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Hello, in the last lecture we had discussed different aspects of radial propagation of sound

waves through some illustrations and through some actual illustration problems. What we

plan to do today is continue that journey a little bit further forward and in once we are done

with  that  then  we  will  start  talking  about  a  new  concept  known  as  directivity  and  this

particular  concept  of directivity  it  becomes really important  specially  in context  of radial

wave propagation.

So what we plan to do right now is that we will do a problem for illustration purposes and in

that context we will consider a sound source which is propagating sound in a radial way and

we assume that while this radial propagation is happening there are no reflecting surfaces

around this sound source so the only wave which is getting propagated through the sound

source is the forward travelling wave and there is no reflection or no backward travelling

waves in the picture.
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So we consider a sphere and the radius of that sphere is r and that r is very small so sphere of

radius r not and this thing this particular sphere is emitting, so this is my r and it is emitting

sound waves and what we know is that on the surface of the sphere the pressure is P not

cosine omega t, so at this surface my pressure is P not cosine omega t.

So pressure at surface equals P not cosine of omega t and what we are interested in finding

out for this particular problem is that what is the value of power flow which is happening

from the sphere outwards and this power will be complex in nature so it will be complex

power flow it will have a real component and it will also have an imaginary component.

So to do this we start looking at the relation for pressure so we know that pressure for a

spherical source depends on radius and it also depends on time, so p is a function of r and t

and that is nothing but real of complex amplitude P plus divided by r times e j r omega t times

e j, oh excuse me e j, I have to correct this e j omega t times e j omega r over c and because

this is a forward travelling wave this negative sign here.

So that is my relation for pressure now we know that at r equals r not this value p is equal to p

not cos omega t so we know given that p at r not and at time t equals p not cosine of omega t

so I will call this equation 1 this is equation 2, now what we do not know right now is the

value of P plus.

So P plus is a constant and it may have an imaginary component as well as a real component

and we do not know what this number looks like so let us assume, so we assume that without

losing any sense of generality that P plus is having some magnitude and then it also has a

phase element to it and that we express as e j times phi.

So now we plug this relation in equation 1, so what we get is p of r t equals real of magnitude

of P plus divided by r e j phi times e j omega t times e minus j omega r over c, I call this

equation 3 and now I further process this equation so what I get is, so I know that at r equals r

not this is my expression for p.
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So I plug that value, so I plug the value of r as r not and on the left hand side I put this value

so what I get is that for r equals r not, p of r t is equal to p not cosine of omega t and that is

nothing but real component of magnitude portion of p plus divided by r not times e j times

phi times e j omega r over c times e j omega t.

Now I realize that this term is real so I can take it out of the parenthesis and I then split these

complex terms into real portion and imaginary portion so what I get is p not cosine of omega

t equals magnitude of p plus which is this divided by r not times real of, so this is equal to, I

will rearrange some of these terms here so what I get is e minus j omega r not over c times e

to the power of j and in parenthesis I have so I combine this term and I combine this term so I

get phi plus omega t.

Moving further what I get is amplitude of p plus divided by r not times real of, now e j e to

the power of minus j omega r not c can be expressed in trigonometric terms as a cosine part

and it also has a sinusoidal part so what I get is cosine of omega r not over c minus j times

sine of omega r not over c and this whole thing is in parenthesis and then I have to add to that

excuse me multiply that I have to multiply this with another set of two terms so and that is

cosine of phi plus omega t plus j times sine of phi plus omega t. 

Now if I take the real portion of this, what I get is amplitude of or magnitude of p plus times

and I am now taking only the real components so I get cosine of omega r not over c times

cosine of phi plus omega t and then plus sine of omega r not over c times sine of phi plus



omega t and that equals so this is basically a function which looks similar to that of cosine of

a plus b equals cosine a times cosine b plus sine a times sine b.

So what I get here is P plus divided by r not times this entire thing can be rewritten as cosine

of omega t plus phi minus omega r not over c so that is my expression number 4, and on the

left side I have p not cosine of omega t. So this is my expression number 4.
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So I will rewrite it here on the next sheet so p not cosine of omega t equals magnitude of p

plus divided by r not times cosine of omega t plus phi minus omega r not over c now this

expression and this is again expression 4, this expression (())(12:21) hold true in general only

if the following conditions are met.

So the first condition is that the amplitude or actually the magnitude of the left hand side

should equal magnitude of the left hand side so the first condition for this equation to hold

good is that p not should be equal to P plus over r not which implies that magnitude of P plus

should equal p not times r not.

The second condition which has to hold true is that omega t, this term should equal this term

so omega t should equal omega t minus omega r not over c which implies that phi should

equal omega r not over c so these are my equations I will label them as 5a and 5b and once I

plug this equations in my expression for P plus what I get is that P plus equals p not r not

times e j omega r not over c so that is my equation 6.



Now with this understanding I rewrite my expression for p so we know that p of which is a

function of r and t equals real component of magnitude of p plus which is p not r not divided

by radius r times its phase component which is j omega r not over c times e j omega t plus

omega r over c and I can rewrite this entire thing as real of p not r not over r times e to the

power of j  times omega t  plus omega r not over c minus omega r over c. So this is my

expression for pressure 
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Likewise I can write the relation for velocity, particle velocity is u of r and t and this is equal

to p of r and t, excuse me so I will write the expression for complex velocity. So complex

velocity is a function of r and t and that is equal to complex pressure divided by impedance so

this is p not r not over Z times e j omega and then t plus r not minus r divided by c and the

relation for complex pressure is p of r and t equals p not r not over, so there should be an r

here and this times e j omega t plus r not minus r divided by c.

Now I can re express I know that in my previous example what is the value of complex

impedance for radially propagating waves and we know that value of Z equals 1 over j omega

rho not r plus 1 over rho not c the whole thing inverse, so I put this equation this expression

in expression for u, so what I get my expression for complex velocity is this, so complex

velocity equals p not r not over r times e j omega t plus r not minus r divided by c times 1

over j omega rho not r plus 1 over rho not c, so these are my relations for complex pressure

and complex particle velocity.



Now original  intent  was to find what  is  the value of complex power, so complex power

equals complex pressure times complex velocity and that can be also written as complex

pressure times P star over Z star and when I  do this  and I calculated what I get here is

magnitude of complex pressure squared divided by Z star. Now we know that 1 over Z equals

1 over j omega rho not r plus 1 over rho not c.
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So which means that 1 over Z star can be written as 1 over rho not c minus 1 over j omega

rho not r, so now that I know what is Z star and I also know that the magnitude of complex

pressure is p not, my complex power equals p not square times 1 over Z star which is 1 over

rho not c minus 1 over j omega rho not r and once I simplify this what I get is p not square

over rho not times 1 over c minus 1 over j omega r not.

So that is my expression for complex power now there are couple of observations we can

make when we look at this relation for complex power, one is, first observation I can make is

that this has of course this a real component which is p square divided by rho not times 1 over

c and then there is an imaginary component which is p square over rho times minus 1 over j

omega r not.

Now if we want to make this imaginary component small. So if imaginary component is to be

small then 1 over c should be very large compared to omega r not okay, which means that

omega r not should be extremely large compared to c which means r not should be extremely

large compared to c over omega and c over omega equals c over 2 pi f equals and c over f is

wavelength so lambda over 2 pi.



So the condition for imaginary component to be very small is if r not which is the radius of

the sphere which is emitting these sound waves is very large compared to lambda over 2 pi or

roughly one sixth of the wavelength of sound waves which are being emitted by the radial

source, so that is the essence of this example that if I have a sound source which is emitting

sound waves in a radial way.

And if it  is a spherical source then it will be emitting complex power and the imaginary

component of that complex power will be very small if the wavelength or the one sixth of the

wavelength of sound waves which are being emitted are small compared to the radius of the

sphere.

So this closes my illustration problem and now I will move on to the next topic which is

related to this concept of directivity. Now we have talked about directivity earlier also but not

in so much in an explicit sense, so earlier when we talked about directivity it was in context

of interference of waves to radially propagating waves which are getting emitted from two

point sound sources which are separated by distance and we saw that when these waves at

point  which  is  far  away  meet,  they  interfere  sometimes  constructively,  sometimes

destructively and we have some sort of a polar pattern which is not necessarily symmetric

with respect to theta.

So we have what we did see earlier was in not such an explicit sense that when there are two

sources,  point  sources  and when they emit  sound waves  the overall  sound pattern is  not

necessarily radially symmetric and there is some directionality associated with this type of a

phenomena.

So what we plan to do in remaining part of today’s lecture and maybe also in the subsequent

lecture is explore this idea of directivity further and we will start with this discussion on

directivity by developing some directivity patterns so that is what we will do and then when

we are done with the directivity patterns then we will look at some other ways or metrics of

measuring directivity through terms such as directivity index and some other parameters so

what the first step what we plan to do is we will start developing directivity pattern for some

different set of sources okay.
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So let us define directivity pattern, so directivity pattern is a graphical representation it is a

graphical  representation  and  of  sound  sources  emission  as  a  function  of  direction  for

specified plane,  this  is  important  for specified plane and at  a specified  frequency, this  is

important to understand that these graphical representations are for specific frequencies so

you may have one directivity  pattern  for set  of  sound sources which may be at  a  given

frequency  let  us  say  at  100  hertz  and  this  graphical  pattern  directivity  pattern  maybe

significantly different if we alter the frequency and we make it 1000 hertz or something like

that.

So it is for a specified frequency and in the other thing is that you have these directivity

patterns plotted on specific planes so once you change the plane then the pattern may or may

not remain necessarily same so we will start by illustrating the directivity pattern of a simple

spherical source.
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So directivity pattern for a spherical source, okay so we know that the pressure emitted by a

sound source, a point sound source and if this is radially propagating wave with no reflections

then the pressure function is real of complex pressure constant divided by r times e to the

power of minus j omega r over c times e j omega t.

Now we see that in this relation p is not a function of theta, p does not depend on theta, what

that directly means is that if I have a sound source let us say it is a point sound source and it

is emitting radial sound waves then the directivity pattern for such a sound source will be

circular in nature.

So the sound source is located exactly in the center of the circle and that is my directivity

pattern so let us say that the SPL so in this case this is my 0 degree, this is 90 degree, 180

degree and that is 270 degrees so here we have spherical and because spherical is symmetric

and  because  we are  looking at  the  pattern  on  a  plane  so  on  that  plane  this  is  spherical

symmetric translate to circular pattern, okay it translates to a circular pattern.

Now it just happens that for spherical source because everything is circularly symmetric the

directivity pattern does not change when we change the frequency and also the directivity

pattern  does  not  change when we change  the  plane  of  observation  so  for  this  particular

source, spherical source the directivity pattern does not change with respect to changes in

frequency and also with respect to changes in the plane of observation. 
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So we now move further and we look at a similar pattern for two simple sources, we are

looking at directivity pattern for two simple sources and we are going to refer in this context

some of the work which was done earlier in context of interference of two sound waves so let

us say we have two sources source 1 and source 2 and they are separated by some distance

and the midpoint of these sources is let us say this point.

So this  is  the midpoint  which is not a source it  is just  a point of reference,  the distance

between this midpoint and S1 is d over 2 and the distance between midpoint and S2 is again d

over 2. Now I have a point far away so at  this  point the pressure is  P and this  pressure

depends on three parameters r theta and t so I will define T in a moment, so let us say from

this midpoint I construct the line which reaches this point and the angle of this, let us say this

vector is r.

So the angle of this vector r with respect to the horizontal line, this theta so the pressure at

this far point, far away point will depend on how far what is the value of R, what is the value

of theta and at what time are we observing so right away we see that whatever the pressure is

going to be observed at this point it depends on theta so it is not spherically or circularly

symmetric  as  we  saw  was  the  case  for  simple  source  which  was  emitting  spherically

symmetric or radially symmetric sound waves.

So I construct two more lines in this case one is between S1 and point of observation and let

us say that vector is r1 and then the other line is r2 which connects the point of observation



and S2 and then I draw perpendicular line from point S1 to this radius r that line and that is

that this particular line in green is perpendicular to vector r.

So what we see here is, so what we will do is we will again revisit some of the relations we

developed earlier  and then we will start talking more about directivity patterns,  so earlier

what we had assumed was that the volume velocity of sound source 1 was same as volume

velocity of sound source 2 and this is Vv, so the magnitude of this volume velocity is same.

Second thing we had assumed earlier was, so these are assumptions. Second thing which we

had assumed earlier was that the phase of volume velocity 1 minus phase of volume velocity

2 is some constant phi, and the third thing which we had assumed was radius r is extremely

large compared to d, where d is the overall distance between the two sound sources.

So with this understanding we now develop the relationship for pressure, before we do that

we would like to know how is r and r1, how are they connected, so what we know is that if r

is extremely large compared to d then r1 is approximately equal to r minus d over 2 sine theta

and r2 is approximately equal to r plus d over 2 sine theta, okay. So these are the two things.

So with this set of assumptions and these two approximations earlier in our previous class we

were able to develop an expression for pressure such that pressure at point, this point P which

is r distance away and theta angle away from midpoint so that pressure equals 2 times volume

velocity over 4 pi r j omega rho not e j omega t minus r over c times cosine of pi d over

lambda  sine  theta  minus  phi  over  2.  So  that  is  the  pressure  relationship  which  we  had

developed earlier.


