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Implementation and Coding 

Hello and good morning we continue with B-spline segments and curves. 
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This is lecture number 31, over the last 10 or, so lectures we have learnt a great deal 

about B-spline segments and curves. How to design B-spline basis functions and how to 

use them to further design B-spline curves. Today we will be working on coding to 

understand how B-spline basis functions segment and curves an essentially related 

concepts can be implement. 

Let us revisit normalized basis splines, a normalized basis spline of order one is given by 

N 1 sub i, where t i is a last knot over, which N 1 i would stand. This is a function of 

parameter value t and this is equal to delta sub i such that delta sub i is equal to 1 for 

parameter value t belonging to the interval t i minus 1 t i, the left hand side is close the 

right hand side is open. 

Otherwise N 1 i of t is 0 elsewhere, in general the recursion formulae is given by N k i of 

t equals t minus t i minus k over t i minus 1 minus t i minus k times N k minus 1 i minus 

1 of t plus t i minus t over t i minus t i minus k plus 1 times N k minus 1 i of t. The first 

goal for us would be to write a function, to determine any B-spline basis function of 

order k or which the last knot is t sub i. You can use any mode to perform your coding, I 

am comfortable with MATLAB, so I am going to be demonstrating the implementation 

using that software. 
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So, I am going to be writing function to determine B-spline basis function, function some 

value is equal to let me call this function n b underscore spline basis and will be passing 



some parameters into this function. Let me pass a few parameters say m i capital T and 

small t, m would be the order of the B-spline basis function, i is the index. I am writing 

this thing in capital letters, index of the last knot over which, this spline function stands I 

am just going to copy and paste, capital T is the knot vector and small t is the parameter 

value at which this spline function is to be computed. 

Let us start with a coding we have a few cases, case 1 is when m is equal to 1 and then 

case 2 is when m is greater than 1. Let us write the code for these 2 cases if m is equal to 

1 and something else this would be the case, where m is greater than 1 and then will have 

some arguments will finally, end this escape. Here I am going to be next thing another 

escape, if the parameter value t is smaller than rather is greater than or equal to T i minus 

1. 

And if t is smaller than T i, then value should be equal to 1, else value should be equal to 

0 end, this is where we compute order one basis spline functions. So, clearly the 

parameter value t has to lie in between the knot span capital T i minus 1 and capital T i. 

Next consider the case where m is greater than 1, we expressively imposes case if m is 

greater than 1 be end this it is statement, we going to be using some arguments in 

between here. 
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So, essentially here I am going to be computing N k i which has 4 components, this 

coefficient the basis function of one order less and in this coefficient and again the basis 

function of one order less with the last knot as at. 
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Let me call these 2 coefficient small p and small q, so I am going say p is equal to I am 

just commenting as it now, small t minus capital T i minus m over T i minus 1 minus 

capital T i minus m. Likewise, another coefficient q is equal to I just copy and paste this, 

here I will have t i minus t i want need this and in the denominator I have T i minus T i 



minus T m plus 1. So, once we have the expressions for the individual weights which are 

linier p and q let me code then, so we first compute p and then we compute q. 

Let us go back to this expression, this is the co efficient p that we uninterested in 

computing, this is q that we want to compute. Now, notice that in case we are working 

with multiple knots t i minus 1 can be equal to t i minus k, likewise t i can be equal to t i 

minus k plus 1 will have to take care of these conditions expressively. 
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Let us work with those conditions if T i minus 1 is not equal to T i minus m, then I 

should be able to compute p as this expression here else and then end. What should p be 

in this case, we will come to that a little later. Likewise, I just copy this and pasted here, I 

will copy the expression for q and pasted here. This is the equal to sign and this is q, here 

I need to ensure that T i is not equal to T i minus m plus 1. 

So, in case we are not translating multiple knots here, q will have this expression capital 

T i minus t over capital T i minus T of i minus m plus 1. In case these conditions are 

satisfied we have the expressions for p and q like, so in case of multiple knots what 

would the value p and q be. 
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Let us what thing out on board, so we have knots t i minus k t i minus k plus 1 t i minus k 

plus 2 and so on up till t i minus 1 and t i, in the recursion relation we have 2 basis 

splines each about the k minus. One of which is standing with the last knot t i minus 1 

and the other one is standing with last knot as t i with N k minus 1 i minus 1 of t 

coefficient p is associated and with N k minus 1 i of t coefficient q is appealer. 

Now, the condition that t i minus k will be equal to t i minus 1 will be only physically 

possible, if all the intermediate knots including t i minus k and t i minus 1 are multiple 

knots. So, will have 2 cases here, case 1 that t is equal to this knot value which will be 

equal or t is greater than t i minus 1 or smaller than t i minus k, in case of multiple knots 

when t i minus k t i minus k plus 1 and so on up till t i minus 1 or all equal. 

And in case t is equal to this knot value if you look I will be expression for p, p will be 

taking, so 0 over 0 form by convention we assume that this is 0. For all the other values 

of t N k minus 1 i minus 1 of t will be 0. Likewise if we have these multiple knots where 

t i minus k plus 1 t i minus k plus 2 t i minus k plus 3 or all equal to t i. Again will have 2 

cases, case 1 when t is equal to all these knot values in which case again the expression 

for q will assume the 0 over 0 form which by convention, we treat as 0. Otherwise, for t 

not equal to these multiple knots N k minus 1 i will be 0 we keep this in mind and use p 

equals 0 here and q equals 0 here. 
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If you look at this expression here, we have computed p and q, we are yet to in co 

operate this recursion relation, so we will go back here and we will say that the recursion 

relation is to be in cooperated here. And we will set the value v a l equals p times, now 

here is a trick I can use the concept of function within a function. In a sense I can use this 

same function to compute B-splines of order one less 2 less and so on. Once we 

understand this I will say n b underscore spline underscore basis, here we have order m 

minus 1. 



Here the last knot over which this spline is standing is I minus 1 the knot vector t and the 

parameter value plus few times n b underscore spline underscore basis. Once again order 

one less last knot here is t i the knot vector capital T and the parameter value this should 

be adequate for us to compute a B-spline basis function of order m with the last knot as T 

sub i. I will save this file as in B-spline basis functions it is time now to test the part, for 

that I am going to be using a new function. 
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I am going to be using some commands which are typical format line, clear screen figure 

one clear axes, clear all variables, less test the previous function and B-spline basis for 

order 4 splines. And let us test for a very general knot vector with 10 knots spline or 11 

knots, let me comment here order is given by m, T is the knot vector which is uniform in 

our case. 

Will talk about knot vector generation in a little while and let us start of you B-spline 

basis functions, for index i 1 to let say 200, let us generate a parameter of t this is equal 

to index i minus 1 over 199. I am using t equals i minus 1 over 199, so that I can generate 

value of t between 0 and 1, if you see for i equals 1 t 0 and for i equals 200 t is 1. 

Let me first end this follow and continue further, I will this time let me not worry about 

the full support and let me allow my parameter values to go from 0 to 10. Let me store 

this parameter values in a vector x of i, this is 1 minus t which is this variable here times 

t 0 which is this value here plus t times t 11 which is this value here. And now it is time 



for us to compute B-spline basis functions, let me you write them chart B S B F standing 

from B-spline basis functions. 

How many of these B-spline basis functions will be pass, you know that already from 

previous lecture if would 7 of them, so the first one will be given by n b spline basis the 

order is m will have last knot mention a little while the knot vector is capital T and the 

parameter value is small t. Let me be a little careful here, the first of B-spline basis 

functions will be standing over 4 knot span, this is the first knot spline, the second knot 

span, the third knot span and the fourth knot span. 

This would be the last knot over which the first B-spline basis function will be standing, 

the index for that knot corresponds to 5. Since, m is equal to 4, I can write the index here 

as m plus 1. Is it for me to use small t for the parameter value here, if you realize I am 

storing the parameter value in this array x of i. So, I can replace this small t i x of i. 
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All I need to do is now copy and paste this statement a few times, since we have 7 B-

spline basis functions I rename the variables on the left hand side accordingly. The order 

would remain the same, the knot vector T would remain the same the parameter values 

would remain the same this that the last knot over which the respective B-spline basis 

functions are standing will change. This would be m plus 2 m plus 3 m plus 4 m plus 5 m 

plus 6 m plus 7, I have already ended the followed. 



Let me now select all text and make the code look a little beautiful, let us now plot with 

the B-spline basis functions. MATLAB has the command plot for that plot x B S B F 1 

let me plot first one using the red color r, and let me specify the line width as 3, I can use 

the same command plot all the other functions. This is second B-spline function, third, 

fourth, fifth, sixth and seventh, let me choose different colors to plotted. This one let us 

say green, this one let us say blue, this one is magenta, sign, black and yellow, let me 

also specify the line style which is solid in all cases. 

We are now ready to see the spots of these 7 B-spline basis functions, I will save the file 

as n b spline basis test, let me execute this file and see how the spots may reply. And 

whether I may have committed any mistake in coding, looks like I have apparently I 

have made a mistake in the coding here, MATLAB does not allow the in decease to be 0 

or negative value. Maybe I should have chosen T 1 in case of T 0, let me go back and 

execute the code again. Now, I see only one of these B-spline basis functions, what I 

have done is I am not used the option hold on then uses let me save this file again and 

execute the code. 
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Now, you see all the B-spline basis functions, let me change the figure properties a little 

bit, so the background as white and set the font size as let us say 20. Now, this is a lot 

better can you name this B-spline basis functions as per a convention is could be n 4 4 



this n 4 5 n 4 6 n 4 7 n 4 8 n 4 9 and n 4 10. So, far we have been coding the B-spline 

basis functions and you have just tested them let us play a little more. 
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Let us go back to our editor and start modifying these knots, in the sense let us introduce 

multiple knots and see what happens. Let me increase the multiple (( )) of the second 

knot by 1 or may be by 2, so that the second knot is now having multiplicity 3 what 

changes do you expect. 
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The B-spline basis functions will change in shape lowering, now to realize at this knot 

value 1, the first B-spline basis function as the value 1 and all the others have the value 

0, this concourse with the local (( )) property. 

(Refer Slide Time: 29:06) 

 

Let us go back to our editor and even make the first knot as 1 to be see any change let us 

find out. 
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We do not see much change expect for the fact at this part of the first B-spline basis 

function, it is now haves how about the if I increase the multiplicity of this knot by 2. 



Making T 8 here, and knot of multiplicity 3 by change this values to 7 and this value as 

well to 7 I execute this for again. Now, we have the last basis function with value 1 are 

the parameter value 7, all the other B-spline basis functions at this knot value are 0. We 

go ahead and change the last knot value to 7, to see what happens not much change just 

that the last knot value is not 7. 

The last basis function still has the value 1 and all the other previous basis functions have 

the value 0 a t equal 7. Let us go back to a editor modify this knots towards there why 

before and increase the multiplicity of any intermediate knot, let us say I make these 3 

knots have the value 4 to expect any change. Yes, B-spline basis functions which are 

associated with this knot value change local in shape, you can experiments in whatever 

way you feel like to be comfortable with concept. 
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So, we have just about done testing the normalized basis spline function for which we 

constructed a test function here. We also experimented with multiple knots, we had first 

knot as a multiple knot of multiplicity 4 which was the order of the B-spline curve or the 

basis function, likewise we also tested for the last knot having multiplicity 4 and for any 

other intermediate knot we tested for it is multiplicity. 
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We are now ready to design B-spline curves for that you would need to introduce data 

points. Let us start with a new function some typical MATLAB commands clear all 

variables, clear string, post figure and here let me common that we are designing B-

spline curves. Let me work with two dimensional data points for now, I am storing the x 

and y coordinates N and R A P. Let me arbitrarily specify these data points I have 

arbitrarily specify x and y coordinates in R A P. Let me copy this with the work space of 

MATLAB, so this is how my R A P looks like. 



(Refer Slide Time: 33:20) 

 

Let me compute the number of design points, these are n plus 1, again n is equal to the 

size of p minus 1 going back to the work space size of p indicates the number of rows 

and the number of columns. Here we have 8 rows 1 2 3 4 5 6 7 8 and we have 2 columns 

1 and 2, so we say that the number of design points are n plus 1 n would be the number 

of rows and p minus 1. 

Let me specify the order, let me denote the order by p and let me say for now that p is 

equal to 5 your working with order of 5 B-spline curves. The number of knots will be m 

plus 1, where m is equal to n plus p, we get the value of n from here and we have just 

specified the order p, for now let me specify arbitrarily a knot vector. For this case I 

would already know what m is, this is 7 plus 5 12, so the number of knots will be 12 plus 

1 13 accordingly I specify capital T as 0 1 2 3 4 5 6 7 8 9 10 11 and 12. 

Alternatively, I can also specify T using the following, for I going from 1 2 m plus 1 T of 

i is equal to i minus 1. We will worry about plumping these B-spline curve, later let me 

just comment it (( )) Let us now worry about the interval of full support and this would 

be given by the interval a b. Now, what is a? And what is b? Let me copy this piece of 

the code in the work space and let me see what T is for us, it is a set of integer values 

from 0 to 10. Let me double check what m is that look likes we have in working with 

order 4 B-spline curves. 



So, the work space contains the values or the values of previous variables, let me go back 

to the editor, save it, as B spline curve text. This command here, is going to wipe out the 

values of all the previous pages, let me execute the curve to that error let me not worry 

about this error for now, I was able to reserve the error. Now, I am back to the values of 

the knot vector, so the transpose of the knot vector is given by this column from 0 to 12 

in all 13 knots. 

Now, we are working with order of 5 B-spline curves and we are looking for the knot 

values that form the full support for the B-spline curve. For that we need to count the 

first 5 knot splines, this is 1 2 3 4 and 5 and looks like this knot will be the knot that will 

be defining the lower bond of the full support. T 0 T 1 T 2 T 3 T 4, so if here should be T 

p, now the index starts from 0 then this value should have been p minus 1, but since in 

MATLAB the index starting from 1 given though the values is 0. 

This index here will correspond to p, let me uncomment this statement how about the 

right most value of the interval, we revisit the not vector again and start counting in knot 

splines from the bottom. First knot spline, second, third, fourth and fifth, looks like this 

value here T 9 would correspond to b what is T 9 for us. This is T m plus 1 in number of 

knots minus p minus 1, let me uncomment this two, let me copy this statements to work 

space and verify if you are correct. So, a has the value 4 and b has the value 8, so we are 

in curve that is continue. 

And generate a B-spline curve, lets also plot the corresponding Bezier curve to compare 

the two curve models, will worry about Bezier curves a little while. Now, let us say we 

have about 150 points, so we raise our index I from 1 to 150, let us have a parameter 

value T 1 between Z 1 one. For which we compute T 1 as I minus 1 over 149 clearly for i 

equals 1 T 1 is 0 for i equals 150 T 1 is 1. Now, let us have a parameter value t vary it 

mean the two values a and b, for that will have 1 minus t times a plus t 1 times b, this 

should actually b t 1. 

Before, I mess up the code let me end disported and continue further, now let us store the 

x and y coordinates of the curve in 2 arrays x i, we initialize in 0 and y i for the y 

coordinates we initialize this also as 0. Now, these are the x and y coordinates of this 

spline curve to be mention this likewise, we store the x and y coordinates of the Bezier 

curve as well we store them in 2 arrays b e x I and b e y I we said both to 0. 



I would want to you at this time recall the definition of B-spline curves, that is a 

weighted linier combination of B-spline basic functions and the corresponding design 

points. Let me run a nested for loop to compute the two curve models for k equals 1 2 n 

plus ,1 if you remember n plus 1 is a number of design points. I end this for loop here 

and within this for loop I compute the two curve models. For B-spline curve I have x of i 

equals x of i plus n B-spline basis, remember the construction let us look at the variable 

value, we have chosen to specify the order that is p. 

We come back here we specify the order of the B-spline basis functions we specify the 

last knot we specify the knot vector and we specify the parameter value. The parameter 

value T is going from a to b, this is arrange of full support for the B-spline curve. 

Remember, that t is not normalize to have the values between 0 and 1 it is T 1 that has 

the values between 0 and 1. So, we have just computed the x coordinates of the B-spline 

curve, but not yet I need to multiply by capital P k 1, the x coordinates of all the data 

points. 

Likewise, I compute the y co ordinance for that I copy and paste go back and change this 

statement slightly, is a y’s the B-spline basis functions will remain the same. This start 

the data points here we will now have the y or the coordinate information, let me expand 

this a little bit. How about the Bezier curve? I would here want you to recall the 

construction of Bezier segments, I am going to be using a coefficient c which I will be 

computing as factorial something over factorial something times factorial something. 

Now, this number here within the parenthesis should be the number of data points, 

should it be the number of data points or rather should it be the number of data points 

minus 1. So, we have the number of data points as n plus 1 minus 1 which would make it 

n, within the parenthesis here I should be actually computing the factorial k minus 1. 

Why k minus 1, because my index k here is starting from 1. While the relation that we 

have developed of Bezier segments had the index k starting from 0, so I need to make 

that little adjust here will be n minus k minus 1. 

Let us see if this expression is the valid expression let us arbitrarily take the value n 

equal 6 k equals 3, copy the statement and get the value of c. So, it looks like a valid 

construction we move further and we say c equals c times 1 minus t 1 raised to k minus 1 



times t 1 raised to n minus k minus 1. Now, this variable c will have the value from this 

statement, these are the other expressions pertaining to the Bernstein polynomials. 

And of course, my parameter value here will be going from 0 to 1, let us continue further 

we say b e x of i is equal to b e x of i plus the Bernstein polynomial which will be stored 

in c times the x coordinate of the kth design point. Likewise, we will have a very simple 

expression for the y coordinate and this would have values of the coordinates on the 

design points. 

Looks like and I am just about done coding for Bezier curves and B-spline curves all I 

would need now is to right some statements to (( )) plotting the B-spline curve, B-spline 

curve has informations stored in the x and y array. So, will have plot x y with color red 

and line style solid line with as 2 we would further want to keep continuing plotting 

given data. So, we will use the command hold on will also plot the design points, the first 

column of the design points are given by P within parenthesis colon comma 1. And the 

coordinate values of the design points are stored in the second column for which this 

values 2. 

Let me use magenta star took mar is data points and let me use a slightly larger marker 

sizes of let us say 16, I going to used this command hold on here. I will not be needing at 

any more, now let me plot the Bezier curve all I need to do is copy this statement, paste 

this statement here. And replace the x and y arrays by the b e x and b e y arrays. Let me 

use the deferent color to plot the Bezier curve, the color I am using is blue, let me also go 

ahead and plot the control polyline, just to help us regain the prospective. 

I am going to be using the for loop for this and I am going to be using the line command, 

so this expression here will have information about the x co ordinance of two 

configurative points in a polyline P i 1 P i plus 1 1. And likewise the array here will have 

the information pertaining to the coordinance of the design points, for change the column 

value here. I will use the black color, I will use line with as said 3 and the line style as 

may be said dashed and I have to end this for loop which I do right away. 

So, looks like I am done for writing the code for plotting B-spline curves and segments, 

let us see in the code works I may or may not have made errors in writing code. Let us 

execute this file I get a result in a single shot this is interesting, let me change the figure 

properties here. 



(Refer Slide Time: 01:00:34) 

 

Let me increase the font size of the numbers, so the top point in magenta represent the 

design points, that the user has specified. The dashed line represents the control polyline, 

the curve in red shows B-spline curve and that in blue shows a Bezier curve.  Now, this 

is a curve of order 5 as you would know, and a substitute figure out what the order of the 

degree of this Bezier curves. Notice, at the B-spline curve is started for values of t the 

parameter in the full support range. We are just about done writing the code to generate 

B-spline curves. 
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Let us experiments further with that code specifically that is experiment with the end 

conditions, and data points. We can think of clamping the first end of the B-spline curve 

clamping the last end of the curve or may be clamping both the ends. We can also think 

of moving data points or adding data points, since we already have written the code to 

generate a corresponding Bezier curve. We will be comparing or B-spline curve side by 

side with corresponding Bezier segment, so let us continuing with the coding. 
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So, if you recall I had let some space for clamping conditions, let me use that space now 

so here let me first think of clamping the first end. For that I am going to be increasing 

the multiplicity of the first knot by p the order, so I will say for i equals 1 to p T i is 

equals to T p end. Let me also write the clamping condition, for the last point clamping 

the last end, here a similar piece of code can be used, but with slightly deferent larger. 

Here, we are going to be making the last knot a multiple knot of multiplicity p, how 

many knots to be have we have m plus 1 of them, so will have to figure the entries in 

these parenthesis appropriately. 

So, this entry here will be m plus 1 minus p minus 1, rather this would be i minus 1, this 

entry here will be m plus 1 minus p minus 1. Let us go forward and see what this value is 

this value is the one that this variables b carries the last knot of full support, and all the 

other knots on the right of this will have the same value as says. Therefore, this index 



here let me comment this piece of code for now and generate might B-spline curve with 

only the first end spline. 
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Observe the right curve, it passes through the first data point. Let me go back to my 

editor and uncommon piece and execute the code again, it is what is happening? Why to 

be get this similar? If, you recall have always being referring to intervals, such that the 

interval is closed on the left and it is open on the right. May be it has to do something 

with that I would like you to think about this as an exercise. 
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Let me go back to my editor and go back to where I am using the parameter values to 

generate my B-spline curves, may be it is here. What I would do is about subtract with 

very small value from t, this is quite small for our purpose let me execute the code now 

after making this modification. 
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Now, I get a much better looking B-spline curve, which passes or can to pass or at least 

the impression that passes to the last data point, let us now experiment to the position of 

these data points. 

(Refer Slide Time: 01:08:35) 

 



It is go up an arbitrarily change deferent values here, let this be 7 let this be 18 let me not 

clearly act of a this figure, so that we can compare the new results. So, the information in 

figure one says and let me plot the two curve models using deferent colors, let me use 

green for the B-spline curve and may be magenta of the corresponding Bezier curve. Let 

me plot the new control polyline using color yellow, let me go up and change the entries 

further. Let me make this 11 make this minus 8 let me work with 2 here make this 8 and 

execute the code now. 
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The red curves here is the original B-spline curve, this blue is the original Bezier curve, 

the green one here is the new B-spline curve and the magenta here is the new Bezier 

curve. Look at half closely the B-spline curves follow the angulations reflected by the 

control points or the control polyline, for that why do you think this is possible. It is this 

is because of this (( )) property or this strong local bar is center city that the B-spline 

basis functions half to half. Let me add a few more points as the last experiment for this 

lecture. 
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I add point 15.6 17.2, let me go back to the little bit 10 8 8 20 and may be 9 22, I am 

arbitrarily specifying this data points. Let us now see what happens, looks like I have 

made an error here I should not be using this semi colon if you what happens now? 
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Try to concentrate on this green curve here and this magenta curve here, now if you 

notice a part of the B-spline curve remains the same only some part changes in shape. 

Again emphasizing local shape control where as this new Bezier curve changes global in 

shape, it may be fun and it may be lack easier for you if you learn the concept properly to 



play or experiments with B-spline curves. You can think about how you can interactively 

move is data points, how you can automate the knot vector generation we have in talk 

about that. 
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But, you can think of computing the knot vectors like the way we discussed in the 

previous lecture, you may want to write another function to generate this array. 


