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Welcome back to lecture number eight of this particular course. Last time, we saw how 

to do the coordinate transformation and let me just take you through the same. Before 

that, we try to get into this ionic activity and try to derive the activity co-efficient using 

the Debye-Huckel equation. 
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We just about started on that after essentially completing the Gran plot scheme of 

calibration and measurement of electrode. The coordinate transformation was needed 

because we were trying to illustrate or we were trying to find out mathematically the 

potential function. So, we use the Poisson’s equation which is the spatial derivate of the 

potential function and equated that to the charge density, 4 pi rho by d. We also figured 

out that because we were talking about spherical central charge of interest and ion cloud 

around it. We would have to deal eventually with the spherically symmetric situation that 



will make our life easier. Therefore, we made a coordinate transformation of Cartesian to 

spherical. 

In this case, we illustrated how we can find out this x y z, the point on top of this radius 

vector with respect to R gamma and theta, gamma being the angle between the 

projections of the radius in the x y plane. Theta is the angle between one of the axes, in 

this case, the y axis, with this projection vector on the x y plane. 

To do the coordinate transformation, I would expect the students to actually go do this as 

a part of the homework assignment may be eventually given. If we consider the whole 

distribution and also consider spherical symmetry that means no variation whatsoever 

with gamma or theta, so, spherical symmetry as if these potential functions are like shells 

around the small positive charge of interest. 
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In that case, the final equation boils down to 1 by r square partial of partial with respect d 

r of r square partial of y with respect to r. This can be equated to minus 4 pi rho by D. 

That is how the Poisson’s equation can be written down assuming spherical symmetry. 

So, the potential function’s variation is purely with respect to the radius vector r in that 

case. This can further be expanded into by putting the value of rho that we obtained 

earlier in terms of the subscript i and the total number of charges on the point A as minus 

4 pi by D N i Z i square epsilon square phi by KT. This is essentially from 1. We had 

assumed this equation number 1 in the earlier presentation. 



Now, let us make some presumptions here. We just for the sake of convenience, assume a 

factor K. This is actually different from the Boltzmann’s constant K. Let us see in order 

to just make a little more simplified without any problem, let us consider this to be small 

k. We can rewrite this equation as 1 by r square d by d r, r square d phi d r to be equal to 

small k square phi. What is k square in that case? k is essentially a parameter, which is 

equal to minus 4 pi or it is equal to 4 pi by D epsilon square by KT, where K in this case 

is the Boltzmann’s constant, sigma N i Z i square to the power half. Let us actually write 

this as equation number 2. This is very important, because later on we have to write the 

final formulation in terms of the subscript i and various other parameters which are 

included in this small k concept. Let us call this equation 3.  

If you go through p d partial differential equations again any graduate program on them, 

there are generalized solutions for finding out the solution for certain kind of p ds. In this 

case, generalized solution that one can think of for equation 3 comes out to be equal to 

phi equals A e to the power of minus k r by r plus A dash e to the power of k r by r. A and 

A dash are constants. We should need to know certain unknown, r of course, is the radius 

vector and k as we know is given by equation 2 here. 
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So, one way of checking back whether this is going to work or not is to put the value of 

phi in equation 3 and see whether you have equality on both sides. If we put this root and 

try to the evaluate the various aspects of the behavior of potential function that means 



what we know as boundary conditions of the potential function, we would be able to 

estimate this co-efficients, A and A dash. 
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Let us look at it how. As we know that at r tending to infinity, the potential function phi 

would be also equal to zero. That is what the basic premise was, when we were talking 

about central charge distribution and ion cloud that the potential generating from this 

small positive ion of interest at a distance which is infinitely spaced would be zero. There 

is no potential at infinity. 
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Therefore, if you assume phi to be zero at r equal to infinity and if you know from earlier 

that the equation for phi is A e to the power of minus k r by r plus A dash e to the power 

of k r by r, then the only way you can have this condition- r equal to infinity phi equal to 

zero validated is by assuming that A dash is equal to zero for obvious reasons. Because if 

r is infinity, then in that case this particular term here, e to the power k r should also go to 

infinity and r being infinity, the only way to avoid this situation is by assuming a zero co-

efficient so that there is a validation. Therefore, really phi is represented as A e to the 

power of minus k r by r. As we know from earlier that the rho, the charge density is also 

minus A times of sigma N i Z i square epsilon square e to the power of minus k r by K T 

times of r. 

This is same as writing minus sigma N i Z i square E square phi by K T, phi being e to 

the power of minus k r by r. We have just made a slight rearrangement here for the 

charge density. If we look at the equation number 2 that we have done before, in terms of 

k, how we can represent this whole expression. Then from there, we can easily get that k 

here, if you look at has been represented as 4 pi by D epsilon square Boltzmann’s 

constant K times of T sigma N i Z i square to the power of half. We can do a little bit of 

manipulation here so that we can represent this whole term in terms of k. From here, we 

can also have an expression wherein the epsilon square sigma N i Z i square by K T 

term, where K here is K is Boltzmann’s constant represented as D by 4 pi small k square. 

If I substitute that back into this equation 4 here and the final equation that I get is 

basically minus A times of D k square by 4 pi e to the power of minus k r and of course, 

there is a r term in the denominator, so, it is basically A k square D and since this 

particular term can be represented as minus A D k square e to the power of minus k r 

divided by 4 pi r. 
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This is an important aspect, because this is what the charge density at point A is. We will 

like to have a look at what is the corresponding counter ion cloud charge density. For 

doing that, as we are aware that the principle of electro neutrality is always to be 

followed and by that principle we know that the total amount of positive charge in a 

sense would equalize the total amount of negative charge. 

This is very interesting situation because we have a case where we have a positive charge 

here and there are several minus charges or negative charges in the counter ion clouds 

here exactly. So, the total charge in the ionic atmosphere let us say all the way up to 

infinity here, it is going up to infinity, there are charges here, there are charges here, there 

is a whole bunch of these counter ion charges assuming a single positive of charge all the 

way up to infinity which would totally be able to balance in this particular charge. If you 

assume that and if we try to find out what is really this charge density of the counter ion 

cloud and equate that to just the negative magnitude of the positive charge here, we 

should be able to get an equality between the two. 
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Let us try and do that and then with the charge density that we had figured out in our 

earlier slide, we will try to find out what the coefficient A would be and this is of 

immense utility for us as we will see later. All these ionic activity and ion selective 

electrodes do depend a lot on how this particular behavior of surrounding ions would be 

effecting the electrical contribution of the particular ion of interest in each case. In our 

case, it is positive ion. 

Let us assume the central charge to have plus Z i epsilon as the total charge. If I have a 

positive ion here and this has a radius a, which is very close by here. We assume that 

there is an ion cloud which extends all the way up to infinity, but then at a distance r 

from the center, we are trying to the see what is the charge density in a thin shell of the 

counter ion clouds. 

Let us assume that thickness of this shell is as small as an infinitesimally small value of 

the radius function r here as d r. So, the total charge of the counter ion cloud would be 

represented as the charge density times the volume of this thin annular, assuming this is a 

thin spherical annular. So, we need to find out what is the total charge stored in this 

spherical annular by looking at this volume here. We get this as rho times the volume of 

annular thin which is 4 by 3 pi r plus d r cube minus r cube. We assume that we are 

trying to calculate the volume of this thin annular here. 

The radius vector all the way up to here is r plus d r, here it is r. So, you are trying to 

create volume difference. Let us try to look at what this volume would be like, it is 



essentially 4 by 3 pi and then we have r cube plus d r cube plus 3 r d r times of r plus d r 

minus r cube. This gets canceled away; this is too small a quantity and if you look at this 

quantity here, it is 3 r square d r plus 3 r d r square, we assume d r to be so small that 

even this is neglected. 

We are left with only 4 pi r square d r as the elemental volume here in this particular 

annular. Therefore, if you want to calculate the total charge in this thin annular, it would 

be total charge of counter ion cloud. So, we can actually give a boundary condition here 

as if the density has to be calculated from the radius of the basic ion A all the way to 

infinity of this expression 4 pi r square rho d r. This is nothing but an integration of the 

surrounding ion density or ionic concentration. What this should be equal to really? As I 

told before that for the principle of electron neutrality, this should be equal to the 

negative of the charge as the charge of the primary ion of interest which is the positive 

charge. 
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So, essentially from this equation, we should be able to get some information about the 

parameter A as we had actually defined before while calculating the density rho. Let us 

look at how we do that: rho from the earlier equation had come out to be minus A k 

square by 4 pi, this k here is small k- should not confuse, both are different- times of D 

dielectric constant times of e to the power of minus k r by r. That is what rho is. We are 

calculating an integral from a to infinity of 4 pi r square A times of small k square by 4 pi 



r D e to the power of minus k r - this is equated to Z i times of epsilon for being 

electrically neutral or in the case of electro neutrality. Mind you that this being negative 

sign, the negative sign on the right cancels because of that. 

So, let us actually try to integrate this and find out what comes. This 4 pi goes away, that 

is the first power in a r which is retained here and what we are left with is an integral A k 

square D integral a to infinity r e to the power of minus k r equals to Z i epsilon. We will 

like to integrate this by parts. If we integrate them by parts between a and b, f x g dash x 

d x is actually equal to f x g x from a to b minus integral a to b f dash x g x e x. I just 

want to reiterate what integral by parts is, here f x is equal to A, f x here is equal to r. The 

g x here is equal to e to the power of minus k r. In this, the g dash x is equal to e to the 

power of minus k r. Therefore, g x becomes minus e to the power of minus k r by k. That 

is what g x becomes. Therefore, when we are trying to calculate integral a to infinity r e 

to the power of minus k r, we are doing minus r e to the power of minus k r by k f x g x 

term between a and infinity, b in this case is infinity minus integral a to infinity f dash x, 

which is in this case 1 because of f x is r , f dash is nothing but d by d r of the function r 

times of g x, which is minus e to the power of minus k r by k d r. 
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That is what this integral would be eventually looking like. On solving this equation, we 

get the final value here as, a e to the power of minus k a by k plus e to the power of 

minus k a by k square - that is what the final integral would look like after we put the 



value of r between a and infinity and evaluate these term 1 and term 2 here in this 

particular equation. That is what Z i E would really be. 

Starting from here, we should get an idea of what a would be, because a is in the 

potential term and from the differential equation a is also unknown so far and we need to 

estimate the value of capital A. This would be the only method of doing that. Let us look 

at by solving what the value would come out to be equal to. We just rewrite this 

particular value of A k square D into the integral which we had just tried to find out is Z i 

E, so, this becomes Z i E by A k square D. 
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We take this equation to the next page. We have on one side a e to the power of minus k a 

by k plus e to the power of minus k a by k square and that is equated to Z i E by A k 

square D. Let us take this term right, we are left with A k square D times of - If I try to 

multiply this term by k above and below so that there is a common denominator, we are 

left with e to the power of minus k a times of 1 plus k a by k square is Z i times of 

epsilon. These two go away and we are left with an expression A equals Z i epsilon e to 

the power of k a by D 1 plus k a. 

That is what the value of A is, the co-efficient A is. Simultaneously, if you look at what 

phi is, phi was represented as A e to the power of minus k r by r. Substituting the value 

here, we are left with Z i epsilon e to the power of k a e to the power of minus k r times 

divided by D 1 plus k a times of r. That is what the potential function phi at that 



particular point is. So, now we have pretty much everything known. We know what k is. 

We still do not know what a is. This a is also known as the ion size parameter as we look 

at in the next slide. 

The first thing which comes to our mind is let us really find out what psi at a is, that is 

essentially what the potential function at the point A really was. If I put the value of A in 

this particular equation here, we are left with Z i E epsilon divided by D 1 plus k a times 

of a, as these two terms, k a and for r is equal to a, they cancel out. So, we are left with Z 

i epsilon by D times of 1 plus k a times of a. This gives us an interesting observation.  

We can try to independently make these two co-efficients on two different terms on the 

denominator or we can to try to solve this particular equation using partial fraction 

concept to interpret about what is the contribution of the ion and the potential and what is 

the contribution of the surrounding and atmosphere because potential as you know is 

nothing but 1 by 4 pi epsilon naught some charge contribution let us say q divided by the 

radius of the distance of a point from that particular charge. In this case, the distance that 

we have considering is a, so let us actually split it using partial fraction. 
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If you try to do that, the phi value can be represented as 1 by a 1 plus k a can be written 

in terms of partial fraction as 1 by a minus k times of 1 plus k a. Let us compute this. If 

you make this, the denominator will come out to be a times of 1 plus k a and 1 plus k a 

will be k minus k times of a so that essentially this is 1 by a in to 1 plus k a. This is the 



correct partial fraction for this expression on the top and let us split it up in to two 

different terms Z i by D times of a minus k divided by D times of 1 plus k a times of Z i 

E. What we are sure about one thing is that this probably corresponds to the contribution 

from the ion itself as it corresponds to an r value equal to a as we had investigated before 

the radius value equal to a and this should be - because even it is negative as you can see 

here, should be the contribution of the ion atmosphere. This is a very important fact that 

this is a negative ion atmosphere, because central ion was positive. Therefore, the 

contribution to the potential function by this particular term here is also negative. 
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A very important factor here then is that the final potential function is not only because 

of the charge of interest but also because of the surrounding counter ion cloud or the 

counter ion charge which is surrounding it. Therefore, if we try to estimate what is an 

average radius or what is an equivalent radius of such counter ionic cloud, I could write 

this down very well as Z i E by D times of 1 plus k a by k. This is the radius equivalent 

of a counter ion cloud. This is the radius equivalent of a counter ion cloud and which 

might mean that 1 plus k a by k is the radius of ion cloud. 

Now, let us go to another very important aspect. How we can correlate all this 

information to the activity of the particular ion of interest, which is the positive ion in 

this case? Basically, we would now like to find out how whatever we have done so far is 

related to the activity of an ion of interest. For that, there has to be some kind of a 



relationship in terms of the amount of work that is done for bringing small amount of the 

counter ion cloud from infinity into the center of the counter ion cloud and try to equate 

that to delta G equation, Gibb’s free energy equation. This will be clear in a little bit 

when I demonstrate that part. 

Let us study first that what would be the free energy involved in all this process where 

the ions come from infinity, they form a counter ion of minus Z i E around the main ion 

of interest which is plus Z i E; how all that happens, the amount of maximum work done 

which is also equal to the free energy of the system, how that can be defined in terms of 

the ionic concentration. 

As we know from the Van’t Hoff equation while doing electrochemical cells, we found 

out that the amount of free energy of such a self-organizing system would be given by 

the equation, delta G equal to delta G naught plus r times t natural log of activity of the 

ion which is gamma i x i; if you remember when we talked about the ionic activity and in 

fact when we were discussing the electrochemical cell, we considered that there is a lot 

of high ionic background and therefore, there is only one specific ion of interest and so 

the activity co-efficient gamma is one in that case. But in our case here, the activity co-

efficient was a function of a concentration here though the activity is - because of the 

several interacting ions that are present in the solution of finite value, gamma i into the 

concentration of the i th species. 
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So, we do get a relationship between the free energy associated with this dynamics that is 

going on around the positive ion and the activity of the particular species of interest. Let 

us see what would be needed to bring a few moles of the counter ion cloud from infinity 

into such a cloud. Let us say you have a positive ion here; this is the infinite plane 

probably and there is a bunch of counter ion clouds which are surrounding at all 

directions and you have this counter ionic radius that is given from the earlier equation 

by this factor 1 plus k a by k as we did in the earlier equation. 

Now all set and done. Let us say this kind of charge distribution is existing and you want 

to bring some charge, some elemental charge, let us also assume this is minus Z i 

epsilon; we assume that this total counter ionic charge is minus Z i epsilon. We made this 

presumption while deriving this ionic radius formulation of the cloud. We assume that a 

very small amount of this charge, d Z i epsilon is being brought in this counter ion cloud. 

So, the amount of work that would be done for such a small charge to get into the 

counter ion cloud of value Z i E may be at a point where the potential is also defined by 

the formulation, K Z i epsilon by D 1 plus k a, so, if you may remember this was the 

contribution of the potential from the negative ion. If you have a potential function 

somewhere very close to this ion at a distance, say a, where a is the ion size parameter in 

this case and you are trying to get this small d Z i charge very close to this point. The 

amount of work that is done really in this case is nothing but the free energy change of 

the system. 
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The work that is stored in the system if allowed, the system can do an identical work. Let 

us find out what happens in terms of total work done. Let us assume this work is d w and 

we want to find out the total work done when all this charge, all this Z i E, is brought 

near to this point a, so, we can represent this by very simple integral d w and we assume 

that the d Z i varies from zero all the way up to Z i E, phi i times of d Z i E, that is what 

the total work done varies. This is actually nothing but equal to the amount of work done 

into the system done in order to give an ion of potential plus or phi i, its charge of minus 

Z i E or its counter ion atmosphere. 

So, the delta G minus delta G naught for concentration equal to 1 is actually equal to the 

work done in totality per mole. This is the work done in totality. This divided by n, the 

number of moles of charge that is transferred can be equated to the integral d w. 

Therefore, we evaluate this integral 0 to Z i E times of phi i, and phi i is basically the 

counter ion contribution part of the potential; so, it is Z i epsilon k divided by D 1 plus k 

a times of d Z i E. 

So far things are pretty clear that we are talking about trying to give an ion of potential 

psi i, its counter ionic charge of minus Z i E in bits and pieces of d Z i E. The total of 

amount of work done is computed by doing an integral as if the counter ion were zero 

before and it goes all the way to about Z i E. So, it is a kind of indirect way of looking at 

it. This is nothing but work done in totality by the number of moles because this is per 

ion. But delta G minus g is the work done in totality. So, you have to divide this on both 

sides by the number of moles of the charge that is transferred in order to equalize this 



work done per ion of interest. So, number of moles is essentially needed to make this 

work done per ion. 
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If you look at the equation for delta G from before, delta G minus delta G 0 is equal to R 

times T l n of gamma i x i. Therefore, per ion, delta G minus delta G 0 by n should be 

equal to R by n T l n - l n of the activity gamma x i- l n of gamma i x i here. So, R by n is 

nothing but the Boltzmann’s constant K. K is R by n, the Rid burg constant per mole of 

charge that is transferred times of K times of l n x i gamma i and this is equated to work 

done here which is essentially this factor zero0 to Z i E, and by the by this is the negative 

charge, minus Z i E Z i epsilon by D k times 1 plus k a times D Z i epsilon. If we do 

integral here, it will come out to be minus Z i square epsilon square k divided by twice D 

times of 1 plus k a varying between zero and Z i E, nothing but the same Z i E square 

times of epsilon square times of k divided by twice D 1 plus k a and this is equated to our 

earlier stance here, K T times of l n gamma i x i. 

When we were talking about contribution per mole, the x i here can be considered to be 

for one mole. If we look at one mole of solution, this can be converted in to K T l n 

gamma i and therefore, for uni molar solution, the relationship between the total work 

done and the total free energy can be as given in these set of equations. 

From this we have an important idea of what the activity in such an ion of interest would 

really be and therefore, let us in a little different manner try to see what gamma i is by 



taking antilog on both sides and trying to expand this term here on the left into a more 

appropriate and more readable term in terms of mean ionic strength of solution. 
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We know that k is also 4 pi by D epsilon square by K T sigma N i Z i square to the power 

of half. We can do a little bit of change here with this N i term. If we assume that this C i 

to be the concentration of the ion of interest, the i th ion interest, then N i can be 

represented as the Avogadro number times of C i divided by 1000. N i, mind you, if you 

would have recalled from earlier, was the charge density, charge per unit volume. Since 

we were talking about CGS units, this is essentially charge per centimeter cube of 

volume. 

C i of course is molarity, which is moles per liter and therefore, one liter is around 1000 

centimeter cube and thus this 1000 term here. The number of moles or the number of 

charges per unit volume can be a function of N C i by 1000. So, if we substitute that back 

into this equation here, we can get the value of k as 4 pi by D epsilon square by K T 

sigma N C i Z i square divided by 1000 to the power of half. We can do further 

simplification and try to write this term in terms of 8 pi by D epsilon square N by K T 

times of half sigma C i Z i square whole half. 

Now, this term is really a very interesting term and we can also call it the mean 

concentration in an ionic solution. All said and done, because we have utilized certain 

protocol or a certain way of notating the charge N i to be the negative charges and the 



positive charges and therefore, ultimately if suppose you have a CaCl 2 solution where 

you have a Ca plus 2 as the positive charge and Cl minus as the negative charge, the 

equation that you are finally going to derive out all of it can report about the activity 

should take into consideration because it is a different valency situations Ca has plus 2 

and Cl has minus, but number of moles Ca is 1 Cl is 2.So, all these things have to be 

considered in the equation. That is why the notation that we had taken, N i was very 

important at the very outset. 

Half C i Z i square here sigma is the mean concentration of all the different ions which 

are present. Suppose in a solution, if you have a CaCl 2, NaCl, KCl -these kind of 

competing ions over the ion selective electrode in question, in that case, half C i Z i 

square would be - suppose you have 1 mole of k c l present, so you have 1 concentration 

of potassium times Z i square which is 1 square plus 1 concentration of chlorine plus Z i 

which is minus 1 square. This is the way you had to keep on computing the mean 

concentration and divide the whole thing by 2, so that you have an idea what is the mean 

concentration of a solution. 
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We are going to solve some examples later on where we will try to find out what this 

activity co-efficient would come in such a situation. From this equation here, we try to 

derive the final form of the equation for activity co-efficient in terms of the mean ionic 

strength which would be done in the subsequent lecture following this. Thank you! 


