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Hello and welcome back to this 28th lecture on Bio-Microelectromechanical systems. 

Let us begin with a quick preview of what we have done last time. 

(Refer Slide Time: 00:23) 

  

We talked about the flow over an infinite plate; the way that the boundary layer would be 

created as a difference between the fully developed region of the flow and the layer 

adjacent to the plate, which has shear deformation. We talked about different types of 

flows regarding 1, 2, 3 dimensional flows and tried to calculate the velocity fields. We 

also discussed about a control volume dx, dy, dz and tried to derive the conservation of 

mass equation, which is also the first Navier-Stokes equation. We solved examples for 

ascertaining the velocity component or the density with respect to time or space for 

compressible and incompressible flows. Again to recollect, compressible flows are those, 

where density changes with time. Incompressible are those, where the density does not 

change as a function of time. 
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Today, we will try to derive the conservation of momentum equation, which is also 

known as the second Navier-Stokes equation. Essentially, all this theory is very 

important because when we translate this theory to the micro scale, the interesting part is 

that the mass transport becomes time independent. It essentially reveals, if there are two 

side by side flowing streams of fluid in a micro channel, the seldom x because owing 

primarily because of this reason 

If we look at how to derive the conservation of momentum, there is something to do with 

acceleration of a fluid particle. Newton’s second law of force is nothing but mass into 

acceleration. So, let us first calculate the acceleration of a fluid particle in a velocity 

field. 

(Refer Slide Time: 02:36) 

 

Given the field v as a function of x, y, z and space-time, let us assume a p is the 

acceleration vector of a fluid particle. So, we want to find out what a p is in terms of 

velocity. Let us say, the particle p is moving in the velocity field as represented here 

above in equation 1. At time t, the particle is at position x, y, z. So, let us say at t position 

of the particle is x, y and z. This particle has a corresponding velocity at that point in 

space at time t, which is represented by v p at t equals v into x, y, z, t. 

Let us say, it has a velocity at t plus dt, which is represented as x plus dx, y plus dy, z 

plus dz, t plus dt. Essentially, what it really means is that you have this rectangular 

coordinate system with x, y and z components. You have a radius vector r, somewhere 
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here at point p with respect to the origin o. This changes to another point p dash and the 

new radius vector becomes r plus dr. Essentially, this is the position at time t, this is the 

position as t plus dt. The vector connecting these two is the position vector; the particle 

has traversed from point p to p dash. It is definitely a function of x plus dx. This point 

here is x plus dx and that means the traversing of the particle in the x direction is by an 

elemental distance dx. The traversing of the particle in the y direction, but this path is 

being executed. So, it there are three components of this path. The particle traverses dy 

and similarly the traversing of the particle in the z direction, the particle traverses dz 

from point p to p dash. There are two different time instances, t and t plus dt. If we 

consider or if we try to find out what is the change in velocity as the particle moves from 

p to p dash. 

(Refer Slide Time: 06:32) 

 

If we consider or if we try to find out what is the change in velocity as the particle moves 

from p to p dash, the velocity dv p can be effectively written as the rate of change of the 

velocity vector p with respect to x times of dx plus dx p because x p is the position vector 

or the x component of the position vector at of the particle p. So, dv vector by dx is the 

rate of change of velocity in the x direction of the particle times of dx p plus rate of 

change of velocity of the particle with respect to y times of dy p plus rate of change of 

the velocity of the particle with respect to z times of dz p. 
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You have a time component here; the time is varying with respect to t. So, the rate of 

change of velocity vector of the particle with respect to t times of dt. So, this is how the 

differential element of velocity dv p can be written from vp. If we differentiate this with 

respect to time, we will have dv p vector with respect to dt. It is essentially the rate of 

variation of v with respect to x times of… These are again special components, so it 

should have only… Suppose your v vector comprises of three components u, small v and 

small w. Therefore, u really is differentiable only with respect to x and not with time. 

This is how you basically represent the velocity vector. At the position p, the vector is 

invariant. So, delta v by delta x times of dx p by dt plus delta v by delta y times of dy p 

by dt plus delta v by delta z times of dz p by dt is plus delta v by delta t. This is 

essentially your rate of change of velocity vector of particle p with respect to t. 

Now, we know dx p by dt is nothing but the velocity of the particle in the x direction, dy 

p by dt is the velocity of the particle in the y direction and dz p by dt is the velocity of 

the particle in the z direction. We can represent them by u, v and w. Essentially, the 

acceleration vector is nothing but the dv p by dt, the rate of change of velocity vector of 

particle p with respect to t is nothing but u delta v by delta x plus v delta v by delta y plus 

w delta v by delta z. Why we did not use the chain rule here for differentiation by taking 

the derivative of dv by dx? Because v is essentially,… at a certain time point t. 

Again, let me just repeat this point once more (Refer Slide Time: 10:01); v vector is the 

velocity at time point t and it changes to the velocity at time point t plus dt later on. This 

is essentially x, y, z and t and this is related to x plus dx, y plus dy and z plus dz plus 

times of t plus dt. So, once you have differentiated this vector with respect to x. The time 

component is automatically gone out. As time is concerned, the differentiation of v with 

respect to x is independent of time and therefore, the first component is not differentiated 

with respect to time. The second component is a representative of the position of a 

particle x p. What we are doing here is dx, p by dt, which means it is a instantaneous 

velocity of the particle in the x direction, when it is at position p. 

Similarly, dy p by dt is essentially a representative of the instantaneous velocity of the 

particle in the y direction, when it is resting at p. So, these are essentially nothing but u, v 

and w. V is already independent of t, so it is a constant as far as differentiation with 

respect to t is concerned. Here is the new term, which comes out. X p can of course be 

differentiated with respect to t and this gives the instantaneous velocity of the particle in 
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the y direction, in the x direction at the point p. This is how this equation emerges out of 

acceleration from the previous equation. 

So, acceleration of the particle can be represented as u dv by dx plus v dv by dy plus w 

dv by dz. I may just quickly rub this and write this again. This is what the acceleration 

vector ap is and of course, there is a delta v by delta t and the velocity of v with respect 

to time t. 

Thus, you have defined the acceleration. The fluid may be accelerated, as it is convicted 

into a region of higher velocity. Let us look at that; suppose you have a rectangular block 

of fluid, what kind of forces that block will feel because of stresses, which are taking 

place in the medium with respect to that control volume? If you look at the type of 

deformations that such a small control element would have in a shearing stream, 

assuming the volume to be present somewhere in the stream, the kinematics of such a 

mechanism can be illustrated as shown in this particular figure. 

(Refer Slide Time: 13:17) 

 

This is the box present in a rectangular coordinate system. The volume element has a 

volume of dx, dy, dz. Essentially, this is an infinite decimal element of mass dm, where 

rho is the density. We assume the density rho is to be constant. It is a incompressible 

flow, so rho dx, dy, dz. 
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Essentially, the total mass of this small volume element is called dm and it moves in a 

flow field. So, the number of deformations or the number of kinematics states of a block 

is simply translated. It means that this was really the initial position of the block. It 

changes to this new position here. So, this is simply translated motion. It may rotate, 

which means that the block is integral in shape or not changing or losing its shape. It 

rotates at the same point; it may deform, which means that the block actually starts 

changing its shape from a square to more like a parallelogram. Something like this or it 

may actually deform linearly. This is linear deformation and that means a cube will 

become a cuboid because of volume continuity. Increase the length of the block by 

pulling it together. The area of cross-section will definitely decrease. 

There are four different kinds of kinematics states that this block can have while moving 

in a fluid volume. One is translatory and another is rotary. As you can see here, third is 

angular deformation, where you are actually trying to compress the block and make a 

square into a parallelogram. The fourth is linear deformation, where you are actually 

trying to pull the block and trying to deuce cross section and increase length. 

Consider the first aspect that is fluid rotation, how this small fluid element would be 

rotated? So, let us assume that omega is the angular velocity of rotation. If you again 

recall, the rotation is actually a block at one angle and one position. It actually rotates 

about its own place retaining the center, goes to a different location and rotates to a 

different location. 
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(Refer Slide Time: 15:50) 

 

Let us assume angular velocity as omega. So, omega will again have three components: 

omega x i, omega y j and omega 2 k, which means that these omegas have different axis 

and they have independent rotations. How do you define the rotation in this kind of a 

case? Suppose, you have two mutually perpendicular planes like this. You are rotating 

the planes all together retaining the perpendicularity between them. It means the planes 

are not really deforming along its own with respect to each other. 

They are just keeping in the same angle and then trying to rotate in the average velocity 

of rotation. In this case, it would be nothing but the velocity of plane 1 plus velocity of 

plane 2, which is orthogonally placed by two planes. This is how you do the average 

velocity of rotation of average angular velocity of rotation of two mutually perpendicular 

line elements of the particles in each orthogonal plane. Let us obtain a mathematical 

expression for this. It will be a generic expression because it is later on translated to the 

case, where the angle between the plane changes as the rotation goes on and it is also the 

case of shear deformation; it is the third case. 
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Let us actually look at their aspect. In this particular case, you have a coordinate system 

x y. We are just considering rotation only in two-dimensional plane. You have a block 

somewhere in position O. These are the two diagonals of the block. The block rotates in 

a position, where basically these diagonals come like this. There is a new location of the 

box created because of this rotation in this manner. 

Basically, you have the block placed at coordinates M, N, P and Q. Now, the new 

position coordinates become M dash, N dash, P dash and Q dash. It rotates about the 

center O. This rotation can be figured out in terms of two angles. The angle, which is in 

plane 1, it is able to define while it rotates and plane 2 - M Q, which is able to define as it 

rotates. 

In other words, we can also consider two diagonals, which are perpendicular to these 

planes. They have a fixed angular relationship with respect to the plane. We consider the 

rotation of the two diagonals. In order to consider the average velocity of rotation in this 

particular instance, let us assume and proceed. So, you have a case, where you have 

diagonals intersecting at point O. In the first instance and after rotation, these diagonals 

change positions to the new value, where the perpendicularity between the diagonals is 

maintained; it is a case of pure rotation. 

Let us call these with different names. Let this be o a, o a dash and this be o b and b dash. 

Essentially, these move to new positions a 1, a dash 1 and b 1, b dash 1. The rotation 
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vector is definitely related to the angles that these two planes would move in. Let us 

assume this angle to be delta alpha, this as delta beta. Let us also assume that the amount 

of distance that this particular plane o a moves, as it goes to a 1 is delta eta. The distance 

is about delta x and essentially, here again, the distance that this position b 1 is spaced 

from this position b is delta zeta. 

Let me just rewrite this a little. So, essentially, as the diagonal has moved by delta beta, 

the position here was b. Before this, it is b 1 and the distance between b 1 and b is given 

delta zeta. So, this is delta eta the distance between a and a 1 and the distance between b 

and b 1 is given by delta zeta. So, these are some of the presumptions that we make to 

find out the relationship between the angles and the velocities. One important point to be 

considered here is that the rotation of vector o a at this particular line is that o a is due to 

a variation in y component of velocity. 

Suppose, this particular point o is having or is defined by a velocity vector v( x, y, z, t), 

where v in the x direction is given by u i, v in the y direction is given by v j and that in 

the z direction is given by w. Let us say the small v here represents the velocity in the y 

direction. There is definitely going be a change of this velocity from point o in this 

particular region 2. At this point a, the velocity is different. If you assume that change to 

be delta v, this is small v and mind this is not the v vector. Here, it is delta v by delta x. 

We can assume that the velocity at o in the y direction is v zero, the velocity at a would 

be equal to v zero plus delta v times delta x times of delta v by delta x times of delta x. 

So, this is the additional velocity, which is coming by the variation of the y component 

of the velocity when move from o to a in this particular rotation case. So, the angular 

velocity of o a is really given by the rate of change of angle. Limit of delta t tends to 0 

into delta alpha by delta t. We assume that two points a and a dash are placed by a time 

point or they are placed in time by a difference of delta t. 

So, delta alpha by delta t is the angular velocity - omega o a at this particular instance of 

time. Therefore, this can also be represented by limit delta t tends to 0. What is delta 

alpha? It is equal to nothing but delta eta by delta x. We assumed this to be the length of 

the arc. This distance is delta eta to the length of the arc. We assumed the radius vector 

to be delta x. So, the angle delta alpha, which it moves is delta eta divided by the radius 

vector delta x. 

 9 



This is essentially delta alpha divided by delta t. Let us now try to figure out what this 

quantity becomes or what is the relationship between the rate of change of velocity and 

the y component of the velocity with respect to x that we derived that is delta eta. Again, 

it would be nothing but the differential velocity change of v. The y component of the 

velocity goes from y o to a, which is nothing but delta v by delta x times of delta x 

divided by or into times of delta t, the time that it takes for this point to go from a to a 1. 

The distance that the point a covers in order to go from a to a 1 is nothing but the 

differential change in the y velocity with respect to x times of delta x. This is the change 

or due to which the velocity at point a is different than the point o. This change times of 

delta t that is delta eta would be the amount of distance that a traverses to a 1. Let us say 

this is number 2 and this is equation 1. If I put this value of delta eta from equation 2 to 

equation 1, let us see what the value of omega o a finally becomes. 

(Refer Slide Time: 26:06) 

 

Omega o a is limit delta t tends to 0 times of delta v by delta x times of delta x times of 

delta t by delta x divided by delta t. It is nothing but dv by dx. So, this essentially is dv 

by dx into delta x into delta t. It is basically the delta eta value divided by delta x divided 

by delta t. So, this comes out to be dv by dx. Omega o a or the angular velocity of the 

arm o a comes out to be equal to delta v by delta x. The rotation really translates into a 

rate of change of y velocity with respect to the x direction. If I do the same thing for the 

other component of the diagonal, which was in the y direction, we may need to ascertain 
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what is the change in the x direction or what is the change in the x velocity, y direction 

as it goes along y. What is the change in the x velocity? It would essentially be omega o 

b. 

(Refer Slide Time: 28:01) 

 

So, let us derive that expression as well. The rotation of the line o b of length delta y and 

it has become too crowded here. You can say that this (Refer Slide Time: 28:09) from 

here to here. This distance is delta y and you can also say that this distance is delta zeta. 

The angle moved is delta beta. So, there is a similar kind of relationship to describe 

omega o b. 
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There is a similar kind of relationship to describe omega o b and you can write that as 

limit of delta t tends to 0 delta beta by delta t. This can further be expressed as limit of 

delta t tends to 0 delta zeta by delta y by delta t. Further, we have the velocity x at the 

origin. Here, the velocity is in the opposite direction and it is u 0 plus du by dy times of 

delta y. 

So you have let us say u is equal to u 0 plus du by dy times of delta y, pretty much in the 

similar manner as we did for the x variation. We are doing the y variation in this 

particular case. So, the delta zeta in this case is nothing but minus delta u by delta y. This 

is actually minus because it will be in the reverse direction. So, essentially this would be 

minus. 
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(Refer Slide Time: 29:58) 

 

As you see here in this figure, u is in this direction, but delta u by delta x is the 

differential because of this rotation in the opposite direction. The value here would be u 

minus delta u by delta x times of delta y delta u by delta y times of the delta y. So, this is 

opposite to the direction of the positive u that you have taken. 

(Refer Slide Time: 30:30) 

 

Now, we are left with delta zeta equal to minus delta u by delta y times of delta y times 

of delta t and the amount of distance that b takes to move to b prime or b 1. Therefore, 

omega o b in this particular case would be nothing but minus delta u by delta y in a 
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pretty much similar manner, as we did before for the x component. Therefore, we found 

out that omega of the two arms or the diagonals of the two arms are dv by dx and du by 

dy with the minus sign. 

So, this is a very interesting derivation. We will keep this in mind for proceeding ahead 

with the momentum equation. So, this is what the rotational component would do. So, 

anything related to shear, which causes such a rotational component would essentially 

give you values in terms of dv by dx and minus du by dy. 

(Refer Slide Time: 31:30) 

 

Now, let us look at what is fluid deformation. Case 2 is regarding fluid deformation. Let 

us just refer back to that particular diagram here (Refer Slide Time: 31:40). Fluid 

deformation is this second case angular deformation. As you can see, the element 

actually changes its shape from regular square into a more like a quadrilateral or a 

parallelogram. Basically, there is a relative angular change between the two 

perpendicular planes. They do not remain at 90 degrees because the fluid moves. 

Let us actually calculate using mathematics. What is this angular deformation? Angular 

deformation involves change in angle between two mutual perpendicular planes in the 

fluid. You have x and y coordinates here, you have a square with two diagonals. You are 

angularly deforming this, so that the new shade assumes that the diagonals moved away 

from perpendicular to this new angular shape. 
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Essentially, you are doing deformation in the particular shape. What essentially you are 

doing is that there is a diagonal o a, o b,o a dash, o b dash direction and these diagonals 

are actually now changing in the o a 1, o b 1,o b dash 1,o a dash 1 direction. Let us 

assume that we have two angles, which is similar to the last case, it was delta alpha and 

delta beta. Let us also assume that the distance between a and a 1 becomes delta eta. The 

distance between b and b 1 becomes delta zeta. We also assume another angle gamma, 

which is in between. It is your delta gamma, what really is delta gamma? It is gamma 

and not the delta gamma. This angle is gamma and any change in this angle is delta 

gamma. It is negative; the angle is decreasing as you go along with time. so, minus delta 

gamma is nothing but delta alpha plus delta beta. If you just divide the whole by delta t 

assuming that this shape was at time instance t and this shape came at t plus dt. So, there 

is a time interval of delta t in between or dt in between. You get minus gamma; delta 

gamma by delta t is equal to delta alpha by delta t plus delta beta by delta t. so, taking 

limits on both sides as delta t approaches 0, this whole expression becomes minus d 

gamma by dt equal to d alpha by dt plus d beta by dt. So, this is what angular 

deformation would really mean. 

As we already know from earlier derivations that delta alpha by delta t or d alpha by dt is 

nothing but the rate of change of the y velocity in the x direction. Similarly, delta beta by 

delta t or db by dt is nothing but delta of u by delta y or the change in x velocity in the y 

direction. We have just done these two proofs. If you can recollect that in the last slide, 

we were trying to see the rotation of a component without deformation. In this case, there 

is a rotation and deformation simultaneously happening. Actually, the rotation is 

happening because of the deformation of the two sides. 
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Essentially, this minus d gamma by dt, which is also d alpha by dt plus d beta by dt. It 

would become same as delta v by delta x plus delta u by delta y. You may retreat that d 

alpha by dt is nothing but limit of delta t tends to 0 delta alpha by delta t, limit of delta t 

tends to 0 delta eta by delta x divided by delta t, which is delta v by delta x. Delta beta by 

delta t is nothing but the limit of delta t tends to 0 delta beta by delta t, which is equal to 

the limit of delta t tends to 0 delta zeta by delta y by delta t. It is nothing but delta u by 

delta y. So, this d u by the d y is positive because if you look at the deformation, it is in 

the same direction as the u. So, u was u 0 here and it is u 0 plus delta u by delta y times 

of delta y. It is in the same direction as u. Therefore, it is a positive addition and thus the 

relationship one holds valid. It is minus d gamma by dt and it is delta v by delta x plus 

delta u by delta y. 

We have now found out relationships of what would happen in case of fluid element 

rotating by itself and a fluid element deforming by itself. With all this knowledge in 

mind and also the way we did the acceleration of a point vector in a fluid space, we 

combine all these things together to find out what dynamically alters the cube as it moves 

along in flow field. There would be stresses: there would be principle stresses, there 

would be shear stresses, which take place. Some of them we had illustrated in our last 

class, when we were talking about the conservation of mass equation. You will have 

sigma xx, tau yx, tau zx as the three stress components because of the force in the x 

direction. Similarly, three stress components force on the y and z directions. 
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We had a stress matrix or a stress tensor that we have defined in this manner. Let us see 

that if all these things are individually implemented. We can somehow find out the force 

by multiplying it with the area element of the different stresses. We can equate that to the 

mass of this cube into acceleration and find out what is the equation, which is emerging 

from that. So, this is essentially the conservation of momentum that is the Newton's 

second law - rate of change of momentum is nothing but the force that takes place in the 

direction of the force. So, applying Newton’s second law here, try to see what the final 

states of these relationships between the different stresses like shear, principal stress and 

so on; the acceleration, the mass and the area elements. 

(Refer Slide Time: 40:22) 

 

Let us look at our cube and the control volume again. You have a small cube, which is of 

volume dx. So, this is x, y, z direction and dx is the distance of this particular dimension 

of the cube, dz is the distance of this particular dimension of the cube and dy is distance 

of this particular dimension of the cube. You have different forces, which are acting in 

the x direction. Let us say you have a force let us just for the time being delete these 

arrows in the interest of space. So, we delete this we by and large know what these d x d 

y d z are so here we try to again do stress components we have this component of stress 

We assume that this cube is centered about a point o, where you have sigma xx, tau yx, 

which means the area vector is in the y direction and tau zx. 
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At this particular edge of the cube or this particular phase, your stress components would 

defer. This would be sigma xx and let us say we have a variation in the x direction. So, 

delta sigma xx by delta x times of dx by 2 would be the stress component in this phase. 

The stress component similarly in the other phase would be sigma xx minus delta sigma 

xx by delta x times of dx by 2. Similarly, the shear stress components would be in the 

opposite direction. In the lower phase, put this is a star and it would be tau yx plus delta 

tau yx by delta y times of dy by 2 and tau yx minus delta tau yx by delta y times of delta 

y by 2 or dy by 2. 

Similarly, we will have the z components, which are essentially in this phase. In the 

backside, these components would be there. So, these double stars tell that tau zx plus 

tau delta tau zx by delta z times of delta z by 2 or dz by 2 and tau zx minus delta tau zx 

by delta z times of dz by 2. Therefore, dF sx, which is essentially the total amount of 

force in the x direction. These are the result of all different components like component 

1, 2, 3, 4 and 5 6 all put together and these are all stressed terms. 

So, you need a certain area of cross-section, across which these stresses are applied in 

order to find out the net force on the particular cube of interest. So, the net force in this 

case would be equal to sigma xx plus delta sigma xx by 2 times of dx by 2. The area 

vector here is dy dz that is dy times of dz. As I have pointed out, you have a stress in the 

opposite direction, which is same as sigma xx. Of course, minus dell sigma xx by 2 times 

of dx by 2 times of dy dz. Similarly, you have components related to the shear and I will 

just try to illustrate this here as plus tau yx plus delta tau yx by delta y times of delta dy 

by 2 times of dx dz minus tau yx minus delta tau yx by delta y times of dy by 2 times of 

dx dz. So, these are the various components in the x direction and this tau yx again has a 

cross- sectional area dx times of dz. 
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(Refer Slide Time: 45:55) 

 

You also have a third component as a part of the whole deal. This tau zx plus delta zx by 

delta z times of dz by 2 times of dx dy minus tau zx minus delta tau zx by delta z plus d z 

by 2 into dz by 2 times of dx dy, which is the cross-sectional area. 

(Refer Slide Time: 46:35) 

 

If I take a simplified form of all these from this expression, you can easily find out that 

the sigma x is actually cancelled because dy dz are similar. Similarly, the same goes true 

for the tau xy’s. Only the differential components are retained. 
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Similarly, here tau zx and minus tau zx are cancelled. If you assemble together all these 

different terms, then on simplifying, we obtain dF sx. It is nothing but delta sigma xx by 

delta x plus delta tau yx by delta y plus delta tau zx by delta z times of dx dy dz as the 

total amount of the force in the x direction. Therefore, on a more simpler note, similar 

kind of expressions can be generated for the different force components in the y and the 

z direction. Let us just write this down here and so in the y direction, it should be sigma 

yy times of delta y plus delta times of tau xy by delta x plus delta times of tau xz by delta 

z times of again dy dx dz. Similarly, you have the other component like a stress matrix, 

so, this comes here and this actually goes here. 

In the other component, you have the delta sigma zz with respect to delta z. You have the 

component delta tau… Now, you have the y components and this is actually zy. You 

have delta tau yz by delta y plus delta tau. It is xz by delta x times of dx dy dz as a three 

different components of the force. If we involve the body force at this stage, to figure out 

how overall it would look like. We will have this equation slightly modified because we 

will then have to add the body forces along the x direction, the y direction. Let us call dF 

Bx, dF By and dF Bz as the different forces. 

Therefore, if we have all these different forces together, we can say that this is actually 

the body force f B. It can be represented as the rho times of the volume, which is dx dy 
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dz times of g. It has three components: gx, gy and gz. So, let us write all these equations 

together in the next page. 

(Refer Slide Time: 50:11) 

 

The total force is in the x direction because of the body force f Bx and the stress force. 

The force due to the stress vectors can be represented as rho gx plus delta sigma xx by 

delta x plus dell tau yx by delta y plus tau delta tau zx by delta z times of dx dy dz. 

Similarly, d Fy is again having a body force in the y direction plus a stress force in the y 

direction, which can be rho gy plus delta tau xy with respect to x plus delta sigma yy 

with respect to y plus delta tau zz y with respect to z times of dx dy dz. Then dF z is 

equal to delta body force in the z direction, the stress force in the z direction. It is rho gz 

plus delta tau xz by delta x plus tau d tau xy by dz dy plus delta tau or delta sigma zz 

because it is not a shear for this principle stress sigma zz by delta z times of dx dy dz. 

So, these are the equations for the total forces that control volumes cv would encounter 

due to stresses and as well as its own weight in all the three directions. So, this brings us 

to the end of this particular lecture. In the next lecture, what I would like to illustrate is 

that we will move ahead with this force equation and try to compare it with mass times 

of acceleration and see what the final form of equation would look like. Thank you. 
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