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 Lecture - 7 

Welcome to lecture 7 of CAED NP-TEL video series. Here we are going to be 

discussing certain techniques to design solids. This is the second of the lectures in solid 

modeling. We can use Euler operators to design solids. 

(Refer Slide Time: 00:43) 

 

 (Refer Slide Time: 01:02) 

 



Given a polyhedron model, one may want to edit it by adding or deleting edges, vertices, 

faces, and genus to create a new polyhedron. One can use Euler operators for this 

purpose. The two groups of Euler operators namely the Make groups and the Kill group. 

Euler operators are written as Mxyz or Kxyz; M represents the make group, and k 

represents the kill group, x y and z can represent any other features, vertex, edge, face, 

loop, shell or genus. For example, M E V implies make an edge and a vertex or in other 

words we add an edge and a vertex to a polyhedron model. K E V represents killing or 

deleting an edge and a vertex. 
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Operators are designed to satisfy the Euler-Poincare formula, which is V minus E plus F 

minus within parenthesis L minus F minus 2 times S minus G equal 0. We have seen this 

relation in the previous lecture. Retransfer vertices E for edges, S faces, L for loops, S 

for the number of shells and G for the number of handles in case; we are dealing with 

solids, which are homeomorpically the connected some of toroide. Euler operators 

ensure that the Euler-Poincare formula is always satisfied. That is using a finite sequence 

of operators; any polyhedron can be constructed from any other polyhedron or from 

scratch. You might want to think about using Euler operators to construct a cube, from a 

tetrahedron or visa a versa; that is to construct a tetrahedron from a cube. You might as 

well want to think about constructing a tetrahedron from scratch. 
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Here are some details about the make group operators. M E V stands for make an edge 

and a vertex, this operator introduces a vertex in an edge. And all the other features are 

not introduced. Correspondingly there is no change in the Euler-Poincare formula. The 

second operator make a face in an edge M F E this operator introduces a face in an edge, 

the number of edges get incremented by 1, the number faces also get incremented by 1 

and since loops are associated with faces, the number of loops get incremented; there is 

no increase in the shell value nor there is an increase in the genus value. 

Once again there is no change in the Euler-Poincare formula. M S F V make a shell, a 

face and a vertex; the number of vertices increases by 1, there is no increase in the 

number of edges with this formula; the number of faces increases by 1, the number of 

loops get increased by 1 and the number of shells would increase by 1 with no change 

and genus value; again no change in the formula. M S G make a shell and a genus, no 

change in the number of vertices, in the number of edges, in faces and a loops ,but the 

number of shells increase by 1, and so does the genus value, again there is no change in 

the formula. Finally make an edge and kill a loop, the operator M E K L there is an 

increase in the number of edges, no increase in the number of faces, the number of loops 

get decremented by 1; no increases in the number of shells nor the genus; once again 

there is no change in the Euler-Poincare formula. This operator has a specific purpose. 

Recall our discussion from the previous lecture on internal loops. 
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And recall how we introduced auxiliary edges, to merge the internal loops with the 

external one. This was the first auxiliary edge and this was the second auxiliary edge. So 

remember what we are trying to do here, We are trying to construct in edge, or make an 

edge and in the process kill this internal loop; once again, we are trying to make an edge, 

or construct an edge and in the process we trying to kill this internal loop. 
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The operator M E K L is specifically designed for auxiliary edges. Now kill group of 

Euler operators. The first is K E V that is kill an edge and a vertex; the number of 



vertices would decrease by 1 and the number of edges would decrease by 1. 

Correspondingly there is no change in the formula. The second kill a face and an edge K 

F E no change in the number of vertices, the number of edges decrease by 1, the number 

of faces decrease by 1 and so does the number of loops; no change in the number of 

shells nor the number of genus. And therefore there is no change in the Euler-Poincare 

formula. 

The third one K S F V kill a shell, a face and a vertex. The number of vertices decrease 

by 1, the number of faces decrease by 1; and so does the number of loops, the number of 

shells decrease by 1; no change in the Euler-Poincare formula. The fourth kill a shell and 

a genus; the number of shells decrease by 1, and so does the number of genus or the 

number of handles; no change in the Euler-Poincare formula. Finally, we have K E M L 

which stands for kill an edge and make a loop. The number of edges go down by 1, the 

number of loops increase by 1, and there is no change in the Euler-Poincare formula. 

If you think about it, the make group and the kill group of Euler operators are designed 

such that the Euler-Poincare formula is always satisfied. What would that mean? 

Theoretically this would mean, that if one would start with a polyhedron and start 

constructing or start using these operators; namely, the make group operators and the kill 

group operators. One would assume that all intermediate results would be valid solids.  
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In general this may not be true, but still one would have that impression, that all results 

are valid solids. Eventually, when the final polyhedron is constructed it would be ensured 

that it is a valid solid. Let us try now to construct a cube using Euler operators. The first 

step make a shell, face and a vertex; these are the respective increments in the number of 

vertices, edges, faces, loops, shells and genus. What we have a done is, we have 

hypothetically constructed a shell we still have to find it with the inclosing faces. But for 

now, let us assume that this is a hypothetical shell and we have introduced a face at the 

bottom and a vertex writes here. The next step make an edge and a vertex; this would 

increase the number of edges and vertices. 

Correspondingly the construction is shown here; this edge and this vertex get newly 

introduced. Try to appreciate the intermediate results, at this time none of them would be 

valid solids, but still the Euler-Poincare formula will be satisfied. The third step, once 

again make an edge and a vertex, the number of vertices and edges increase by 1 each, 

this is the new edge and a new vertex introduced. Next step make an edge and a vertex 

again; the next step make an edge and make a vertex, once again make an edge and make 

a vertex. Once again now make a face and an edge, the number of edges increase by 1, 

the number of faces and the number of loops they both increase by 1.  

We have introduced the top face and the right most edge on the top face, make an edge 

and a vertex, introducing a vertex and an edge at the right most corner of the cube; make 

a face and an edge, a new face and a new edge gets introduced here. Make a face and an 

edge again, this is back face right here that gets introduced. Make a face and an edge 

again, it is this face now that is getting introduced make face and an edge, it is a face 

closes to you getting introduced. And finally, make an edge a vertex. If you look at this 

polyhedral model closely, what remains is construct this edge and this vertex. We have 

just about finished the construction of a cube using Euler operators. 
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The next technique is called the constructive solid geometry CSG for short. It is based on 

this (( )), that solids can be generated by combining primitives using Boolean or set 

operations. We are seen those operations before, I refer to addition, subtraction, union 

and intersection like set operation here. Primitives can be block, cone, cylinder, sphere, a 

triangular prism of which a torus and many others. Primitives can also be user-defined 

solids that one can design and store in library of a solid modular.  
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These are some examples of basic or analytical primitives. We see a cone, a block, a 

sphere, a edge, a cylinder and there could be others. Let us talk about constructive solid 

geometry operations. Step 1: primitives are first instantiated which means copied and 

then transformed and then combined to form more complex solids. Instantiation involves 

making available a copy of the primitive from the database; I will explain this step you 

later. Transformation is required to scale or position a primitive with respect to a few 

others which are their available in front of your screen.  
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The primitive may then be joined with, cut from or intersected with an existing solid to 

get the desired features. These are the set operations. Let us see the example of how to 

construct a bracket using constructive solid geometry. If you think about it and l bracket 

can be thought of a union of two blocks; appropriately positioned with respect to each 

other. Let us take the block as a primitive; let us assume that this primitive is available 

with database. I first copied on to the workspace which is the process instantiation; I 

perform scaling to get block 1, and then I perform transformation to appropriately face it 

in the workspace. 

I make another copy of the block available to me in the workspace. In other words I 

insatiate this block again, I scale it appropriately to the dimensions of block 2 which is 

seen in the top figure. I transform it to place it properly with respect to block 1 and then I 

perform Boolean join; which is a union of two blocks to get the l bracket. How would 

this operation be seen by a solid modular or how would this operation be simulated by a 

solid model, let us try to understand that. 

(Refer Slide Time: 18:46) 

 

The block primitives above may be treated as objects named block 1 and block 2. They 

may be identified respectively by three dimensions; the length, the width, and the height 

of the blocks. The copies of the initially standard sizes can be at the global origin. One 

may scale the three dimensions of a block by factors say x, y and z using say the scale 



command. Look at the representations in the red; it says, scale block 1 by factors x 1, y 1 

and z 1, this is the scaling operation. 

One may translate the block, so that the reference point would be shifted by say, 

coordinates a, b and c with respect to the global origin. This command is represented by 

translate scale block 1 with factors x, y, z and translate by coordinates a 1, b 1 and c 1. 

Similar operations for block 2 will be to translate within parenthesis scale block 2 by 

factors x 2, y 2 and z 2; and translate by coordinates a 2, b 2 and c 2. The two blocks 

would be united using the Boolean union or join command. This is how the entire 

operation would look like in text. We can represent the same operation graphically using 

the history tree. 
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Like a set C S G operations can represented as a tree graphically. Let us take a look at a 

slightly different example. This is an l bracket with two true holes. We will start with 

block 1, we will transform it we will take cylinder one, we will transform it and we will 

perform a subtraction operation. So if we imagine that this is block 1, and this is cylinder 

1. What we have done here? Is we have first made a copy available of block 1, in the 

workspace transformed it appropriately. And then we have introduced a copy of cylinder 

1, in the workspace transformed it appropriately; and then we have subtracted the 

cylindrical feature form this block. 



We can do something very similar for the second block and second cylinder; that is we 

take block 2 transform it, we take cylinder 2 transform it and cut the cylinder from the 

block. Doing so would give me a block with a cylindrical hole here. And then I can 

perform Boolean join operation to join this block with this block. 
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We have seen two kinds of Boolean operations already; namely, the subtraction and the 

Boolean join. Let us talk about some more operations in detail. Two sets or solids A and 

B; if we have two solids A and B; their union which is represented by A union B, 

consists of all points belonging to the two solids. Their intersection represented by A 

intersection B would consist of points which are common to both A and B. Their 

difference A minus B would consists of points in A, but not in B. 

Similarly, the difference B minus A would consist of points only in B and not in A. Try 

to appreciate the difference between the intersection operation and the subtraction 

operation. I emphasis again that intersection operation would give us points, which are 

common to both solids; participating in Boolean operations. Whereas in the subtraction 

operation for example, A minus B it will give us solid with points only in the primitive 

A, but not in the primitive B. 



(Refer Slide Time: 24:42) 

 

Let us take a few examples on Boolean operations, for a simple ones. Let us say a sphere 

and a cube are interacting with each other; why different operations, why different set 

operations are Boolean operations. Imagine there are transformed this sphere to lie over 

the top face of the cube. In such a way, that the center of the sphere rests on the top face 

of the cube. The union of the two primitives will look like this. 
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The intersection would look something like this; I have rotated the view here, to show 

the result better. The result cube minus sphere will look something like this; and the 



other way round that is sphere minus cube will look some like this. So this is very simple 

example that stimulates interaction between two very basic primitives this sphere and the 

cube; can result in different solids, if different set operations of a formed with them. Let 

us now, talk about regularized Boolean operations. I will tell you a little later why the 

Boolean operations cannot be applied in the row form the way we discussed in the 

previous slide. 

Recall that the interior I V of a solid includes all points in the solid and not those on its 

boundary. A point Q is exterior to the solid if there exists an open ball of radius r 

centered at Q such that; the ball does not intersect with the solid. A set of all exterior 

points is termed as the exterior of the solid represented as E of V; where V would be a 

set of all points belonging to the solid. This is a definition that we have seen in one of the 

previous lectures. 
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Points that neither belongs to the interior or exterior constitute the boundary b V of the 

solid. The closure of a solid C V is defined as the union of its interior and the boundary. 

That is, C V equals i V union b V or I V plus b V. Note that in general union an addition 

operations might give us different results, but in our case the sets i V and b V are 

disjoint. They would not have any element common between them, for which reason the 

union of the interior of the solid and the boundary of the solid or the addition of the 



interior and the boundary of the solid would give the same result. Alternatively the 

closure of a solid is the complement slash E V of its exterior. 
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Here is where I will explain why row Boolean operations may not be used. There certain 

draw backs of the Boolean operations. Let us take this example, we have a cube and we 

have a cylinder; we have positioned this cylinder, in such a way that one of its faces rests 

on one of the faces of the cube. Say the cube is solid A and the cylinder is solid B. If we 



perform the intersection operation between the two will be left with a desk and this is a 

lower dimensional result. It is two-dimensional results and it does not represent a valid 

solid, this desk has no thickness. So a row intersection operation for example, in this case 

can lead to lower dimensional results. That is why we need to regularize Boolean 

operation. This is how we do it. 

To eliminate lower dimensional solids, which are not solids at all. We compute the result 

as usual, that is we compute the result as if we are performing a row Boolean operation. 

And then we compute the interior of that result. We compute the closure of the result in 

step b for example; a regularized union will look some like this. We have two solids A 

and B, we perform the union like a row union, we compute the interior of this result and 

then we perform closers operation, which would be the union of the interior of A union B 

and the boundary of A union B. 

Likewise a regularized intersection operation will look some like this; we perform row 

intersection between the two solids, we compute the interior of this result and then we 

perform the closer operation. Here we perform the union between the interior of A and B 

and the boundary of A intersection B. A regularized difference can be thought of in a 

similar manner, compute the difference as usual in the row form A minus B compute the 

interior of A minus B and then perform the closer operation. 
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Using the cube and the cylinder example. Let us try to understand now, how would 

regularization help. Recall that we had computed the intersection between the cube A 

and this cylinder B, to get a low dimensional result which was a desk. Let us take into 

perspective regularized intersection. 

We compute the intersection of A and B in the row form to get a desk and if we now 

compute the interior of the desk, we will find that the result will be a null set and the 

closer of a null set would again be a null set. In the sense therefore, while row 

intersection gives me a low dimensional result; which is a desk a regularized intersection 

of the cube and a cylinder, post relative to each other in this manner will give me a null 

set which is what is exceptive. Let us now see an example with constructive solid 

geometry, with reference to the history tree which shown in the figure here. 
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We trying to construct a bolt; each of these Nodes here, represents the thread, revolved 

by 360 degrees and it has a pitch value p. These threads can be joined together these 

joins are represented by these nodes here to give us more threads. So, more of these 

threads can be joined together, to give the threaded structure which is now hollow from 

within. This Node here represents a cylindrical primitive, which is the sunk of the bolt. 

This Node here represents the hexagonal head of the bolt; they can be joined together to 

get this intermediate result. And these two results can be joined together, to give me a 



hexagonal bolt. In a similar manner one can think of constructing very complex solids, 

very complex features. 
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For example, this robo-sloth, which was designed by a few of my B-Tech students in 

their final year project. These students analyzed this design in the soft form thoroughly 

before manufacturing. After verifying the model of a robo-sloth in soft form we 

prototyped and tested it. This is how the robot works, the robot is designed to scale a thin 

rope, it has two grippers at the end. One of the grippers would relies itself and move back 

and forth on the rope while the other grippers were ensured that one end of the robot is 

stationary; just like a natural sloth.  

This is where the robot is scaling a vertical rope. The point I emphasize here is that it is 

always better to evaluate any design in soft form and ensure almost a 100 percent that the 

design is going to work before one can think of a prototyping here. And this is where 

solid modeling comes in very handy. The robot is not trying to get down. There are other 

techniques that different solid models tend to use to generate primitives. There 

essentially, categorized or classified as sweep operations. 
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One can come up with a cross section something like this, with outer and may be a few 

in a loops and one can think of extruding this entire cross section in the third dimension 

to get primitive like this; this is called the linear sweep operation. Alternatively one can 

sweep a cross section in this case for example, two circles here along non-linear path in 

the third dimension; this is how the solid looks like; this is called the non-linear sweep 

operation. Both linear and non-linear sweep are categorized into translational sweep 

operations. They are translational sweep solids. 

Likewise, one can think a rotational sweep as well. For example, one can come up with 

any cross section in particular this is a cross section obtained by a closed spline curve or 

a free from curve and one can revolve it about an axis in this case vertical to get this 

solid; this is the rotational sweep operation. 


