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Lecture - 12 

Welcome to lecture 12 of CAED. In this lecture we are going to be talking about design 

of curves, essentially we will touch upon ‘Representation Techniques and Differential 

Geometry of Curves’. In the layout we are in the second column here on the design 

curves, why this curve designs important. Well, it forms the backbone of solid modeling; 

a network of curves as we know would represent surfaces; a set of surface patches 

forming a closed, simple and orient able surface represents a solid. This is a concept we 

have emphasized over and over again in previous lectures. 
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Let us discuss in brief a few traditional methods of curve design. The first one is curve 

interpolation. Given a set of n ordered data points x i y i, i going from 0 to n minus 1. We 

need to fix a polynomial y equals p x which is a degree n minus 1. We all know from our 

previous classes and from our engineering first second third year classes how to do this. 

The polynomial will be of the type a sub 0 plus a sub 1 x plus a sub 2 x square and so on 

so forth. The unknowns will be the coefficients a 0 a 1 until a sub n minus 1. 

 



As I said before this is how the polynomial is look like. a sub 0 plus a1 a sub 0 plus a2 x0 

square plus a sub n minus 1 x sub zero raised to n minus 1. This is the polynomial when 

x 0 is used in case of x; clearly the left hand side will be the value y sub 0. Likewise, if 

we substitute x equals x 1, left hand side will be y 1 and the right hand side will be a sub 

0 plus a 1 x 1 plus a 2 x 1 square so on so forth the last one being a sub n minus 1, x 1 

raised to n minus 1. 

 

We can keep on substituting the last equation will be y sub n minus 1 equals the value of 

the polynomial for x equals x n minus 1, which is a sub 0 plus a one x n minus 1 plus a 2 

x n minus 1 the whole square until a sub n minus 1 x sub n minus 1 raised to n minus 1. 

These are n equations n n unknowns and we can solve them. We all know how to solve 

this. All we need to do is represent this set of equations in compact form and invert an n 

by n matrix. Notice that matrix inversion is an n cube operation. If the number of 

equations that is the number of data points is large the version process will be slow. 

 

(Refer Slide Time: 04:27) 

 
 

An alternative is the Newton’s interpolation technique. This avoids matrix inversion 

altogether the trick is to write the degree n minus 1 polynomial slightly different. The 

polynomial p x is expressed as alpha sub 0 plus alpha sub 1 times x minus x zero plus 

alpha sub 2 times x minus z 0 times x minus x 1. The last term being in this series alpha 

sub n minus 1 times, x minus x 0 times x minus x 1 and so on and so forth, times x minus 

x n minus 2. Notice that this term is a constant; this term is a constant; this is the term of 



degree 1, this here is a term of degree 2, the next 1 will be a term of degree 3 and the last 

one will be a term of degree n minus 1. 

 

Notice also how these terms arranged for example, if I substitute x equals x 0 all these 

terms become 0 leaving only alpha 0. If I substitute x equals x 1, the first term and the 

second term remain in series, while all the other terms they become zero. This allows to 

sequentially compute the unknowns alpha 0, alpha 1, alpha 2 and so on so forth. If we 

substitute x equals x 0, we simply get y 0 equals, alpha 0. As we said before all these 

terms will vanish if we substitute x equals x 1 the third term fourth term and so on so for 

will vanish leaving only the first and the second term right here. Alpha 0 plus alpha one 

times x 1 minus x 0 this will be equal to y 1. We already know alpha 0 from before using 

this equation we can compute alpha 1.  

 

For x equals x 2, he first three terms remain the series while all the other terms become 

zero these are the corresponding terms alpha zero plus alpha 1 times x 2 minus x 0 plus 

alpha 2 times x 2 minus x 0 times x 2 minus x 1. We know alpha 0 and alpha1 from the 

previous two equations using this equation you can compute alpha 2. Notice again that 

these unknowns alpha 0 alpha 1 alpha 2 they are getting computed sequentially and not 

simultaneously as in the previous curve interpolation technique. 

 

We can continue with this process and eventually get alpha n minus 1. You will discuss 

this later but just repeat these coefficients alpha 0, alpha 1, alpha 2, alpha n minus 1. 

They are all called the divided differences. What are the advantages we do not need to 

invert an n by n matrix; once again we do not need to solve the entire system 

simultaneously. And if in case an additional data point x n y n is added, we do not need 

to re computed these coefficient, instead all we need to do is compute a new coefficient 

alpha n. 

 

Let us consider an example you need to construct a polynomial to interpolate through the 

data points 0, 0, 1, 3, 3, 5 and 7 minus 2 using the Newton’s divided difference method. 

Let me show you an alternative very easy technique to compute coefficient. I will show 

this on the board; we compute the divide differences or the unknown coefficient column 

wise. The first thing we do is we arrange all the axis’s and coordinates into columns like 

this. 
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The first point is 0 0, second point is 1 3, third point is 3 5, the fourth point is 7 minus 2. 

This value here is y 0 and you know that this is the first unknown alpha 0. To compute 

the first divide difference, what I do is I use these four numbers and compute the divide 

difference as 3 minus 0 which is this value minus this value over this minus this, 1 minus 

0 which is 3. 

 

Likewise I can compute the divide difference using these four numbers, how do I do that 

it is 5 minus 3 this minus this over 3 minus 1 which is equal to 1. Next, I use these four 

numbers here; the divide difference is minus 2 minus 5 over 7 minus 3, which is equal to 

minus 7 over 4. I will now fill the subsequent column next, what I do is, I will use these 

numbers and the corresponding in to compute the next values, this is how 1 minus 3 

over. Now here, I am going to be skipping this entry and I am going to be considering 

this (( )), 3 minus 0 which is equal to minus 2 over 3. 

 

Likewise the divide difference here will be minus 7 over 4 minus 1 over. Now I am 

going to be considering this (( )) 7 minus 1. This is equal to minus 11 over 24 and finally 

I will use these two numbers and I will use the entire (( )) the first entry and the last 

entry. The corresponding divided difference will be minus 11 over 24 plus 2 over 3 over 

7 minus 0. This turns out to be minus 11 plus 16 over 24 times 7, 24 7. This is equal to 5 

over 168. Now where are my unknown alpha 0, alpha 1, alpha 2 and alpha 6. In this 

conversing triangle this is where the unknown coefficients are this one is alpha 1, this 



one is alpha 2, and this one here is alpha 3, these unknowns up here on the top edge of 

the triangle. 
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Coming back to the example one can also compute these unknowns the divide 

differences algebratly. We know alpha 0 is (( )) y 0 which is 0 alpha one is y 1 minus 

alpha 0 over x 1 minus x 0 which is 3, alpha 2 is y 2 minus alpha 0, minus alpha 1 times 

x 2 minus x 0, over x 2 minus x 0 times x 2 minus x 1 , which is minus of 2 over 3 and 

alpha 3, we can work out the algebra, y 3 minus alpha 0 minus alpha 1, times x 3 minus x 



0, minus alpha 2, times x 3, minus x 0, times x 3, minus x 1, over x 3, minus x 0 times x 

3 minus x 1 times, x 3 minus x 2, which is 5 over 168. 

 

We have seen these values before the corresponding polynomial can becomes y equals 3 

times x minus 2 over 3 times x times x minus 1 plus 5 over 168 times x times x minus 1, 

times x minus 3. If I try to move the third data point 3 5 to a new location 3 2, this 

polynomial is going to change. The new coefficients are alpha 0 as 0 the same, alpha 1 as 

3 the same, alpha 2 will be now minus 1.1667, and alpha 3 will be 0.1548 using the 

similar procedure. The new polynomial y n is 3 x minus 1.1667 times x times x minus 1 

plus 0.1548 times x, times x minus 1 times x minus 3. Well, how do we see both these 

polynomials practically the curve. 
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The color red is the old polynomial and if I move the third point to a new location the 

curve in black shows the new polynomial, what do we observe we see that change in a 

data point position results in global shape change of the curve. Remember we are 

interested in designing the curves and we would be more interested in knowing what 

happens when our design parameters in this example, the data points as we will solve 

them later, would change in position. 

 

There are a few disadvantages of curve interpolation techniques. We would see more 

oscillations for higher number of data points; this is obviously a polynomial of degree n 



will have at most n real roots. Graphically that polynomial is going to be intersecting the 

x axis at most n number of times. The more the n the more would be the oscillation the 

less the n or the less the degree of the curve the better for us. The second point global 

change in shape is observed if any data point is moved. In another words, curve 

interpolation methods do not offer local shape control to a design. 
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Well, we have an alternative to minimize oscillations, what we can do is use a lower 

degree curve. That would mean that we would forgo the ability for a curve to pass 

through data points, instead the curve will be very close to them the notion is to best fit 

data points with the curve of lesser degree. For example, given a set of n ordered data 

points x i y i i going from 0 to n minus 1 you best fit them. Let us say using a quadratic 

polynomial p x equals a sub 0 plus a sub 1 times x plus a 2 times x square. 

 

Well what we do is we would first compute the least squared error. The least squared 

error is given by capital delta which is equal to summation i going from 0 to n minus 1 of 

individual errors delta i square which is equal to summation i going from 0 to n minus 1 

y i minus a sub 0 plus a 1 x i plus a 2 x i square the whole square. What would this 

equation mean graphically? 
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Let me explain on the board. Well, I start with the two dimensional coordinate axis x y; 

let us say we have a bunch of data points here. And we are trying to fit a quadratic 

polynomial, which would best depict the positions of these points. Let me take any point 

let us say this point i let me draw a vertical, this distance here is x i, this is the axis of this 

point and this distance the coordinate of this point is y i at x equals x i. The coordinate 

predicted by this quadratic polynomial is y p.  

 

Naturally the error would correspond to this distance which is y i minus y p. One can 

either take the absolute value or one can take the square value; this is delta i square. 

Because that this is the quadratic column; so the predicted value y p for x equals x i will 

be given as, let me compute the error, this is y i minus y p will be a 0 minus a 1 x i minus 

a 2 x i square the whole square. This distance here again is delta i; naturally, the overall 

error capital delta will be the summation over all the points of small delta i. 
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Now how do we compute the unknowns a sub 0 a sub 1 and a sub 2; well we minimize 

this error capital delta with respect these unknowns. How do we do that? We go back to 

basic calculus and we realize that if we treat these unknowns as independent variables, 

we can compute the slope partial delta over partial a sub 0, partial delta over partial a sub 

1, partial delta over partial a sub 2 and make these slopes all go to 0. 
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Let me derive these equations for you here on board. So, partial delta over partial a 0 is 

given as summation i going from 0 to n minus 1, 2 times y i minus a 0 plus a 1, x i plus a 



2 x i square times minus 1 and this is equal to 0, let me bring this summation inside and 

rewrite this equation as summation i going from 0 to n minus 1, y i minus a 0 summation 

i going from 0 to n minus 1,1 minus a 1 summation i going from 0 to n minus 1, x i 

minus a 2 summation. Let me drop the upper and lower limits here x i square. This is 

equal to 0.  

 

One can compute partial delta over partial a 1 in a similar fashion; as summation 2 times 

y i minus a 0 plus a 1 x i plus a 2 x i square times minus x I; and this will be equal to 0. 

Likewise partial capital delta over partial a 2 will be equal to summation 2 times y i 

minus a 0 plus a 1, x i plus a 2, x i square times, 2 x i; this is equal to 0. Look like I have 

made a mistake here, I am computing partial derivative with respect to a 2. So, this 

comes here will actually be minus of x i square. So we have three equations one two and 

three and if you work out the second and third equation. By this simplifying then you 

would notice that you will have these three relations which are linear and the unknowns a 

0 a 1 and a 2. So it is a three by three system we are talking about which is very easy to 

talk. 
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Well let us consider an example now; construct a quadratic polynomial to best fit the 

data points 0 0, 1 2, 3 2, 6 and minus 1. We have seen this now how to compute the 

unknowns the unknown coefficients of a quadratic polynomial; we will simply give you 

the results now. For these four data points the quadratic best fit polynomial is 0.27 plus 



1.55 times x minus 0.30 times x square. If I move this point 3 2 to a new location says 

1.54 and retain the locations of all these three points I get a new quadratic polynomial. 

The coefficients minus 0.16 plus 3.35 x and minus 0.58 x square. 
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Let us see the two quadratic brackets. The black curve is the first quadratic equation and 

if I move this point to different location, I get this red curve as a new quadratic function. 

Once again we observe that changing the location of any data point affects the shape of 

the entire curve. Some features of curve fitting; well, the oscillations get reduced for 

higher number of data points which is expected then say using low order or low degree 

curves respect is given set of data points. But we still see global change in shape if any 

data point is moved. We still do not have local shape control on the curve what do we 

learn use of low degree curves to avoid unwanted fluctuations, and there is a possibility 

of the use of juxtaposed piecewise segments to facilitate local shape control of the 

curves. 

 

Let me give you an example on the second point. Well, all we need to do is we need to 

consider the given set of data points or control points or design points, as we will call 

them later in different sub groups, each of smaller size. And then we can either 

interpolate or best fit points in individual sub groups using low degree segments. In this 

example we have taken four data points in first sub group and interpolated them using a 

cubic curve. 
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The next group is again a four data points again interpolated using a cubic segment. This 

point here is the junction point common to both segments and the two segments form 

four (( )) composite curve. Well, let us say we try to relocate this point the shape of the 

cubic segment is expected to remain unchanged. It is a set of (( )) conditions as the 

junction points that we will worry later. 
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Let us now focus upon different mathematical representation techniques of curves. In 

general, we have explicit equations where a dependable variable y is explicitly expressed 



in terms of an independent variable x. For example, we have the equation of a straight 

line from quadrant geometry y minus y 1 equals y 2 minus y 1 over x 2 minus x 1 times x 

minus x 1. 

 

Well what happens, when x 1 equals x 2 the line is vertical, the fact that y in not unique 

for this particular line is not very clear using this explicit representation. In fact this 

explicit representation cannot handle the condition x 1 equals x 2. Another case implicit 

representation where independent and dependent variables are expressed together in a 

function; g of x and y equals 0. From this equation is not very clear which variable is 

dependent; for example, the equation for line a x plus b y plus c equals 0 and the 

equation of a circle x square plus y square minus r square equal 0. If we find the 

intersection between this line and this circle the first thing you would need to do is we 

would need to convert these equations in the explicit form respectively and further if 

there are two real roots computing these roots will take extra mathematical processing 
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The third representation is the parametric one where the co-ordinates in the Euclidean 

space x, y and z are expressed each in terms of functions of an independent parameter u. 

For example x is f of u, y is g of u and z is h of u; f g and h are three functions of 

parameter u. The first advantage we get is that the issue of vertical tangents gets 

resolved; how? Well, one can simply say f of u is x 0 which is constant and g of u is 

equal to u where u goes from minus infinity to plus infinity. 
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Further, if we have two curves let us say in two-dimensional space with functions f 1 and 

g 1 both expressed in terms of parameter u 1 and for the second curve we have functions, 

f 2 and g 2 both expressed in terms of a different parameter u 2, we need to compute the 

intersection between these two curves. All we need to do say that the corresponding x is 

equal and the corresponding y are equal. In other words, f 1 of u 1 equals f 2 of u 2 and g 

1 of u 1 equals g 2 of u 2 two conditions we give us values u 1 and u 2. 
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The third advantage with parametric representation is that segments can be represented 

by imposing bounds on the parameter; for example, an arc of a circle parametrically 

circle is represented as x equals r co sin of theta and y equals r sin of theta and if we 

impose bounds on the angle theta, theta 1 being the lower bound theta 2 being the upper 

bound. We would be able to represent a segment of a circle for now. This is not very 

much possible using either the explicit and implicit forms. 

 

Using parametric representation the compact vector form of the parametric curve can be 

written as r of u note that r is in bold represents the position vector of a point on the 

curve is equal to x of u and i the instructor along the x direction plus y u times j the 

instructor along the y direction plus z of u times k the instructor along the z or z 

direction. 

 

The bottom line, we prefer to use parametric representation due to its advantages over 

the explicit and implicit representations number 1; number 2 we prefer to use low degree 

curves to minimize unwanted oscillations and number 3, instead of using a single curve, 

we choose a set of curves join them together or juxtapose them together at junction 

points, to form a composite curve which would represent a final design, that would either 

interpolate a best fit the given design point or data points. 

 


