularize it? So, there are 3 possible alternative for

the first step for a non symmetric matrix.

(Refer Slide Time: 40:38)

The first step for non symmetric matrix is to reduce it to upper Hessenberg form which

you can do with a fixed number of arithmetic operations without any iterative process

and then further we will conduct iterations  on that upper Hessenberg matrix.  So, the

reduction to Hessenberg can be done in several different ways one is a full sweep of

givens rotations as we have discussed earlier, another is a sequence of n minus 2 steps of

householder transformations which also we have discussed in the previous lecture. Now,

these  two  things,  one  of  the  two  each  of  them  converts  a  symmetric  matrix  into

symmetric tridiagonal form the same operations in the case of a non symmetric matrix

will convert it to the upper Hessenberg form. The zeros under the subdiagonal will be

arrived at, but that will not mean that over a super diagonal also you will get 0 that will

not get in general.



Apart from these two for a non symmetric matrix you can also apply a third method

which is a cycle of coordinated Gaussian elimination. To make the record state this kind

of a thing is possible for a symmetric matrix also, but in the case of a symmetric matrix

this  we  will  typically  not  do  because  in  the  symmetric  matrix  case  the  orthogonal

transformation based algorithms are superior. Here there is no symmetry to preserve and

therefore, it really does not harm to take the third option. In the third option what we do

we apply Gaussian elimination in a well coordinated (Refer Time: 42:30) manner.

Note that the straight forward Gaussian elimination which we where applying earlier for

solving a linear system of equations that was only based on rows, only row operations

we were doing that  same thing we cannot  do as it  is  here because every step every

transformation of the matrix has to be made through a similarity transformation. That

means,  whatever  matrix  we  pre  multiply  with  we  need  to  post  multiply  with  the

corresponding inverse and therefore, the Gaussian elimination here must be coordinated.

So,  this  Gaussian  elimination  or  elementary  transformations  which  are  applied  in  a

coordinated manner are actually applied from 2 sides - one through pre multiplication

and  the  other  through a  post  multiplication.  That  means,  the  pre  multiplying  matrix

corresponding to  the  elementary  row transformation  and the  post  multiplying  matrix

corresponding to the matching column transformation must be inverses of each other that

is how the similarity will be maintained.

So, there are two kinds of steps in these elementary transformations as always one is the

pivoting and the other is the elimination.  So in the pivoting step typically you try to

interchange rows and accordingly interchange column also.
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And in the elimination step typical pre multiplying factor will look like this which will

mean subtraction of some multiple of the pivotal row from the lower rows that is why

minus k here is a vector. And the corresponding column transformation here which will

be equivalent to appropriate addition of all the later rows all the right side rows prove

that pivot right side columns sorry columns into the pivotal column this is actually de

compose the elimination step.

Through such pivotal through such pivoting and elimination steps we will convert it into

the Hessenberg form first and then we apply the QR algorithm on the Hessenberg matrix.

And in that process as we keep on applying the QR iterations as soon as a sub diagonal 0

appears we split the matrix into 2 parts and continue with the smaller parts and so on and

if  towards  the end a  smaller  part  turns  out  to  be a  1 by 1 part  then  that  itself  is  a

eigenvalue, if the smaller part turns out to be a 2 by 2 sub matrix then from that through

a quadratic equation solving we determine 2 eigenvalues and so on. So, like that we keep

on decomposing into smaller diagonal blocks and solve the Eigen value problem in terms

of only eigenvalues to begin with.

After that is over then we go in to a method which is called inverse iteration.
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This is a very valuable method because at the end of the reduction up to upper triangular

form all that you have is only eigenvalues and not eigenvectors and quite often it may

also happen that the eigenvalues are also on the crude estimates. In such a situation when

you have got a an estimate of the eigenvalues not their exact values then to refine the

values  of  the  eigenvalues  and  the  corresponding  eigenvectors  to  get  the  values  of

eigenvectors inverse iteration comes as a very good method. For that the assumption is

that matrix A as a complete set of eigen vectors and lambda i is 0 is a good estimate of

the ith eigenvalue of A lambda I lambda is 0 is an estimate of lambda i.

In that case what you do is that in order to find the eigenvalue lambda i plus ip and to

determine the corresponding eigenvector we first make a test of any random vector y 0

with magnitude 1 and solve the system. As you solve the system define that the solution

y is a very good estimate of the eigenvector vi this is very interesting. The reason is that

if  we  are  constructing  this  matrix  a  minus  lambda  i  0,  i  that  will  mean  that  all

eigenvalues  of this  matrix  gets shifted by lambda i  0.  If  lambda i  0 where an exact

estimate of lambda I then this would be a singular matrix and in that case as it is you

would not be able to solve it,  but if  it  is a good estimate,  but estimate (Refer Time:

47:35) not exact value and that will mean that through this shifting the ith lambda, ith

eigen value becomes of very small magnitude and that means, in the solution which is

basically y that is this matrix inverse into y 0 you get that particular eigenvector over



emphasize  because  the  eigenvalue  which  is  extremely  small  in  the  inverse  the

corresponding eigenvalue will be extremely large.

So, that eigenvector gets over emphasized and then therefore, in y you will find that the

components of the other eigenvectors become very less in comparison to the eigenvector

corresponding to which we have made an estimate here and y is a good estimate of the

corresponding eigenvector. And through a little further processing you can see that the

difference  of  the  correct  value and estimate  will  be given by this.  So,  therefore,  the

expression here gives you an improvement in the estimate of the eigenvalue and then that

estimate you can utilize here and continue with this inverse iteration.

Now, this is a very peculiar algorithm in the sense that here you cannot complain of in

conditioning  in  the  solution  process  of  this  linear  system  because  it  is  that  in

conditioning  itself  that  is  actually  driving  this  algorithm  that  is  because  of  that  in

conditioning  your  intended  eigenvector  is  actually  be  getting  expressed,  is  getting

emphasized in the solution process and you are able to identify it. Not only that in the

later iterations towards the convergence this matrix will become even more and more in

conditioning because lambda i estimates will become more and more precise. So, this

algorithm is tricky and we have to handle it carefully.

The algorithm is start with an estimated eigenvalue and guess y 0 which is normalized

with magnitude 1.
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And then every iteration you solve this system find a normalize the next y, y 0 in place of

y 0 then it will be y 1 y 2 y 3 and so on, next vector to be used here in this system and

normalize this and make the improvement over the eigenvalue and then if the previous

right side and the new right side are extremely close to each other then terminate that is

the  convergence.  So,  this  is  the  algorithm  which  gives  you  refinement  over  the

eigenvalues and the values of the corresponding eigenvector. So, this can be done as a

close processing step after  you have triangularized  the matrix.  This  can work for  as

symmetric as well as null symmetric matrices.

Now, the important issues here is that every time that you update the eigen value the

coefficient matrix actually changes that may mean the solution of the system may turn

out to be more and more costly. So, one way to handle this is to update diagonal values

only once in a while, not at every iteration.

Next a small artificial number may lead to be used as an artificial pivot while solving this

linear system because as we go discussing earlier this matrix is known to (Refer Time:

51:21) condition therefore, when you try to pivot in the linear system solution you will

have the difficulty in pivoting because all the entries all the candidates for pivoting will

turn out to be extremely small and therefore, a tiny number of your choice you can insert

there as an artificial pivot rather than the 0 that might appear otherwise.

The point is that in the beginning we said that this works under the assumption that the

matrix has a full set of an eigenvectors. If the matrix is defective or if it has complex

eigenvalues in that case it may not converge as usually as you would expect because the

underlying theory expects the expression of the chosen vector in the form of a sum of a

linear combination of eigenvectors and that may not happen that may not be possible in

case of a defective matrix and then in case of complex eigenvalues the pair of complex

eigenvalues  are  both  of  the  same  magnitude  and  therefore,  for  that  eigenvalue  the

situation  may  be  tricky  because  the  magnitude  only  one  magnitude  does  not  get

expressed equally high I mean unequally high compared to others because 2 eigenvalues

are  of  the  same  magnitude  at  least.  Even  repeated  eigenvalues  or  extremely  close

magnitude eigenvalues we will similarly inhibit the process.

Now, with this much we complete our discussion on the eigenvalue method and at the

end we need to have a quick look at the entire spectrum of methods that we have studied



till now in the last five vectors and make a sort of choice on the kind of methods that we

typically utilize for solving eigenvalue problems of different kinds of matrices, kinds and

sizes.
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There are 3 parts, 3 columns here - one is reduction kind of preprocessing then the actual

main algorithm and then the post processing. For general matrices is a size is extremely

small up to 4 then you do not need sophisticated method, you can reduce it based on

definition  itself  get  a  characteristic  polynomial  and  algorithm  is  actually  simply

polynomial  root  finding  and  after  that  you  solve  the  linear  systems  to  get  the

eigenvectors.

For intermediate size matrices say 4 to 12 you can either use Jacobi Sweeps to reduce the

matrix to an extent and then rather than using further sweeps you can use selective Jacobi

rotations to diagonalized it completely no post processing required. Alternatively for this

range of files isometrics symmetric you can first (Refer Time: 54:36) organized by a

given rotational  (Refer  Time:  54:37)  methods and then you can use Sturm sequence

property and bracket  and bisection,  using bracketing  and bisection  to  find the rough

eigenvalues. Once sort of eigenvalues are determined then you can use inverse iteration

to refine the eigenvalues and determine the eigenvectors.

If you have symmetric matrices which are large say larger than (Refer Time: 55:02) size

then reduction must be carried on for the sake of efficiency up to tridiagonalization, here



you use where you have use householder method because that is much more efficient

compare to givens rotation called larger matrices. And then the main algorithm will be

typically QR decomposition iterations called symmetric tridiagonal matrices. If you are

working with non symmetric matrix with intermediate or large size then first you will

reduce it through balancing and then through the Hessenberg pump either these methods

or through Gauss elimination base methods and then you can use QR decomposition

iterations to triangularize the matrix and get the eigenvalues and finally, you can use

inverse iteration to refine the eigenvalues and determine the eigenvectors.

For general matrices symmetric as well as non symmetric if the matrix is very very large,

but the requirement this only selective that is if you want to determine only the top and

bottom eigenvalues or you want to determine top few eigenvalues in such situations you

can use power method shift and deflation to pick up only those pieces of information

which you need.
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So, with this we complete this small sub module of the algebraic eigenvalue problem.

Earlier  we studied  the  first  sub module  of  linear  algebra  that  was systems of  linear

equations, now in the next lecture we will combine these two and see the connections

between these two problems into the one of the most important lessons of this course

which is Singular Value Decomposition that we will discuss in the next lecture.
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Thank you.


