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Lecture - 32 

Good morning and welcome again, this is lecture number 32. Previously, we discussed a 

few aspects on implementation and coding for B spline curves.  
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We continue with that and today we talk about parameterization and knot vector 

generation. Let me now continue with the matlab code. If you recall last time I had 

mentioned that we would want to introduce a function that would help us generate a knot 

vector using different parameterization schemes. What I have done is, I have written this 

function, and today I will run you through different pieces of the code. The function is 

not underscore vector or underscore generation and it requires a few parameters, I will 

talk about them in a while. This variable e e, is the exponent that is used in various 

parameterizations schemes. For example, if I put e e as 0, I get uniform parameterization.  

If I put e e as 1, I get code length parameterization and for e e as half, I get centripetal 

parameterization. You can choose your own value for this exponent. For now, let me 

work with the code length parameterization. The exponent value I choose is 1 with 

regard to the parameters, that we would like to pass through this function. The first one 

pertains to the number of knots that we require. This one relates to the exponent used for 

different parameterizations schemes. Small p is the order of B spline basis functions and 

the curve capital P is a set of data points that we would need in this function, because we 

need to compute the code lengths of a polyline. These are two flags that relate to whether 

be desired to clamp the B spline curve at the first point and or at the last point. 
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Let us now see in detail, how this function looks like? As I said m relates to the number 

of knots in fact m is equal to the number of knots minus 1. e e is the exponent used, 



small p is the order of the B spline basis function of the curve, capital P is the array 

containing data points and f k and l k are two flags pertaining to whether we desired to 

clamped the B spline curve at the first point or at the last point? I should introduce l k 

here, let us first work towards the generation of n plus 1 parameter values.  
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We said the first parameter value as 0 and we run a followed next. For i going from 1 to 

the number of design points minus 1, u of i plus one equals u of i plus norm of two 

consecutive data points i plus 1 and i data point. This length is raised to the exponent, the 

value of which that we have specified before. This is straight forward, what we do is we 

now compute the overall length of a the polyline, by adding these lengths. We normalize 

the parameter values as u equal u over maximum value of u. 
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Now, we have to consider three cases. The first case is of the simple knots. If we assume 

simple knots let me store the knot values in array identified by capital T. This command 

here, lets us initialize all the knot values to 0. Through this statement, we specified the 

last n plus 1 knots as the respective parameter values that we have obtained here. Now, 

we have the first p knots as free choices. To get them what we do is, we start subtracting 

negative 1 from t i plus 1, where the index i starts from p and its decremented by minus 1 

every time until its value becomes 1.  
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So, in affect what we doing is, we are taking the first parameter value as a reference 

knot. We are decrementing 1 each time to get a knot on the left. Now, this is for simple 

knots. Case two is the case, where we have to clamp are B spline curve at the first data 

point. Will be using an its condition if f k equals 1 and l k is not equal to 1, that is when 

we need to clamp the curve at the first knot. You would know what we need to do? That 

is right, we need to repeat the first p knots. To do so, we set the last n plus 1 knots as ourf 

parameter values. We insure that the first p knots get repeated, through this piece of 

code. For the index i going from p minus 1 decremented by 1 its final value is 1. T of i is 

equal to T of i plus 1, we can do something very similar. If we need to clamp are B 

spline curve at the last knot. Again they are going to be using the if statement, with the 

different argument. 
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This is the case when f k is not equal to 1 and l k equal to 1. If you observe this statement 

here here what we do is, we use the n plus 1 parameter values as the first n plus 1 knots. 

Observe this statement carefully, the subsequent knot is equal to the last parameter value 

plus 1. This is also equal to the last or the previous knots. Then through this for look here 

for index i going from 2 to p. The p is the order of the curve, all the subsequent knots get 

repeated, in fact they have the same value as s. 

Let us go back a little bit and carefully look at this statement here. What we did was that, 

we initialized the last n plus 1 knots as are parameter values. Then a knot previous to this 



array, which is T p was computed as the next knot minus 1. Once we had the value of T 

of p, we simply repeated that knot through this following. We now come to the case 

where we need to clamp are B spline curve. Both are the first and the last data points. We 

use the f look for this, if the two flags have the value 1 each, then of course, we need to 

repeat the first p knots. 
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We set the values of this knots as 0, we also need to repeat the last p knots. We set the 

value of these knots as 1 and the number of knots that remain are the number of data 



points plus p minus 2 p, which is the number of data points minus p knots, where p is the 

order of a B spline basis function. To compute the remaining interior knots, as we have 

discus before the average p minus 1 parameter values at a time.  
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So, we use a nested value for this the index. i goes from 1 to the number of data points 

minus the order of the curve. There is a variable here sump, which we set to 0 for another 

index j going from 1 to p minus 1 sump is equal to sump plus u of i plus j index j is 

coming from here. Index i coming from here, with index i as i reference. We compute the 



sump of the next p minus 1 parameters. Once we have that, we compute the knot value T 

of p plus i which is equal to this sump here over p minus 1. Finally, we returned the knot 

vector fact to the main function. 

We may also think of returning the parameter values, which we may or may not be use in 

the main function. It may have been a little boring for you, you have to go through the 

code with me, but I will assure you once you start coding yourself, you will enjoy a great 

deal. Let us take a look now at few examples. Let us go back to our main function, a 

little comment before I show you the examples. That once we have the knot vector we 

can determine the interval of full support, which is given by a and b. Variable a is given 

by the p th knot in the knot vector and variable b is given by n plus 1 minus p minus 1 

knot in the vector.  

(Refer Slide Time: 14:44) 

 

We execute this code now, for different values of exponents. We are not interested in 

clamping are B spline curve at this time. So, we set the flags to 0. Let us also consider 

uniform parameterization in knot vector generation. Now, this is how a curve, which is 

free from both ends looks like. Let me change the properties of this to set the background 

as white and also to raise the concise of these numbers here. 
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The dashed black line show the control polyline and the dashed red line shows the B 

spline curve. Let us experiment further now. We set the exponent value as 1, which will 

allow us to work the code length parameterization and we execute the code again. 
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We change the properties a little bit, we are now going to be plotting this B spline curve 

using solid red line. You would appreciate this change. This was the initial curve and this 

is a new curve. The shape of the curve is expected to change, if you use different 

parameterization schemes. How about using the centripetal parameterization?  
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Here we set the value to 0.5. Let us retain these flag values as 0 each. Let us plot the 

curve using a different column. Let us say blue. You would appreciate that the curves do 

change in chain, is just that it is not clear to us, how the shape change will occur, if we 

switch between different schemes for knot vector generation? Let us maintain a single 

parameterization scheme. 
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Let us we work with code length parameterization. Now this is a curve, which is free 

from both ends and on this figure. Let me super post to other cases, where we now try to 

clamp our curve at the first point and at the last point. To clamp a curve at the first point, 

let us change this block to 1. 
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Let us change the colour of the curve as well, to let us say blue and execute this code, 

okay? You observe what we desire.  
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Let me now change this colour to green. Go back change these flags to 0 and 1 

respectively. What I want now is to how my B spline curve pass through the last point? 
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This is how the curve looks like. It is clamped at this last data point. Finally this clamp 

occurs at both the end points, which is the different colour to colour this curve. This one 

is the final curve like here that passes through the first as well as the last point. Let us 

now continue with the lecture number 32 and discus a few more very important aspects 

of B spline segments and curves. The first one relates to the interpolation and the second 

one pertains to NURBS, non uniform rational B splines. Let us see how we can 

interpolate different data points with B spline curves? 
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Given n plus 1 data points p sub 0 p sub 1 up to p sub N, we required to design a B spline 

curve, that fits these data points. Let us say we choose the order of a B spline curve p, 

which is smaller than or equal to in number of data points minus 1. So, N here is equal to 

the number of data points minus 1. We can generate a set of parameter values u sub 0 u 

sub 1 up to u sub N, through any scheme that we had discussed previously. Accordingly 

the number of knots can be computed. The length of the knot vector is n plus 1, which is 

given by the order plus the number of data points n plus 1, you know that already.  

Clearly, we will have a knot vector T 0 T 1 up to T N in our hands to work with with that 

the basis functions will be known to us. What is next? If you look at this problem, it is an 

inverse problem. Why do I say that? Simply because we are not directly specifying the 

control polyline, to design our B spline curve, rather we are specifying a set of points 

through our B spline curve would pass. For that we need to compute or control polyline, 

which is why its inverse problem. Let us investigate this further. 
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We are require to find the interpolating B spline curve. As you would know, this curve is 

given by summation index i going from 0 to n n sub p p plus i of t times b i. p is the order 

of the curve and i is the last knot for which n p p plus i stands. b sub i is the usually the 

design point that a user would specify. In this case b sub i is an unknown. So, we have n 

plus 1 b sub i’s, which are unknowns. I need to find them. Now, let us consider that we 

know the information at different points on the B spline curve. In other words, we know 

the points through which we need to interpolate to B spline curve.  

These points are given by p sub k. These points are known at different parameter values 

u sub k. You plug in this parameter value here to get summation i going from 0 to n n p p 

plus i of u k times b i. We know that we have or rather we are working with n plus 1 

unknowns. We would need to generate n plus 1 conditions. These conditions will relate 

to different k values going from 0 to n. We can collate this conditions in the matrix form.  

Let us say capital P is equal to P sub zero, P sub 1, P sub 2 up to P sub n, these are the 

data points available to us. That is equal to N N plus 1 by N plus 1 matrix. The first of 

that is N p p of u 0 N p p plus 1 u 0 N p p plus 2 of u 0. The last entry in this row is N p 

N plus p of u 0. The second row is a same as a first row, except that we are using u 1 is a 

set of u 0. The similar is the case for the third row. The basis functions are the same, but 

evaluated at u 2. Likewise for the last row here, we will have all these basis functions 

evaluating at u sub n.  



Here we will have a vector corresponding to these design points b sub i b sub zero b sub 

1 up to b sub N. We will have to be extra careful in choosing the parameter values here. 

We need to ensure that to determine these design points inversion of this n plus 1 by N 

plus 1 matrix does not cause any problem. In other words we want this N plus 1 by N 

plus 1 matrix to be non singular. The right hand side in short is represented by this 

matrix N, which is this one times the matrix b which is this. Let us take a look at a few 

examples. 
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What I have done here is I have introduced a new piece of code, to interactively specified 

the data points. Let us not get into that and straight away work on the examples. We are 

working with order four B spline curves. 

Let me magnify this figure and say specify six data points through which, I would 

require my B spline curve to pass. Now, the curve in blue is our B spline curve, it is a 

curve in full support. The polyline in red is what is determined the points in stars are the 

control points, that we have just determined for this B spline curve. Let us consider a few 

more examples. The curve in blue passes through the points that we just specified. The 

stars are the control points that are determined and the polyline in red joins, this control 

points. Let us see it can interpolate of B spline curve through a large set of data points. 
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I am arbitrary specifying these points here. I have specified 4 7 10 12 15 and this is a last 

point 16. It looks like I can get my B spline curve to pass through a set of data points, 

any number that I specify. Accordingly, my control points get recomputed will be time. 

The control polyline changes, it become as well We now get to a very important concept 

in B spline curves, NURBS. 
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It is an abbreviation for non uniform rational B splines. Recall that we had discussed 

rational Bezier curves quite some time ago. A rational bezier curve is given by b of t 

equals something in the numerator and something in the denominator. A numerator is 

summation the index i going from 0 to N. Burnstein polynomial with index i and degree 

N, which is a function of parameter T times the weight w 1, which is assigned by the 

user corresponding to the design point p i in the denominator. We let go of p i in this 

summation.  

So, we have summation, I am going from 0 to N, the N th degree Bernstein polynomial 

with index i function of T times the weight w 1. We had also seen that we could model 

different quadric functions precisely using rational Bezier models. Just that we did not 

have much local control to be often by Bernstein basis functions. Splines can be 

generalized along very similar lines. All we have to do is replace Bernstein polynomials 

with the corresponding B spline basis functions of order p. The design information points 

and from the respective weights remain the same.  

If you look at these two expressions carefully, this one here offers a great deal of 

freedom and choice. Both freedom in terms of additionally specifying the order of B 

spline curve and in terms of local control offered by the B spline basis functions n p p 

plus i t. As I mentioned before the weights w, I can help a user to gain additional design 



freedom. Let us try to understand each term in this expression non uniform rational B 

splines non uniform, because we can have the knot vector to be non uniform. 

Implying that the knots may not be uniformly placed. In another words knots spans may 

not be of equal lengths by rational because of this expression you work in the fractions. 

That is why rational. You would have guessed why B splines because we are working 

with B spline basis functions. Although this is a field in itself I will only highlight some 

salient features of NURBS in this lecture. If I sit the weight corresponding to the i 

control point equal to 0, it is natural for us to expect that the location of b i the 

corresponding design point will not affect the shape of the curve.  

For larger values of a weight w i b would expect just in the case with rational Bezier 

curves, that a B spline curve will get pushed towards the corresponding design point b i. 

This model of course, offers great flexibility in design because we use B spline basis 

functions. NURBS posses local shape control and in here all properties of B spline basis 

functions and therefore, B spline curves. We are widely used in tree form curve design 

and can also be used the model analytical curves. Let us consider some examples, I have 

modified the code that I have been developing. 
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A little bit this array p, that had the x co ordinates in the first column and the y co 

ordinates in the second column. Now, has the weights associated in the third column. At 



this time all the weights are initialized to 1. As you would expect with all weighs has 1 

we will be getting our B spline curve. 
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Over here I have multiplied the definition of a B spline curve to include the weight 

information. So, here I multiply to respective design points with the weights and I 

compute the denominator sum underscore d before. 
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This is how I compute the denominator? Sum under code d equals sum under code d plus 

B spline basis function of order p, the last knot as p plus k. the knot vector T, that we 



now know how to generate using different parameterization schemes and the parameter 

value. p k comma 3 corresponds the weight of the k design point. 
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Let us plot the first curve with the red solid line. 
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These are the design points we have, you are working with code length parameterization 

and we would like to clamp our B spline curve at both the first and the last control 

points. Let us see how the curves looks like? 
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Let me change the properties of this figure, so that it becomes much clearer. This is our 

original vector. Let us experiment with this point here as a reference. First, second, third, 

fourth, fifth point here.  
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Let us go back the code and change the weight corresponding to this point; first, second, 

third, fourth and fifth. Let us first set the weight to 0 and see what happens? 
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Let us use a different colour to plot this colour. It looks like the new curve here in blue is 

not affected by the position of this point at all. For w equal 0, this is a new curve for the 

corresponding weight equals 1, the curve gets slightly pushed towards this point. Let us 

try to see this happens. 
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You plot the next curve using the green colour. And we change the weight of this point 

to let say 5. Indeed if I increase the weight of this point the curve gets locally attracted 

towards it. 
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Let us arbitrary make the weight as 100. So, very high weight, but what is the harm in 

the experimenting? Let us use the yellow colour with thicker line width to plot this new 

curve. It seems that the resulting curve almost passes through this point. Let us magnify 

this region here. 
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As I said, it almost passes through this point. It does not actually passes this point. What 

have shown now is, how to change the shape of the curve corresponding to the weight of 

the single point? Once you are ready with your own code, we can experiment how it can 

play with the shape of these B spline curves? Now NURBS by changing the positions 

and the weights corresponding to each point. There is still alot that if you want we can 

learn in this serial. For now let us stop our discussion on NURBS here. Before I leave 

you, I like to mention a few words about B spline basis functions and Bernstein 

polynomials.  
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It looks like you can convert B spline basis functions to Bernstein polynomials. For 

specific cases for an order p curve or B spline basis function, if you repeat the first knot 

with value 0 p times and if you do the same. That is if you repeat the last knot with the 

value 1 p times and if you consider p B spline basis functions, which is the same as the 

control points is… so happen, that the number of knots given by m plus 1 will be such 

that m will be given by n plus p n is p from here. So, it is p plus p which is 2 p and in this 

case the B spline basis functions will degenerate to Bernstein polynomials. Let us take a 

quick look at one of the examples. 
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Let us see how order four B spline basis functions degenerate to degree three Bernstein 

polynomials. So, for that we would need four B spline basis functions and the total 

number of knots will be 4 plus 4. Of these let say the first four knots at the value 0 and 

the second set of four knots as the value 1. Let us plot the corresponding B spline basis 

functions. 
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As you would note, they are precisely the respective Bernstein polynomials b sub zero 

super 3, b sub 1 super 3, b sub 2 super 3 and b 3 super 3. You might want to work it out 

mathematically as to how this happens? 

 


