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Good morning. We have been discussing different models of surface patches. Just a little  

recap on what we did last time. 
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We studied Ferguson’s patch in quite some detail. So, the mathematical expression for 

the patch is r of u and v is given as the row matrix phi 0 phi 1 phi 2 and phi 3; all 

functions of parameter u times the geometric matrix, I will come to that little later, times 

the column vector phi 0 phi 1 phi 2 and phi 3; all functions of parameter v. These phi’s 

happen to be cubic Hermite polynomials as you would know from Ferguson curves, this 

geometric matrix here, we can think of sub dividing this into four parts, draw a vertical 

line here and draw a horizontal line here. This part here contains the point information 

evaluated at u equals 0 v equals 0, u equals 0 v equals 1, u equals 1 v equals 0, and u and 

v both equal to 1. This region here comprises information pertaining to this slopes along 

the v direction are sub v which is also partial r over partial v, again evaluated in the same 

order as these four numbers. 

The bottom left region comprises of the slope information along the u direction r sub u or 

partial r over partial u evaluated as 00, 01, 10, and 11. Finally, the bottom right portion 



here comprises of twist vectors given by the mixed derivative, the mixed second 

derivative of r with respect to parameters u and v. We had mentioned last time that as a 

designer it is not very straight forward for us to provide higher order information. For 

example, slopes along the respective parameter directions and with respects. That is one 

prime motivation as to why we would want to consider surface patch models that involve 

specifying only get a points. 
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. 

Nevertheless, we looked at 2 examples last time, one corresponding to this geometry 

matrix where the twist vectors were specified 0 and the slopes along the v parameter 

direction and the slopes along the u parameter direction were specified arbitraries. This is 

the result that we got for this geometric matrix and if we specified the twist vectors to be 

non-zero and arbitrary, for example, through this geometric matrix we got a significantly 

different result. The point that I am making here is that it is not in curative for us to 

predict shape changes if we specify the slope and the twist vector information in 

different ways. 
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Today we are going to be looking at tensor product surfaces that use data point 

specification. This is lecture number 37 on Tensor product surface patches. 
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The first model is 16 point form surface patch. Mathematically the model is expressed as 

r as a function of parameter u and v is equal to summation index j going from 0 to 3, 

again summation index i now going from 0 to 3 times d sub i j times u raised to i times v 

raised to j. In matrix form, this can be written as a row matrix comprising u cube, u 

square, u, and 1, a geometric matrix where co-efficients D 33 D 32 D 31 D 30 as the first 



row; D 23 D 22 D 21 D 20 the second row; D 13 D 12 D 11 and D 10 for the third row, 

and finally, in the last row D 03 D 02 D 01 and D 00. This is to be post multiplied by the 

column vectors comprising different degrees in v; v cube, v square, v 1, and 1. It is this 

geometric matrix that we need to determine. We will see in a while, how. 

Let me emphasize the parameter values u and v both range between 0 and 1. To be able 

to determine what the D ij can be, let us sub divide each interval 0,1 as 0, 1 over 3, 2 

over 3, and 1 and try to sample data points at these parameter values. So, the idea is that 

we have four values for parameter u: 0, 1 by 3, 2 by 3, and 1, and likewise we have four 

identical values for parameter v. 
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Correspondingly, we will be having 16 sample points that we would need to use to 

determine the unknown coefficient matrix. Geometrically, this is how the sampling data 

would look like. We will require point information pertaining to r 00, r 1 over 30, r 2 

over 30, r 10 for values of v as 0 and for different values of u along this curve and then r 

0 1 over 3, r 1 over 3 1 over 3, r 2 over 3 1 over 3 and r 1 1 over 3. The 9th data point or 

sample point will be r 0 2 over 3, r 1 over 3, 2 over 3, r 2 over 3, 2 over 3, and r 1 2 over 

3. The final four points will be sampled at values of u as 0, 1 over 3, 2 over 3, and 1, and 

the values of v at 1 1 1 and 1. So, you can notice these are 16 sample points on the 

surface patch that we will be using to determine the unknown coefficient matrix D ij. 
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So, this the same patch with the notations removed. So, if you notice here, this matrix is 

the sample point matrix we will be using determine D ij. r 33 is r 11, r 32 is r 1, 2 over 3; 

r 31 is r 1, 1 over 3; r 30 is r 1, 0. Correspondingly, r 23, r 22, r 21, and r 20 are sample 

points for values of u as 2 over 3 and values of v as 1, 2 over 3, 1 over 3, and 0. r 13 r 12 

r 11 and r 10, again are values for u equals 1 over 3 and for v going from 1 to 0 

uniformly in four steps. Let us assume that we know the geometric information 

encapsulated within this matrix. 
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So, essentially, we know the 16 sample points. On this 16 points form surface patch, this 

would be equal to this 4 by 4 matrix here with elements 1, 1, 1, 1, 8 over 27, 4 over 9, 2 

over 3, 1, 1 over 27, 1 over 9, 1 over 3, and 1 and 0, 0, 0, 1. Now, if you notice, each row 

from left to right would correspond to powers of u cube, u square, u, and 1. The first row 

corresponds to u equal to 1; the second row corresponds to u equals 2 over 3; the third 

row is for u equals 1 over 3 and fourth row is for u equals 0, and then we will have this 4 

by 4 unknown coefficient matrix.  

And again, we will have a 4 by 4 matrix corresponding to different powers of the second 

parameter v arranged column wise. The first column here corresponds to 1, second 

column here corresponds to v equals 2 over 3, the third column corresponds to v equals 1 

over 3, and the fourth column is for v equals 0. The first row relates to v cube, the second 

row corresponds to v squared, the third row is for v raised to 1, and the fourth row is 

simply 1. 

So, what is this situation now? We have this geometric sampling information on the left 

hand side. We know what this matrix is; we know what this matrix is. All we need to do 

is we need to pre multiply this matrix on the left hand side by the inverse of this matrix 

here and we need to post multiply the result here by the inverse of this matrix to get the 

unknown D ijs. 
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Let us continue. So, the unknown coefficient matrix D ij will be given as M 16, I will tell 

you what this is in a while, times the sampling geometric matrix times M 16 transpose. 

What is M 16? M 16 is given by the inverse of the 4 by 4 matrix 1, 1, 1, 1, 8 over 27, 4 

over 9, 2 over 3 1, 1 over 27, 1 over 9, 1 over 3, 1, and 0, 0, 0, 1. One thing that you 

would want to realize and this is interesting is that I am using transpose of M 16 here. 

Why is that? 
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Let us go back and try to investigate these 2 matrixes M 16 is the inverse of 1 these 

matrixes and if you look at this matrix here, this is nothing but the transpose of this 

matrices. One reason why we use the transpose of M 16 nevertheless with this sampling 

information available to us, we can identify the unknown coefficient matrix D ij and 

once we have that, we have the mathematical expression for the 16 point form surface 

patch. The discussion about this type of tensor product surface is kind of academic. I am 

not quite for sure if the CAD industry uses this model often; rather, industry uses Bezier 

surface patches and Bernstein surface patches more commonly. 
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So, finally, the 16 point form patch looks like r as function of u and v equals u cube, u 

squared, u 1 row matrix times M 16 times the sampling information that we provide to 

determine the unknown D ij’s times M 16 transpose times the column vector v cube, v 

squared, v, and 1. 

Let us move on now to more commonly used patch models; the first one of those is the 

Bezier surface patch; ten marks for guessing this; how would the mathematical form of a 

Bezier patch look like? So, think about it. It would be using Bernstein polynomials, 

Bernstein polynomials, as function of u and v independently. So, the patch as a function 

of u and v will be given by summation index i going from 0 to m, index j going from 0 to 

n, is at 2 different degrees along u and v respectively times r sub ij. 

This is where the designer comes in picture. He would specify the x, y, and z coordinates 

of each designed points r sub i j times the Bernstein polynomial with index j and degree 

n as a function of v, and another set of Bernstein polynomials B with index i and degree 

m in parameter u. So, if the designer specifies a bunch of design points or control points, 

the patch is readily available. We do not need to go through computations that we saw in 

the previous patch model, the 16 points form surface patch.  

As I said r sub ij where index i goes from 0 to m and j goes from 0 to n are the control 

points are the designed points v im and b jm are Bernstein polynomials in u and v. In 

compact matrix form r of u and v is given as the row vector with u raised to m, m times u 

raised to m minus 1 times 1 minus u and so on with the last term as 1 minus u raised to m 

times the geometric matrix the first row being r 00, r 01 until r 0 n minus 1 r 0 n, r 1 0, r 

1 1. The last but one term in the second row will be r 1 n minus 1 and the last term will 

be r 1 end and so on until we consider the last but one row with entries r m minus 1 0, r 

m minus 1 1 r m minus 1 n minus 1 r m minus 1 n.  

The entries in the last row will be r m 0 r m 1 the last but one entry in this row is r m n 

minus 1 and the eventual entry is r m n, and of course we will have the corresponding 

column vector where we place Bernstein polynomial in v. Now, could you guess what 

the properties of the Bezier surface patch would be like? While discussing Bezier 

segments, we had extensively studied the properties of both Bernstein polynomials as 

well as Bezier curves. If you think about it, all those properties will be inherited by the 

Bezier surface patch models. 
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Let us take an example of a Bicubic Bezier surface patch. Here, you will have degrees 3 

in both u and v. So, the mathematical expression is given by r of u and v equals the row 

vector u cube 3 u square times 1 minus u, 3 u times 1 minus u square 1 minus u cube. 

The geometric matrix that will be now given by 16 designed points arranged nicely along 

the parameter directions u and v and we will have Bernstein polynomials of degree 3 as a 

function of v arranged in a column form. Here, you can do a bit of algebra. 

You can replace this row vector by u cube, u square, u and 1, times the Bezier coefficient 

matrix if you remember with entries minus 1, 3, minus 3, 1, 3, minus six, 3, 0, minus 3, 

3, 0, 0 and in the last row 1, 0, 0, 0, times the geometric matrix times the transpose of 

this Bezier coefficient matrix times the column vector v cube v square v and 1. This is 

equal to u cube u square u 1 arranged row wise arranged m sub b times the geometric 

matrix m times sub b transpose times v cube v square v and 1 in column matrix. M b as I 

mentioned earlier is this 4 by 4 matrix here. 
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Bicubic Bezier surface patches control polynet or control net: This is how your polynet 

on net will look like. So, the user will be specifying 16 data points as the corresponding 

bicubic Bezier patch will be observed like this with these four as bounding curves. This 

could be boring, but let me go through the nomenclature of these design points again. 

Because as a designer, the order in which these design points are specified can be 

important. So, the first point is r 00, r 01, r 02, r 03. So, this curve here corresponds to 

the u value equals 0 and the v value progressing from 0 to 1. This point here is r 10, r 11, 

r 12, and r 13. This is r 20, r 21, r 22, r 23 and finally, r 30, r 31, r 32 and r 33. 

Let us now pop up the mathematical expression for the Bezier surface patch model. 

Here, m equals 3 and n equals 3, and whatever we have learnt from our previous 

discussion on Bezier segments let us try to use them to understand how we can predict 

the shape of a Bezier surface patch via the shape of the corresponding control polynet. 

Take a look at this control polyline r 00, r 10, r 20, r 30. This will correspond to the 

parameter value v equals 0. So, these are the four bounding curves. This curve here is for 

v equals 0. Now what do you have to say about the shape of this curve? Well, think 

about the partition of unity property of Bernstein polynomial that gives rise to the 

convicts called attribute. What do I mean? Well, this curve is going to be lined within the 

convicts all given by these four design points. Also, the shape of this curve will be 

loosely predicted by the shape of this control polynet. 



Let us take look at another bounding curve; this one for example, this curve corresponds 

to the value of v equals 1. We have the control polyline given by r 03, r 13, r 23, and r 

33. Once again this curve will lie within the convex hall given by these four design 

points and the shape of this bounding curve will be predicted not strongly, but loosely by 

the shape of this poly line. 

What do you have to say about the nature? Let me be a little precise about the 

mathematical nature of these 2 curves and this corresponds to v equals 0; this 

corresponds to v equals 1. Would you agree with me that these are 2 cubic Bezier 

segments? Think about it. Likewise, how about these 2 bounding curves? This one here 

corresponds to u equals 0 and for different values of v in between 0 and 1. 

Correspondingly, we have this control polyline.  

Because of the partition of unity property or the convexual property, this curve will lie 

within convex hall of these four points and the shape will we predicted by the shape of 

this poly line and the same is true for this bounding curve here, for u equals 1 and v 

ranging from 0 to 1; in fact, all of these four bounding curves of Bezier segments each of 

degree 3. How about the shape of the surface patch overall? Let us look at this 

expression here. So, the product b sub i m of u and b sub j n of v acts as the weight 

corresponding to the design point r i j. Would you think these weights will also be 

barycentric in nature? 
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So, this is the expression for the tensor product surface involving Bernstein polynomials 

r of u v is equal to summation i going to from 0 to m summation j going from 0 to n; the 

design points r i j times the Bernstein polymonial with index i and degree m in u and the 

Bernstein polymonial with index j and degree n in b. we need to show whether this 

product is barycentric on another. So, first realise that B i m u is equal or greater than 0 

and also B j n v is equal or greater than 0, for values of u in between 0 and 1 and for 

value of v in between 0 and 1. Clearly, their product B i m u times B j n v will be greater 

than equal to 0. This is for u and v both belonging to the interval 0 1. Next, to show that 

this product is barycentric, we need to show that summation i going from 0 to m 

summation j going from 0 to n B i m u B j n v equals 1. 
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We show this now. So, we have 1 minus u plus u raised to m equals 1. Also, we have 1 

minus v plus v raised to n equals 1. We multiply both these equations together to get 1 

minus u plus u raised to m times 1 minus v plus v raised to n equals 1. From our 

discussion on Bezier segments, we know what this binomial expansion is. So, for the 

first case we have B 0 m u plus B 1 m u up to B m m u times B 0 n v plus B 1 n v up to B 

n n v equals 1. You would have realised that the Bernstein polynomials form individual 

terms in this binomial expansion and B j n of v all of this terms over here are individual 

terms appearing from this binomial expansion. 



We can write these equations in short form: Summation i going from 0 to m B i m u 

times summations j going from 0 to n B j n v equals 1. I can bring this summation here 

and I can get summation i going from 0 to m summation j going from 0 to n B i m u B j n 

v equals 1. Let us block this is result and let us block this result here. These results when 

combined together make the product of 2 Bernstein polynomials barycentric since the 

bicubic Bezier patch or any Bezier patch for that matter is derived from the 

corresponding Bezier curve models by use of Bernstein polynomials. 
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All the associated properties get inherited. From the design view point, that means that 

this patch will be lying within the convex hall defined by this control net; also the shape, 

the overall shape of this patch will be controlled loosely by the shape of the net; in a 

sense, if I move for example, r 12 to a different location, the corresponding portion on 

the patch will get changed in shape accordingly, however the shape change will be 

global. 

That is the change which will possess in the entire patch as opposed to global. As you 

know Bernstein polynomials are barycentric; that is not local property as you had seen in 

place of Bezier function; rather, if we use these lines in Bezier function over here, in 

place of Bernstein polynomials, and will be studying these models later. The 

corresponding shape changes will be global. 
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Another example we can say fuse these points together to get a triangular patch. Why 

because since this bounding curve lies within the convex hall of this polyline, using these 

points together, we will make this curve become a point. And as a consequence, we will 

not have four bounding segments, but rather 3 of them. 
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Let us take a look at a few examples: First one, the control points for a quadratic cubic 

Bezier patch are given by 0 0 0, 1 0 1, 3 0 1, 5 0 0, 0 2 0, 1 3 1, 5 1 1, 6 1 0, 0 5 0, 1 4 2, 

9 2 3, 8 2 0. 



Here, m equals 2 and n equals 3. Corresponding to u, we have Bernstein polynomial of 

degree 2 and corresponding to parameter v, will have the same in degree 3. We can do 

the map and get the x y and z coordinates in terms of u and v. To get the x coordinates 

we use the first set of values; for the y coordinates we use the second set of values and to 

get zee scale (( )), we use third set of these values. 
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Let us try to figure how the surface patch looks like. For this geometric matrix, this is 

how the patch appears and this is the control polynet block. The patch is shown with 3 



different view directions. This is the top view. If you recall our discussions on 

transformations from here to here to here, we are essentially performing a few of them. If 

you change the control point r 10, 5 2 10 a different surface patch will result; that is as 

shown here again via 3 different views. 

The second example: Now, this is for a bicubic Bezier patch. The control points are 

given as 0 0 0, 1 0 1 - this is r 1 0; 2 0 1 r 2 0, 3 0 0, 0 1 1, 1 1 2, 2 1 2, 3 1 1 this is for r 

3, 1 0 2, 1 1 2, , 2 2 2 and 3 2 1, and finally, r 0 3 is 0 3 0, r 1 3 is 1 3 1, r 2 3 is 2 3 1, r 3 

3 is 3 3 0. With this geometric information, the patch looks something like this. 
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The contol ploynet or control net is shown using lines in black. If we change r 1 1 to let 

us say 2 3 2 and if we also change r 21 to let us say 4 7 4, we will witness a shape change 

in the patch and that change, as I mentioned earlier, will be global. Or to get a triangular 

bicubic Bezier patch, we will have to collapse the data points or the design points for any 

bounding or boundary curve to create a triangular patch. So, this is the information that 

we had from the previous example, that if r 0 0, r 1 0, r 2 0 and r 3 0 are all collapsed to a 

point 1 0 0, this is the triangular patch that we will get. These are 2 different views and 

you can clearly observe that we have now 3 as opposed to four bounding curves. 
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Finally, we come to B-spline surface patches. The mathematical expression is given by r 

of u and v is equal to summation i going from 0 to m, j going from 0 to n of r i j times N 

p , p plus i as a function of u times n q q plus j as function of v. What have we done 

here? We have simply replaced the Bernstein polynomials in Bezier surface patch with 

the corresponding B-spline basis functions. Corresponding to the indeces i N p N p plus i 

are basis functions of order p and corresponding to indeces j n q q plus j are basis 

functions of order q. In general, p may not be equal to q. The 2 orders along the 

parametric directions u and v can be different. Like in case of Bezier surface patches, we 

can also argue that this product is now locally barycentric; I emphasize, locally 

Barycentric. 

What do I mean? Each of these individual terms N p p plus i of u is equal to or greater 

than 0; likewise n q q plus j of u is equal to or greater than 0; correspondingly this 

product will either be 0 or past 0. Further from our discussion on B-spline basis functions 

and segments, we know that p of these order p basis splines sum to 1 that is N p i plus 1 

of u plus N p i plus 2 of u upto N p i plus p of u is equal to 1 for values of u belonging to 

the interval u i u i plus 1. These are the knots in the parametric value u. Likewise, few of 

these order q basis spile functions will also sum to 1; that is N q j plus 1 of v plus N q j 

plus 2 of v upto N q j plus q of v is equal to 1 for values of v in between v j and v j plus 

1. Again these are the knots in the parametric value v. 



Like we showed in case of Bernstein polynomials, we can also observe that the product 

of these B- spline basis functions will sum to 1 in some region and this is the property 

that provides local shape control to B-spline surface patch. If you understand our 

discussion on B-spline basis functions, you will not have much difficulty comprehending 

this property. You would also observe that strong convex hall properties are inherited by 

B-spline surface patches.  

For some region r which is a product of these 2 intervals u i u i plus 1 v j v j plus 1 all we 

need to do is we need to alter or relocate the control points r i minus p plus 1 r i minus p 

plus 2 up to r i or r j minus q plus 1 r j minus q plus 2 up to r j to observe or witness local 

shape changes. Let this be an exercise for you to figure how many knots will be needed 

corresponding to parameter u and those corresponding to parameter v. Although I will 

not discuss B-spline surface patches further, you are free to explore these models in 

detail all by yourself. 

 . 

 


