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Lecture - 8 

Solid Modeling 

Welcome to lecture 8 of ‘Computer Aided Engineering Design’. This is our last lecture 

in Solid Modeling. 
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I am going be covering 3 topics here. 1) To prove the generalized Euler Poincare 

formula, 2) to give an example on parametric solid modeling and the last topic is going 

to be a little note on regularized Boolean operations. First a little in formal proof of the 

generalized Euler Poincare relation; v is the number vertices, e the number of edges, f the 

number of faces, l the number of loops, s is the total number of shares. That can have 

own genes value or own number of handles, g is the number of genes and the left hand 

side is equal to zero.  

We will try to prove it in formally of course, we have seen and in formally proved is 

relation before, the left hand side is the Euler have respect for polyhedral solids and the 

right hand side is the Euler characteristic or smooth for it. Where g would be the number 

of handles and c would be the number of the boundary components. 
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Let us start the proof now. Let us consider a spear and triangle it. We know that, this 

polyhedral solid is going to be having the Euler characteristic of 2. Let us take off a 

triangle of face from this spherical surface, to introduce a boundary component. When 

we do that, the number of faces get reduce by 1 and so a number vertices minus the 

number of verges plus the number of faces equals 1. 
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What we do now is we try to build up a prison, a triangle prison on this opened up 

surface. What have we done, we have introduced 3 plus 3 edges. We have introduced 4 

faces; first face, the second face, the face on the back side the third and tuff face and we 

have additionally introduced 3 vertices. 
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So in this Euler relation we have three additional vertices, six additional edges and four 

additional faces; because of which, the right hand side becomes 2. 
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In the next step what we may want to do is we may want to blush out this triangular you 

know face in two spiracle space. In the Euler relation nothing changes because this thing 

is a valid solid and in fact this solid is homeomorphic to the spear. 
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I could as well have constricted a triangle prison inside the parents fear, an acre of 

bushed out this triangle of peace into spherical surface. Again nothing would have 

changed; we would still have a solid which is homeomorphic to as pear clearly because, 

the Euler characteristic tells us where it is values 2. What we might want do now, as let 



go of this triangle of prison and cover up the outer spear and the Innes here, to leave out 

spherical wide within spherical solid. Let us see how? When we let go of this triangle of 

prison, we are deleting three edges; we are not deleting any vertex and we are deleting 

three phases. In addition we are re-introducing two phases, one phase on the outer spear 

and one on the Innes spear. 
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So the left hand side v minus e plus f, that we will have no change in the number 

vertices, in number of edges will get decremented by 3 and the number of phases will get 



decremented by 1; so the right hand side will be 2 plus 2. I can keep on introducing 

spherical shells; spherical wides inside sprint fear, which would help me, generalize your 

right hand side of Euler relation v minus e plus f, as 2 plus 2 s prime. S prime would be 

the number of shells that I have introduced into the sprint fear. I can combine the 

previous relation with this one and have a more general formula, as v minus e plus f 

equals 2 plus 2 s prime minus 2 times g minus c. These are the terms that I get from 

previous smooth solids. I can manipulate this right hand side further. 
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I can faceted to outside and I can rewrite the right hand side as two times within the 

parentheses, 1 plus s prime minus g minus c outside the parentheses. Once again s prime 

is the number of additional shells that I have introduced within the pincher. I can 

combine one plus s prime together and write it as s. So just thing that s would be the total 

number of shells. If I compare this relation with the Euler Poincare formula; I have the 

number vertices, the number of edges, the number of faces, the number of shells and the 

number of handles in place. All I need to worry about is to introduce this term here, in 

the Euler Poincare relation. 
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We come back to polyhedral solids with the same relation, that we had derived or we had 

proved in fumier of course last time and we try to understand what a loop is more 

familiar. A loop would be any closed curve sketched by traversing all the edges of a face 

or a boundary component. If you look at this figure here of a block, we had the top phase 

opened up by a boundary component. So this is the first loop we traverse the four edges 

of the phase, which is nearest was the second loop; the third loop traversing the bottom 

phase; the fourth loop traversing the top phase; fifth loop and the sixth loop and then will 

have a loop corresponding to the boundary component at the top. If I introduce any other 

boundary component, I will introduce a corresponding loop with that. 
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Now let us see how introducing different boundary components would affect the Euler 

Poincare formula. We start from the formula and now we segregate of the divide s into 

two parts. We say s 1 plus s prime for certain reasons, which I tell you about later. If I 

introduce a boundary component, I open up this top phase because of which and of 

course, I will have a loop here; because of which the number of phases will decrease by 

1. So that the total number of phases for this polyhedral solid will be fire but, the number 

of loops will be 7. Let us verify the above Euler Poincare relation; we have 12 vertices, 

now 16 edges, 5 phases. We have no interior shell s prime of which s prime is 0, we have 

no handles, because of which g is 0 and we have one boundary component c, we see all 

the above Poincare relation is satisfied. 

If, I introduce another boundary component and a loop whit it, we are opening up one 

more face because of which, we actually have 4 faces but, 8 loops. Let us verified the 

Euler Poincare relation again; we now have 16 vertices, 20 edges, 4 faces, again no 

interior. Shall I explain no handles and now we have two boundary components. So c is 

2, where we have noticed each time a boundary component is introduce on a face; the 

number of faces will decreases by the same amount. If I have introduced let us say 2 or 3 

boundary components the number of faces will decreases by 2 and 3 respective. 
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We can use this observation in this manner. We first assume that, the numbers of faces f 

in the Euler Poincare relation are the same in the original solid, without boundary 

components. We assume that, the original solid is a perfectly valid polyhedral solid, 

which does not have any boundary. Whenever a boundary component c is introduced or 

whenever a number of boundaries c is introduced, there is a corresponding decrease in 

the number of faces. In a sense, decrement in the number of faces will be equal to the 

number of loops minus the number of original faces and this difference l minus f will be 

the same as c. Once we know that, we can adjust the Euler Poincare relation assess, v 



minus e plus f minus within parenthesis l minus f minus two times within parentheses 1 

plus s prime minus g plus c. Once again each time I increase c by say 1, I decrease the 

number of original phases by the same amount 1. I would repeat here, that c is the same 

as the number of loops minus the number of phases. 
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Question, what if another boundary component is introduced on the same phase that is a 

face will have two boundary components in total. This is the first one the loop and this is 

the second one the loop. Let see how the previous relation affects, well we have this 

relation here. We compute in number vertices as 16, 8 from the original solid; 4 here and 

4 here. The number of edges will be 20; 12 from the original solid, 4 from this boundary 

component and 4 from this boundary component. The number of faces in the original 

lock will be 6; the number of loops will be 8. Now, 6 corresponding to the original solid 

and 2 corresponding to these two boundaries; so this is 8 minus 6. Well s prime is the 

number of shells within this solid, since there is no shell when this solid s prime is 0. So 

this is minus of 2 and the new number boundary components introduced is 2, 2 

boundaries. We see that the left hand side concerned to be 0 and so the Euler Poincare 

relation hopes. 

What if? Now a third boundary component is introduced on the same face. The number 

of vertices well now we train for additional the number of edges, well again before 

additional the number of faces in the original solid remained same. The number of loops 



will now incremented by 1, so this is 9 and the number of boundary components c will 

again the 3; because the 3 boundaries. Again c that the Euler Poincare relation hole 

introducing a boundary component on the same face, is equal to borrowing a boundary 

from a different face and that is possible. The reason why? This relation as good, finally 

we get the Euler Poincare formula for valid solids, without any boundaries; when c 

equals zero. 
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We now come to the second part of the lecture. This is an example on parametric solid 

modeling that, Mr. Shailesh Pandey has helped me to prepare. Here I would like to show 

case different features, that many solid modelers have; since we have done a work shop 

on the design of a study lamp or table lamp. I will use the same example, we are going to 

be trying to design a study lamp, where all prismatic features, first the design of a base. I 

would like to have a trofosoidol base we call this troposide from this rectangle here. 
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We have a trofoside, now we are going to be striving this cross section in to the third 

dimension; that is the dimension towards here. 

(Refer Slide Time: 19:07) 

 

To get a solid feature, the height of this proposal base is about ten units. Next we will try 

to cover out certain features on this space, so these circle of features might correspond to 

say (( )) tends is rectangular tactful, would correspond to say holding raisers a fence. We 

are just trying to play with the design here. We are specify the relations between these 



two edges, we ensure that these two edges remain (( )) we change the dimensions of this 

rectangular. 
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Once peace patch out these cross sections on the base, we try to intrude is cross sections 

into the base. To get circle of dot holes and a rectangular (( )), the death of these part 

hole is about five units. 
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This is how we see different part holes. We can actually change the colors of different 

parts if we want. Next we will try to design a prismatic connector that connects the base 

to the powerful. We had this rectangular feature on the top phase of the base and we have 

this circle art. The idea is to get the connected again a prismatic shave, through this non-

leaner speed; this rectangular cross section is going to be swept the along circle of art. 
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We do that and we get the connector of this shape, next we try to design a bulb holder. 

We have a tropasoral cross section here, which we have excluded along this vertical 

direction by some amount. This is another view the lamp and we are going to be 

shacking up this bulb holder like a different. We introduce a taper, along this direction at 

the base. 
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After we do that, we will introduce a shell like structure to represent the bulb holder; the 

thickness is about 1.5 units. We have a basic lamp design ready. These are different 

relations that Salish at used to design this lamp. By a metric solving modeling allows us 

to choose different features in the design and modified them locally. So that, we do not 

have to undergo the entire planes taking design procedure. 
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Let us try to understand a metric solving modeling, show the following slides. First we 

choose this circular feature and we play with the sights of the spot hole. 
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We increase the size when we do that, we get this spot hole of slightly larger in size. This 

window here represents the history tree, when creating this design in the text form; not in 

the graphics form. One can choose any feature from this history tree, for double click the 

corresponding feature in the graphics window here; to implement whatever changes he 

or she has in mind. 
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Now, we are trying to introduce the shamper on the base. After we do that our design 

appears like this. In change colors, we want. 
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Let us now try to enlarge the base of the lamp and absorb how the design looks. We had 

different dimensions here, which are relating each other. If we change any one or two of 

these dimensions are base, we get a large this is one key feature of parametric solid 

model. We had to have relations between different features and face. 
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We can choose this face as well as the face beheaded and we can increase the distance 

between the faces. When we do that, this is how our design looks. Next let us try to play 

with the size of the bulb holder; once again we choose the face nearest was in this part. 

We choose the face right opposite and then we enlarge the distance between two phases. 
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Let us try to play with the bulb holder a little more, the increase the vertical dimension. 

Again in a similar passion; choose the top face, choose the bottom face and increase the 

distance between. 
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We have left this hole right there, we can bring this hole a little upward along the vertical 

direction. Very similar procedure, we do that. We have now got the hole at the right 

place. 
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Let us now play with the neck of the lamp. So in the previous example, what we had was 

we had rectangular cross section, swept along a circular r. Here will have the same cross 

section but, swept along a line, a straight line. When we do that, we get a straighter neck. 
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We can elongate the neck, if we want to get a new design. In a sense we are 

parametrically trying to change different geometric features of this design, without 

actually having to redesign the entire lamp from scratch and it is this feature, that is very 

nicely employed in complex solve modeling. 
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We can have a group of designs, two parametric some model. Once again if you look at 

these five designs, the basic topology or connectivity of these designs remains identical. 

It is only the shapes and sizes are different features, which are changing as we intend. 

We can present these designs to the customers and let them choose which of them, they 

would like. 

(Refer Slide Time: 28:31) 

 

This is the third and the final part of this lecture, a little note on regularized Boolean 

operations. This is the slide that I had covered in the previous lecture. I emphasized that, 



they were certain fit falls or drawbacks of the raw Boolean operations. We take a block 

or a cube, we take a cylinder; we align them or transform them in such a way, that one of 

the faces of the cylinder sits on one of the vertical faces of the cube. The two solids are A 

and B and if you try to compute the intersection, we get a test. This is a lower 

dimensional feature to dimensional nature and it does not represent a valid solid and it 

was best example that I have used to introduce regularized Boolean operations. 
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Let us look at a few more examples, we have a cube and now we have a cylindrical 

material setting over the top face of the cube. The cube is solid A, the cylinder solid B; if 

we try to compute the union between two solids, we get this solid with common edge 

between the two (( )). This is a non-manifold solid because, if you look at this common 

edge it is shearing whole faces; this is face 1, this is face 2, this is the third face and this 

is fourth face. If we call the definition of manifold solids, there we have used an open 

wall. If we place an open wall here anywhere on this edge, will see that the intersection 

between the open wall and the solid will result into inter-primed desks, which cannot be 

defund into a single desk for which reason, it is non- manifold solid. 
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Third example, of a block and of the same cylinder, solid A solid B, we now compute A 

minus B. We will get a block with a slight singularity on the top face. The common edge 

between the cylindrical (( )) and the block will not be present on the block. If you see 

this, they would be a very hen slit, (( )) open up the top face of the block. 

(Refer Slide Time: 31:56) 

 

Same example, now a block and a cylinder sitting over it; we try to compute for this B 

minus A. Once again will possibly have a cylindrical surface with a little slit opened up 



right there. These are certain singularities or normalizes, which are associated with raw 

Boolean operations. 
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To eliminate these normalizes we had proposed regularization of Boolean operations 

port, so a regularized union will be like this. It compute the raw union, it compute the 

interior of the result and then you perform the closure operation. In the closure operation 

we actually compute the union of the interior as well as the boundary of a solid. Likewise 

regularized intersection we compute the raw intersection, we compute the interior of the 

result and again you perform the closure operation taking the union of the interior and 

the boundary. 

The regularized difference is performed in a similar manner, we compute the raw 

difference take the interior of that and then perform closer. All these operations make lot 

of sense, if we think about solids as a set of points occupied of finite volume in the 

((fluidounce)) space but, I have emphasize, that solids a seen by virtually all solid 

models by their corresponding bounding surfaces as per the extended Jordan’s ((afford)). 

This is the question that I asked myself last time, how do we perform regularized 

Boolean operations when dealing with only bounding surfaces? When we do not have a 

(( )) because, only then these operations will make sense with only bonding surfaces 

possibly, these operations will be difficult to be perform. I can only conjecture at this 

time but, this is what my conjecture is. All we need to do as we need to sure at the result 



of raw Boolean operations is a bounding surface by itself, in other words the result of the 

Boolean operations is perfectly valid solid. 

How do we do that? Well we have a tool we call ((went)) edge data structure, all we need 

to do is ensure that the ((went)) edge data structure this properly structured. Let us revisit 

is for example, and see how the data structure can have a normalizes which can be 

detected and then we can conclude that the results may or may not be valid solids. 

(Refer Slide Time: 36:08) 

 

Let us take a look at the intersection example first, block A cylinder B intersection give 

us a desk. Now f you recall for any valid solid polyhedral or non-polyhedral with 

difference of this patches constituting a solid and different surface patches stitched at the 

common boundaries. A valid solid will be 1 of which each boundary edge will have not 

more and not less than two faces incidental to it, this example here if this a boundary 

curve will have exactly two faces incidental. Now if we look at the result here it is an 

open desk this outer boundary has only one face incidental. It does not have a second 

face associated with it and this thing can be detected in the winged edge is structure and 

correspondingly the result can be eliminate or can be categorized as non-valid solid. 
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Let us take a look as the union example here. Block A, cylinder B if we compute the 

union will have a common edge between cylinder and the block. We know that it is a 

non-manifold solid, if we look at this common edge this will have as a mentioned hole 

four faces and not two faces associated with it. So corresponding to this edge, the winged 

edge data structured will complained and we can detect that complained and we can say 

that this solid it is not a valid solid. Just in case some of you are having visualization 

difficulty, let me try to sketch features around that common edge on the board. 
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This is the common edge, this is the first face on the block, this the second face on the 

block, this would be third face on the cylinder and this would be the fourth face from this 

cylinder four faces. 
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Let us take a look at third example again, the difference between the block A minus the 

cylinder B look at this (( )) here which opens up the top face of the block, this 

corresponds to the common line between the cylinder and the block. The two kind of 

similarity 1) we can think of this slit as composed of two edges which are very close 

each other. And second of course, this is opening up the top face because of which block 

will not be bounded (( )). So that two edges and if you look at any one of the edges that 

edge will have only one face incidental. If you look at edge on the left will have only the 

left face which is incidental and likewise for the right edge. So the winged edge get a 

structured can detect both the similarities, if the two edges are very close to each other 

will complain accordingly and if there are less than or more than two faces incidental to 

single edge will complained as well. 
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Likewise the fourth example, if we subtract the block from the cylinder B minus A will 

have this let like here at the lower region on this length. Once again very similar 

problems, two edges very close to each other and each of the edges will have only one 

face incidental. Both the similarities can be detected then computing the winged edge get 

data structure. 


