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Good morning and welcome back again. Let us graduate now from curve modeling and 

move on to the third column of our layout, and start with discussions on surface patches. 



Before I do that let me put things in perspective. So, we have this typical solid here, and 

we have based our course on the extended Jordon curve theorem, which says that a 

simple close and orientable surface bounds a solid.  
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You can divide this bounding surface into a set of patches, each of which will have curve 

boundaries. Each of the curve would have its respective end points. We have devoted a 

lot of time on solid modeling and different methods on curve modeling. A quick recap in 

solid modeling, we discussed topology, we discussed three different methods of solid 

modeling namely the wireframe approach, the b-rep or the boundary representation 

method and constructive solid geometry. In curve modeling we discussed primarily three 

models, those are the Ferguson curves or segments Bezier segments or curves and more 

importantly B-spline models. We devoted quite a bit of time on B-spline segments. It is 

time for us to move on to surface patch model. This is lecture number 33, we start with 

differential geometry of surfaces. 

 

Before we start what would be our objectives? We know that a solid can be modeled by a 

simple closed and orientable bounding surface. The closed surface is a result of different 

non-self intersecting patches, knit at their common boundaries. Like for junction points 

of curve segments, we need to address the continuity conditions at common junction 

curves of different patches. What do I mean here?  
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Well let us take a look at this solid, each of these are surface patches and these are 

curves, which are common between different surface patches. For example, this curve or 

this segment here is common between these two patches. We need to worry about the 

continuity between these two patches around this curve. By around I mean both along 

like so and a cross like so. For that we need to study different differential properties of 

surface patches. We will start with some of them today. 

 

(Refer Slide Time: 04:22) 

 
 



Let us first try to understand, how we can mathematically represent a surface patch? If 

you recall, we have been working with parametric equations. A curve segment as you 

would know is represented using a single parameter, but a surface patch needs to be 

represented using two parameters u and v. This is a typical surface patch, you can draw a 

set of curves on this patch. If you think about it, we will have four bounding curves along 

two curves. One can think of using parameter u and along the two other curves. This one 

and this one, one can think of using the parameter v.  

 

So, if we take a look at this curve, we can think of parameter u as being constant. 

Likewise along this curve parameter v is constant, this point here is an intersection 

between these two segments and represented as r of u subzero v subzero. So, along this 

curve u is say u subzero and along this curve v is let us say v subzero. You can think of 

constructing tangents, along these curves at this point along this curve. Let us say we 

have this tangent represented by r sub v because it is along the v direction.  
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Likewise we can have a tangent along this curve at this point represented by r sub u, 

which is along the u direction. The parametric equation of the surface patch can be 

written as r as a function of u and v, which is this scalar free x function of u and v i plus 

scale of v y of u and v times j plus the third scale of v z in terms of u and v times k. 

These are unit vectors along three mutually orthogonal Cartesian directions. So, this 

scale of u will represent the x coordinate of the point on the patch, this would represent 



the y coordinate and this would represent the z coordinate. Let us take a look at some 

analytical surfaces. 

 

An x-y plane in its parametric representation in Cartesian form is r of u and v, which is 

equal to u times i plus v times j. In polar form a plane patch r u and v can be written as u 

times cosine of v times i plus u times sine of v times j. A sphere for example, another 

analytical surface can be expressed in terms of parameters u and v as r of u and v, and 

that is equal to a times cosine of u times cosine of v times i plus a times sine of u times 

cosine of v times j plus a times sine of v times k. Here a is another parameter, this is how 

a sphere looks, you know that. 
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As a third example, we have a catenoid, which can be constructed via a rotation of a 

catenary, which is given by y equals a hyperbolic cosine of x over a. The rotation is 

about its directrix, say the x-axis. This is how a catenoid would look like, whose 

equation in parametric form is given by r of u and v equals u times i plus a hyperbolic 

cosine of u over a times cosine of v times j plus a times hyperbolic cosine of u over a 

times sine v times k.  Likewise we can construct many other parametric forms of 

different surface patches, whether analytic or free point. Let us try to understand some 

concepts now pertaining to surface patches, simple sheet and an ordinary surface. 
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So what is a simple sheet? A simple sheet is continuous and obtained from a rectangle by 

stretching squeezing and bending, but without tearing or gluing. So, these are some 

topological operations that we had studied way back, while discussing solid modeling. A 

cylinder will not be a simple sheet, why is that so? Because we will have to correct to be 

able to get a rectangle.  

 

Likewise a sphere and a cone are not simple sheets because there are cutting operations 

involved a flat sheet with an annular hole is also not a simple sheet. If for all points p on 

the surface a portion of the surface containing p can be cut. If that portion is a simple 

surface, then the entire surface is termed as an ordinary surface. So, let us say we have 

this arbitrary surface here, it can have any shape. This surface is constituted by a set of 

points p, let me take any portion of the surface and cut it.  

 

So, this is the portion I have now and I realize that this portion is homeomorphic to a 

rectangle. In other words, I can perform any topologically cumbersome operations on the 

rectangle to get this shape. Since, this is homeomorphic to a rectangle; I would say this is 

a simple sheet. If I can perform this operation for any portion of such a surface, then I 

would say that this surface is an ordinary surface. Let us take a look at some singular 

points and regular points. 



(Refer Slide Time: 14:01) 

 
 

Let r sub u and r sub v be derivatives along u and v at the point r u subzero v subzero on 

the surface. So, we have this surface patch, we have the parametric directions identified u 

and v. We have curves corresponding to constant parameter u and constant parameter 

value v. These intersect at r u subzero v subzero and we have at this point tangents r sub 

u r sub v. 

 

So, this point r u 0 v 0 is a regular point. If these conditions are satisfied r sub u is given 

by partial r over partial u evaluated at u subzero v subzero r of v is given by partial of r 

over partial of v again evaluated at u subzero. The cross product between these two 

directions is not equal to 0. Once again, what we are saying is that point r u subzero v 

subzero will be a regular point, if these directions exist mathematically. That the cross 

product between these two tangents is not equal to 0, this is what I said just now.  

The slopes are sub u and r sub v should both exist at a regular point and that the cross 

product between these slopes should be not 0. A surface patch will be a regular surface 

patch, if all points on it are regular points one would get a singular point. If either of the 

three conditions does not hold, that is if either the cross product is 0 or any other slopes r 

u and r v are either undefined. They may not be unique or they may not exist or any of 

these directions is 0 or they are coincident. 
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If x sub u is given by partial x over partial u x here is a scalar field in parameters u and v 

giving the x coordinate of the parametric surface patch, if x v is defined as partial x over 

partial v. Likewise for the y coordinate or the patch, if y u is defined as partial y over 

partial u, if y v is defined as partial y over partial v. If z u as partial z over partial u and z 

v as partial z over partial v, then one can compute the cross product between the two 

tangents r sub u and r sub v.  

 

You would know that the cross product is given by the determinant of this 2 by 2 matrix. 

The first row contains the x, y and z direction unit vectors, the second row will contain x 

sub u, y sub u and z sub u. And the third row will have x sub v, y v and z v and for the 

cross product to be not 0. This is what the condition is one can compute the three 

Jacobians for this determinant. The first one is the determinant of this 2 by 2 sub matrix 

x u, y u, x v, y v represented by j sub one. The second Jacobian j 2 is y u, z u, y v, z v, 

the determinant of this 2 by 2 matrix, which is this one. Likewise the third Jacobian j 3 is 

given by the determinant of the 2 by 2 sub matrix defined by these columns z u, z v, x u 

and x v. So, for this cross product to be not 0 at least one of the jacobians j 1, j 2 or j 3 

should be non zero 
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Let us look at some examples where we see singular points. This is the first one, the 

patch is a self intersecting patch that looks like this. Try to identify the two parametric 

directions, I will possibly use the parametric direction u like this. Once again like this 

and the parametric direction v will be along this intersection line. Let us consider any of 

the points on this region here on this line, so at this point if you think about it, will have 

two directions pertaining to the tangents along the u direction.  

 

One will be given by this here r of u and the other will be given by this r of u. There 

would be a unique tangent along the v direction r of v. So, since the tangent along the u 

direction is not unique at this point, you would say that this point is a singular point this 

is not a regular point. The second example, it is a patch that looks like this. So, let us say 

this is a curve along the parameter u and the vertical curves would correspond to 

parameter v. What do you have to say about the points on this edge or along this edge?  

Something very similar, if you look at this point, you will have non-unique tangents 

along the u direction. So, you will have multiple directions pertaining to r sub u while 

you will have a unique direction pertaining to r sub v. Once again one of the tangents is 

non-unique in… Therefore, all the points on this edge are singular points.  

 

This one is a third example, if you look at this point here or maybe this point here, this is 

a singular point again because tangents are not uniquely defined all other points on this 

patch in this figure on this one, in this figure. Here are all regular points because the 



three conditions that we had seen before are satisfied. Let us look at the tangent plane 

and the normal vector. 
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Now, you have seen this figure before let us try to concentrate in this region. This is a 

point of intersection between two parametric curves u equals u 0 and v equals v 0. We 

have the tangents r u and r v defined this plane here, that contains the two tangent vectors 

is called the tangent plane. The unit normal small n or the normal capital N as a function 

of u and v is given by the cross product of these two vectors r sub u and r sub v. Both are 

functions of parameters u and v, of course the unit normal will be this cross product 

divided by its magnitude. At a regular point the normal to the surface is well defined. Let 

us see what happens for surface patches given in implicit form? 

 

In other words for equations f of x y and z equals 0. The normal direction is given by 

partial f over partial x times i plus partial f over partial y times j plus partial f over partial 

z times k. The unit normal small n is then capital N divided by its magnitude. You would 

want to ask or maybe you would know already as to why the normal for implicit surface 

patches is given in this form? Let me work out the answer for this question for you on 

board. 
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Say we have this implicit surface patch and the position vector of any point on this patch 

is given by r equals x u v i plus y u v j plus z u v k. That means the x y and z coordinates 

of this point are functions of parameters u and v. Let us differentiate this function with 

respect to u, we use the chain rule to get partial f over partial x partial x over partial u 

plus partial f over partial y partial y over partial u plus partial f over partial z partial z 

over partial u.  

 

This is equal to 0 differentiation of 0 with respect to u is 0. Likewise, let us differentiate 



this equation with respect to the second parameter v partial f over partial x partial x over 

partial v plus partial f over partial y partial y over partial v plus partial f over partial z 

partial z over partial v is also equal to 0. Now, let us try to express the two left hand sides 

in a slightly different form, as a dot product between two vectors.  
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So, these are equations a and b, so I can write equation a as partial f over partial x i plus 

partial f over partial y unit vector j plus partial f over partial z unit vector k dotted with 

partial x over partial u i plus partial y over partial u j plus partial z over partial u unit 

vector k, this is equal to 0. Likewise, equation b is partial f over partial x i plus partial f 

over partial y j plus partial f over partial z k dotted with partial x over partial v i plus 

partial y over partial v j plus partial z over partial v k.  

 

This is again equal to 0. Now, try to identify what this vector is? This is the tangent 

along the u direction. How about this one? This is the tangent along the v direction. So, 

what are these two equations conveying? They are conveying that this vector is 

orthogonal to r sub u the tangent along the u direction, because of this condition. The 

same vector is also orthogonal to the tangent along the v direction. Since, r u and r v 

constitute the tangent plane, this vector is orthogonal to the tangent plane.  

 

Therefore, it had to be normal to the surface at point r u v. So, this vector here aligns 

with the normal vector. The tangent plane is a plane, containing the tangent vectors r sub 



u function of u and v and r sub v, which is also a function of u and v at some point p for 

parameter values u subzero and v subzero in Cartesian coordinates. This point is 

expressed as x subzero y subzero and z subzero.  

 

Now, for a point as a matter of fact for any point q which is given by x y and z on the 

tangent plane. Let us say we have the free vector given by p q, which is equal to x minus 

x 0 times the unit vector i plus y minus y 0 times j plus z minus z 0 times k. So, for q to 

be lying on a tangent plane this vector on the tangent plane must be perpendicular or 

orthogonal to this normal vector. In other words PQ dotted with n must be equal to 0 and 

this would give us the equation of the tangent plane. 
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So, I have copied the previous condition here, if the normal is given by the cross product 

between two vectors identifying the tangent plane, namely r u and r v. If we can extract 

the unit normal from this information, then we have PQ dotted with r u crossed with r v, 

which is given by the determinant of this 3 by 3 matrix. Now, this here is a scalar triple 

product with elements x minus x 0 y minus y 0 z minus z 0. In the second row, we have 

partial derivative of x with respect to u y sub u z sub u partial derivative of x with respect 

to v same for y and the same for z and because of this condition it is equal to 0. 

 

As I said this would give us the equation of a tangent plane, in case our surface patch is 

expressed in the implicit form f of x y and z is equal to 0. Then we will have a slightly 



different equation, then our normal is given by the gradient of this function partial f over 

partial x times i plus partial f over partial y times j plus partial f over partial z times k. 

We know, how to compute the unit normal? For this case, the equation of the tangent 

plane will be given by the dot product between PQ. The gradient that is x minus x 0 

times partial f over partial x plus y minus y 0 times partial f over partial y plus z minus z 

0 times partial f over partial z equals 0. Let us work an example on the board for the case 

of a spherical patch. 
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So, the patch r as a function of the two parameters u and v is given by a cosine of u times 

cosine of v times i plus a sin of u cosine of v times j plus a sin of v times k. So, this is x u 

v, this is the scalar field y u v and this one here is z u v. Let us compute the tangent at 

any point. So, r u of u v the tangent along the u direction is partial r over partial u in 

order form this is given by x sub u y sub u and z sub u partial derivative of x with respect 

to u partial derivative of y with respect to u, and partial derivative of z with respect to u.  

So, x sub u is minus a sine u cos v y sub u is a cosine u cosine v z sub u. There is u 

dependence here. So, this is 0 likewise the tangent along the v direction is given by r sub 

v u v. This is partial r over partial v in order form this is x v, y v, z v. So, x of v equals 

minus a sine u sine of v y of v equals, this should be cosine of u y of v equals a sine u 

sine v with a negative sign and z of v equals a cosine v. So, let us compute these two 

tangents at a point on a sphere. Let us say for u equals 0 and v equals 0, what do we 

have? 
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So, r for 0, 0 equals a this would be 0 and this would be 0. This is a very simple example. 

Let us continue with it, so r sub u tangent along the u direction t 0. 0 will be this would 

be 0 y of u will be a and z of u will be 0. Likewise the tangent along the v direction 

equals x of v is 0, y of v will be again 0 and z of v will be a. Let us get some geometric 

perspective here. So, this would be the portion of the sphere here and at this point a 0 0 

that we are trying to compute.  
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The two tangents, the first tangent u here will be along the y direction 0. A 0 this is r u, 



the second tangent r of v will be along the z direction, r of v clearly the tangent plane 

will be the y z plane geometric. Say this is the tangent plane, let us have a point p here 

given by x y z. Let us say this is point O here, where we have define our two tangents. 

The coordinates of o are given by r 0 0.  

 

So, the equation of the free vector O P is given as x minus a i plus y minus 0 j plus z 

minus 0 k. I can compute the cross product between these two tangents r u and r v, so the 

normal n is r u crossed with r v. This is given by the determinant i j k 0 a a 0 components 

of r u and 0 0 a components of r v. This is i times a squared minus j times, this would be 

0 minus k times. This would be 0 again. So, this is equal to a squared times i. Since, OP 

is perpendicular to n, we have the condition OP dotted with n equals 0.  

 

This would imply that x minus a i dotted with a squared i is 0. This gives x minus a 

equals 0 or x minus a. Now, if you realize this is the y z plane intersecting the x axis at x 

equals a, which is what we expected. This is a very simple example, geometrically (( )) 

that allows us to see, how we can compute the equation of a tangent plane? You can 

expect many more complex examples in real life.  


