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Lecture - 13 

Hello and welcome to CAD series of video lectures. This is lecture 13 on Differential 

Geometry curves. The layout they are in the second column here. Why? Do we need to 

study differential geometry or differential properties of curves. Well as I mentioned in 

the previous lecture. We are going to be fading segments of smaller degree through sub 

groups of these design points. 
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For example, here we have interpolated this point using a cubic polynomial. We have a 

second sub group again of four zero points, and we had used different cubic segment for 

interpolation; this is the junction point, which would be critical in curve design. Here you 

would need to ensure position continuity; continuity of slope and curvature. You would 

be matching zero order, first order and second order implement; it is these points in 

particular, that would motivators to study differential geometry curves. 
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Now let us draw the Cartesian space, let us draw curve space. It is to be point P on the 

curve another point Q on same curve, the position vector P is r u; remember you choose 

to work with parametric representation, and the position vector Q is r u plus delta u, this 

vector here is the different vector delta r. This bold of here represents the tangent at point 

P is curve, the tangent is expressed the capital teen bold. 

We can use the Taylor series expansion and express position vector Q, which is r u plus 

delta u as r u plus d r over d u the total derivative of r with respective u times delta u plus 

one over two factorial, here d 2 r over d u square second derivative times delta u square 

plus they would be higher order terms. For small delta u delta r represent the arc length 

delta s, so delta s is approximately equal to the absolute value delta r, which is r of u plus 

delta u minus r u, which is approximately equal to the obsolete value of d r over du times 

delta u. Here we have ignore the higher order terms; it Q approaches point P and delta s 

is the differential form d s, which is equal to modules of d r over du times d u; this 

derives of r with respect u is noted by r dot d s is the absolute value of r dot times du and 

mode of the r dot can be written as r dot dotted with r dot the root that time d u. 

Now if we wish compute total arc length from let us say point P at which the parameter 

value is u sub 0, 2 of point Q at which the parameter value say u, then the total arc length 

is given by set u which is equal to integration from u sub 0 of u, d s which is r dot dotted 

with r dot within the square root sin time d u and if r is expressed in terms of skill of 



functions, x of u, y of u, two of u and r dot will be x dot u times psi plus y dot u times j 

plus t dot u times k r dot dotted with r dot is given by x dot square plus y dot square plus 

t dot square within radical sign d u, so this integration and computed to get overall arc 

length. 
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Continuing further parametric velocity bold V, is given by the first derivative r the 

respective u or r dot u. The unit tangent T is along the direction of the parametric 

velocity to v, the capital T bold is given by r dot u over the absolute value of x, which is 

equal to d r over d x now the first derivative of r with respect to x is represented y r point 

s, s as you seen before is be arc length parameter or the natural parameter. 

First how? To be get from here to here; let me explain this to you on board. You have 

seen that unit tangent, t equals vector r dot u over the obsolete value of same vector, 

which is equal to d r over d u over the absolute value d r over d u. You seen from before, 

that d s is equal to d r over d u the absolute value times d u; we plug in for this value 

here, we will get d r vector over d u here will have d s here will have d u, u will cancel, 

this would be d r over d s, which is r prime s. Recall that we are using dot rotation to 

represent derivative with respective u and using the prime rotation represent derivative 

with respective x; now r dot is equal to d r over d u by change row this is equal to d r 

over d s prime d s over d u, d r over d s is over prime as d s over d u is the absolute value 



of the parametric velocity or from s is the unit tangent T times the magnitude of the 

parametric velocity. 
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Take an example, find the length of a portion of the helix given by x equals a co sin of u 

y equals a sin of u and z equals b times u, a is the radios of the helix, b is related in the 

pitch and u is the parameter. All unit to do that is compute x dot derivative of x with 

respective u, derivative of y with respective u and derivative of z with respective u, x dot 

equals minus a sin of u, y dot equals to a sin of u, z dot equal b. Note in the parametric 

form of r u is a co sin of u and i plus a sin of u and j plus b u and k; x dot squared plus y 

dot squared plus z dot square can be determined to be a square plus b square. You seen 

for how to compute the arc length; s equal here we taken u sub 0 as 0, integration from 0 

to u under root x dot square plus y dot square plus z dot square, which is under root a 

square plus b square times d u and clearly the integration consign to be a square plus b 

square with in the numeric sign times u. 

What we observed here is an alternative, which to represent a helix using a different 

parameter; s note that this equation relates s with u for this helix. All within do is 

substitute for u and write this expression in terms of s, as a co sin s over under root a 

square plus b square times plus a times sin s over under root a square plus b square and j 

plus b hence s over under root a square plus b square times k; this expression and this 

expression there all u. The defense on a convenience whether we would want to choose 



do work with parameter u or parameter s compute different deferential properties of the 

curve. 
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The Normal and Binormal and point in the curve. Normal is given by N and Binormal is 

B; Well we have this curve, we have this unit tangent T and we have a plane which is 

perpendicular to this unit tangent, are sum point p; this plane will disband by two vectors 

both are which will be orthogonal each other and also orthogonal to the unit tangent t. 

This is the first one represented by N and this is second one represented by B. N is called 

the normal and B is called binormal.  

The plane containing two normal N and B this called normal plane; the plane containing 

the unit tangent and the binormal is called the rectifying plane. And the plane stand by N 

and T called as the osculating plane. If you considered two points very very close to this 

point; as we know, a circle can pass through three points we can construct a circle that 

passes through this points; the circle is called osculating circle. Notice well the normal 

points towards the centre circle, as said earlier this osculating circle passes through three 

very close points in the curve where the tangent T is defined. 
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Some more on the normal and binormal, normal N how to compute that? There we have 

T which is evaluated as d r over d s, in short represented by r prime of s at a point very 

close to this point will have T of s plus delta s which can be computed as r prime at s 

plus delta s. Let us see how the direction of the unit tangent changes, we have this curve 

we have T s. Here the unit tangent at some point and then arc a point very close to this 

point, we have another unit tangent T of s plus delta s. What we do? We move T s to that 

the steps to these tangents rejoin this vector here represents the difference vector, n 

equals T s plus delta s minus T s. Notice that this is T s for n is delta T of s which is T of 

s plus delta s minus T s, we can use the Taylor series expansion this expand this 

expression.  

Here s plus d T over d s time’s delta s plus some higher order terms minus T s, these two 

will cancel all and we ignore the higher order terms delta T s will be approximated by d 

T over d s time’s delta s. For two points very, very close to each other, delta T over delta 

s will take the differential form d T over d s which will be given by r double prime s. 

Remember that we are using the prime rotation to represent derivates to respect to the 

natural of the arc length parameter. Now we know that t is the unit tangent and so its 

magnitude is 1 in a sense r prime dotted with r prime is equal to 1.  

If we differentiate this equation to respect to s, we get r prime dotted with r double prime 

plus r double prime dotted with r prime equals 0 which implies eventually. That r prime 



dotted with r double prime is equal to 0, what would this mean basically? This would 

mean that r double prime is a vector which is orthogonal to r prime, r prime is a unit 

tangent T. In other words r double prime will be orthogonal to the unit tangent T. We can 

use this fact and define normal N such that, some scalar kappa time’s N equal r double 

prime which is d T over d x. Kappa is a scalar use so that n happen to be a unit vector, 

here kappa is a scalar and N is a unit vector. Finally, the binormal B is given by the cross 

product between the unit tangent and the unit normal. We know that both T and N are 

orthogonal to each other; it is the scalar kappa that we need to investigate. (()) 
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Question; what is kappa? Does it have any physical elements or significance, we have a 

curve here this point is P with position vector r u, this point here Q with position vector r 

of u plus delta u. This is point W with position vector r u minus delta u, now P, Q and W 

are points very close to each other, we can say they all lie on the parameter of the 

osculating circle. Now let us compute Q P cross with Q W, Q P cross with Q W; Q P is 

given by r of u plus delta u minus r u and Q W is given by r of u plus delta u minus r of u 

and minus delta u. We use the Taylor series expansion and considered terms up to 

second derivatives, r u plus delta u will be r u plus d r over du times delta u plus half of d 

2 are over du square times delta u square; the term r u will cancel with this. So these two 

terms are what which you left and r u plus delta u minus r u minus delta u then both 

expanded using Taylor series will gave us 2 times d r over du times delta u plus 2 times d 

2 r over du square times delta u square.  



Let us try to simplify this cross product further; well what happens with this term gets 

cross with this term? Note that the direction d r over d u is the same in both terms, so the 

corresponding cost product will be 0. Next this term crossing with this term, will have 2 

times d r over d u cross with d 2 r over d u square times delta u cube. Now this term 

crossing with this term, this half cancels to this 2; will have d 2 r over d u square cross 

with d r over d u. If a reverse the two terms along the cross product, I will introduce a 

negative sign. If we further work out the algebra, this cross product will reduce to d r 

over du cross with d 2 r over d u square times delta u cube. 

Now we know that the unit tangent is given by d r over d s which is r prime s, this for 

imply using change rule that d r over d u is equal to T the unit tangent times d s over d u. 

All I need to do is multiply and divide the expression by d u and rearrange this equation 

to get this result. Now if I compute the second derivative of r respect to u that is if I 

differentiate this expression again with respect u, I get the d 2 r over d u square which is 

equal to d T over d u time d s over d u plus T times d 2 s over d u square. 

All I can do now is, replace this term here by this term on the right hand side of this 

equation. Therefore, Q P plus Q W is given by T times d s over d u; notice that I am 

replacing d r over du as well by this expression. So T times d s over du cross with d T 

over d u times d s over d u plus T times d 2 s over du square, this entire things time’s 

delta u. If I work on this cross product further and notices that the direction of this term 

and this term the two directions are the same, so the corresponding cross product is 0. So 

all is left is, T cross with d T over du which is this term and this term times d s over d u 

whole square these two terms getting multiply times delta u cube.  

Now let us see how this term can we written in terms of the other normal N and B; the 

normal and binormal, well as you see you retain this scalar d x over du u here. We know 

from before that d T over d s is kappa times N to we see this two terms here, kappa N 

and we retain this term T here. So this expression becomes kappa times T cross with N 

times this scalar d s over du whole cube times delta u cube and T cross N is binormal B. 

In other words Q P cross with Q W, now this kappa times the binormal vector B times 

the scalar d s over d u the whole cube times delta u cube. Let us retain this result that can 

be using this in the next slide. 
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Back to this figure here, we have curve and points P Q and W; where position vector r u, 

r u plus delta u and r u minus delta u. Using vector algebra radius curvature is given by 

rho which is equal to modulus vector W P times modulus of vector W Q times modulus 

vector W P minus W Q, W P minus W Q over two times modulus on the cost product 

between the vector P Q and W Q. Well we can compute this vector in terms of the 

corresponding position vectors. 

This looks a little tedious, this factor work it out; rho equals the mark W P, which is delta 

u times d r over d u minus half d 2 r over d u square times delta u square plus some high 

order terms. Mod of W P which is 2 times delta u times d r over du plus again some 

higher returns. Mod of vectors W P minus W Q which is delta u hence d r over d u plus 

half of d 2 r over the d u square times delta u square plus some higher returns. These 

expressions can be obtain using Taylor series expansion with some additional algebra, 

we denominated given by 2 times d r over du cross with d 2 r over d u square the mortals 

that times delta u cube. You may want to work as an exercise, as to have the radius 

curvature is computed using this expression.  

Now starting with this complicated looking expression, rho can be simplified to be delta 

u cube times d r over du, the absolute value the cube that over d r over du cross with d 2 r 

over du square the absolute value this times delta u cube. We see from this expression 



that delta u cube can get cancel now and rho becomes modulus d r over du the whole 

cube over modulus of the cross product it mean d r over d u and d 2 r over d u square. 

From the result in the previous slide, we can replace this expression and rewrite this 

equation as rho equals 1 over kappa mod of d r over d u the whole cube over d s over d u 

the whole cube. And noting that mod of the d r over the du is the same as d s over du, the 

2 terms gets cancel the rho is equal to 1 over kappa. The kappa after roll has some 

physical significance it is called curvature and it is inverse radius curvature rho. 
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 Next torsion, another differential property of curves; we know that the binormal b and 

tangent t orthogonal. So, b dotted with t is equal to 0. What we can do is, we can 

differentiate this result with respect to as to get T dotted with d B over d s plus B dotted 

with d T over d s, right hand side is going to be 0. And we can use the definition, d T 

over d s equal kappa times N; and substitute is expression here. For defined, when we 

substitute this thing here is that B dotted with N will be 0, which would make T dotted 

with d B over d x equal 0; at here T dotted with d B over d s equals 0, which physically 

implies that the first derivative of binormal with respect to the arc length is orthogonal to 

T.  

Also if we differentiate these are B respective s, we will see that B dotted with d B over 

d s equal 0; implying that d b over d s is orthogonal to B. Interesting, d B over d s is 

orthogonal to T and also d B over d s is perpendicular to B d B by d s. Therefore, is 



bound to be aligned with the unit normal N, we can use this pack define d B over d s as 

minus of sum scalar tau time the unit normal B, this scalar tau is known torsion. Using 

the pack that the unit normal N, is expressed as the cost product between the binormal 

and in the unit tangent. We can write d N over d s as d B over d s cross with T plus B 

cross with d T over d s. Following the algebra further, the right hand side here and 

written as d B over d s cross with T plus, will we can use this definition here d T by d s is 

kappa times N. So this time here the kappa times B cross the N. Now this term here can 

be replaced by this term here, so we get minus tau times N cross with T plus kappa times 

B cross with N, N cross T minus B and B cross with N minus T. So, d N over d s equals 

tau times binormal minus kappa time the unit time. 

In summary, we get four relations; number one d r over d s is defined as unit tangent T. d 

T over d s is defined as scalar kappa which we have seen to be inverse of various 

curvature, times the unit normal N. d B by d s is defined as minus of tau times N the 

scalar tau is called the torsion. And d N by d s is tau times the binormal minus kappa 

times unit times. If you see the left hand side of these relations r, T, B and N; the left 

hand sides express the first derivatives with respect to s, and the right side respectively 

express the corresponding results. These four relations are known as Frenet-Serrate 

Formulae. In subsequent lectures, we are going to be using these relations to compute the 

differential properties of curves at different points. 


