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Sound Transmission through Walls

Okay. So in the last lecture we have developed transmission loss curves for a wall which is

impinged upon by normal incidence sound energy and what we have seen is that in the mass

controlled region and in the stiffness controlled region we have a positive slope and also a

negative slope straight line and the slope of these two straight lines is essentially 6 decibels

per decade. Also in theory at a point of resonance there is no transmission loss.

So all the sound which is incident on the wall it passes through the wall but in reality there is

some loss  through the wall  because of  damping properties  of  the  system.  Now all  these

discussion was in context of normal incidence sound. So the question is that what happens if

we have random incidence of sound?

So once again I have a wall and instead of sound striking normally sound may strike it in all

sorts of directions and then the question is what kind of P T do we experience if the incidence

sound energy’s intensity is related to this term P plus? Then what will be the transmission

ratio and what will be the attenuation and what will be the transmission loss across the wall?
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So once again we are going to break this problem into two components. One corresponds to

stiffness controlled region and the other one corresponds to the mass controlled region. So

what we are going to start with is this stiffness controlled region. Now the attenuation if I

have oblique incidence, so if this is my angle of incidence which is theta then the attenuation

is defined and I am not going to do a proof of this term but using existing knowledge I am

just going to just replicate the relation.

So  attenuation  if  there  is  oblique  incidence  when  the  angle  of  incidence  is  theta  then

attenuation has been found out to be something like this.
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And what you see here is that this relation is more or less very similar to the relation which

we developed for normal incidence except for the fact that I have this cos theta term. All

other terms are same. Now if this theta becomes 0, I have normal incidence and this (at)

relation for attenuation becomes same as that for normal incidence. Now I know that this is

the relation for oblique incidence where angle of incidence is theta but theta can range from 0

to pie over 2 radians. So this is my equation 1.
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And then again using some well  proven relations  I  can  write  that  if  this  wall  is  getting

impinged upon by all sorts of radiations, by all sorts of sound waves of equal intensity in all

directions then my average attenuation is nothing but it is going to be some sort of an integral

and this is how this integral looks like. So a t n attenuation specific to a particular value of

angle times cosine theta times sin theta times d theta.

So if I am able to integrate this from theta equals 0 to pie over 2 radians then I get the average

attenuation offered by the wall which is being hit by sound coming from all directions.
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So now what I have to do is I have to integrate this relation with the value of attenuation for

angle theta is defined by equation 1. And if I do the math correctly then average attenuation is

nothing but this number K S square times natural log of 1 plus 1 over K S square where K S

is basically this term, 2 omega Z 0 C, okay.

(Refer Slide Time: 06:35)

And now I know that 1 over K S square from this relation, this is basically attenuation for

(inci) 90 degrees incident angle and this term in parenthesis in the denominator is K S.

(Refer Slide Time: 06:57)

So this  is  same as  this  term.  So I  can  rewrite  this  relation  as  K S square  times  1  over

attenuation.
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So moving on what  I  can further  write  then the transmission loss average implying that

energy is hitting the wall from all directions. So if I take some sort of an average of that then

average transmission loss is equal to 10 log of 10 times 1 over attenuation average and now

in this parenthesis I plug in this number so what I get is.
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Now what I am going to do is I am going to resolve this. So what I get is because this is to the

power  of  negative  1.  So  K  S  square  comes  in  the  denominator  and  then  the  second

component  of  this  log  is  10 log 10 of  natural  log and because  once  again the power  is

negative 1,  so instead of  plus  I  have put  a  negative sign here.  So that  takes  care of  the



negative 1 on the power thing. So this is 1 over 1 plus K S square. So let us call this relation

A.

(Refer Slide Time: 09:04)

Now so remember we are talking about the stiffness controlled region only. Now for the

stiffness controlled region we know that if angle of incidence is you know 0 degree then it is

normal incidence. So T L normal and we had calculated the relation for this earlier and this is

nothing but 10 log of 10 over 1 over attenuation and this is 10 log of 10 1 over 1 plus K S

square. So I can rewrite this as 10 log of 10 and what I am going to do is I am going to

rewrite this term, I will take in an exponential format so I have an exponential of natural log

of K S square, okay.
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And this term exactly same term but I have just taken a natural log of it and then I have raised

it to an exponent so it is the same thing. So now I rewrite it further. So what I get is 10 log of

10 of e times natural log of 1 plus 1 over K S square and this number comes out to be 4 point

343 and then from here I get natural log of 1 plus 1 over K S square, okay. So this is T L

normal.

(Refer Slide Time: 11:19)

So now I move this on this side so I get natural log of 1 plus 1 over K S square is nothing but

0 point 23026 times T L normal. So this is my equation B and what I am going to do is put

equation B into equation A. So I am going to replace this with this term.
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And so what I am interested in finding out is the average transmission loss. So T L average is

nothing but 10 log 10 of 1 over K S square minus 10 log 10 of 0 point 23026 T L normal.

And if I want to remove this square term from this thing then what I get is 20 log 10 of 1 over

K S minus 10 log 10 of 0 point 23 T L normal. So that is my relation. So this is my average

transmission loss across a wall as long as I am in the stiffness controlled region.

(Refer Slide Time: 13:13)

So likewise now what I am going to do is going to figure out what is transmission loss if I am

in the mass controlled region? So for mass controlled region we know the T L normal, we

have developed this relation, is basically 10 log 10 of 1 over attenuation,  okay. And this

relationship we had earlier proven same as 10 log 10 times 1 plus omega over 2 Z 0 whole

thing square.
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Now I want to convert this into T L average for random incidence. So people have found

using numerous experiments that if a wall is being hit by sound waves and the frequencies of

these sound waves are such that they are coming from all directions and these frequencies are

way in excess of the natural resonance of the system then T L average is approximately equal

to T L normal minus 5. So this is based on experimental data.

(Refer Slide Time: 15:29)

So now I  have my two conditions.  So for  random incidences  this  is  the summary. If  in

stiffness controlled region then my transmission loss for random incidence equals 20 log 10

over 1 over K S minus 10 log 10 of 0 point 23026 T L N corresponding to normal, okay,

where T L normal is 10 log 10 of 1 plus 1 over 2 Z 0 C omega whole thing square. Second



thing is if in mass controlled region then T L average equal to T L normal minus 5 decibels

and this is based on experimental data so it is an empirical relation.

And here T L N is nothing but 10 log 10 of 1 plus M omega over 2 Z 0 C. Excuse me there

should not be a C here, 2 Z 0 square, okay. So if in mass controlled region this is what I

should use. If I am in stiffness controlled region this is what I should use to understand how

much transmission loss is going to happen across the wall.

(Refer Slide Time: 18:24)

So then a natural question would be how do I know whether I am in mass controlled or

stiffness  controlled  region?  So  one  way  is  that  you  can  actually  figure  out  the  natural

resonance of the system by doing some finite element analysis of the wall or the panel which

we  are  talking  about  or  we  can  use  some  standard  textbooks  which  have  listings  of

relationships for these natural frequencies of the system.

And we can use that to figure out whether we are in mass controlled region or we are in

stiffness controlled region. So now there is one final question. So till so far what we have

seen  is  that  even  this  relationship  what  it  says  is  that  T  L average  also  it  increases  at

something like 6 decibels per octave if I am in stiffness controlled region. So if I am going to

reduce my frequency by factor of 2 I will have an improvement in transmission loss even for

random incidence by 6 decibels.

Similarly if I am in mass controlled region, if I increase my frequency by factor of 2, I get an

improvement in transmission loss again by 6 decibels. So my transmission loss curve will



still look something like this. Now the question is will this line just keep on going forever or

after some point of time some other things may start happening.
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So in that context I wanted to talk to you about a term called critical frequency. So what

happens is that in the mass controlled region as my frequency is going up, so in M controlled

region as omega goes up wavelength of the sound it goes down. Wavelength starts shrinking.

Also these sounds they try to excite some bending waves in the plate or the wall which we are

talking about. So, if I have a plate and it is being hit by sound so there may be some bending

waves in the plate.

Now these bending waves also have a specific frequencies and wavelengths. And typically at

lower frequencies if I hit it let us say at 10 hertz the wavelength of the sound, so at low

frequencies lambda of sound is larger than lambda of wave. But as I keep on increasing my

frequency this starts coming down and at some specific frequency lambda of sound equals

lambda of bending wave.

So this should be bending wave, so these two starts equalling. And when that happens, that

particular is called coincidence or critical frequency. So frequency at which lambda of sound

equals lambda of bending waves is called coincidence frequency.
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And an interesting thing about this is that mathematics tells us and it is also seen through

numerous experiments that at  coincidence frequency that is if  I am hitting a wall  with a

particular frequency whose wavelength is identical to that of the bending wave in the wall or

the  plate  then  these  two  waves  start  reinforcing  each  other  and  as  a  consequence  the

transmission loss at that particular frequency at coincidence frequency it suddenly drops.

Now if there was absolutely no damping then there would not be any transmission loss in the

system. But because there is  damping in the system so at  this  coincidence frequency the

transmission loss drops to a certain extent and the extent of that drop is once again governed

by damping in the system. And then again after I move beyond the coincidence frequency I

start again having more transmission loss.

So what I am trying to emphasize is that at the frequency of coincidence or coincidence

frequency the incident sound wave starts reinforcing the bending waves in the plate or the

wall which are elastic waves and this causes a significant drop in transmission loss at those

specific frequencies. So now what I am going to do is I will just give a relation for this

critical frequency.

So f c is equal to coincidence frequency and this is for a plate and there is a mathematical

relation for this and this is. So remember this is lowercase c, c is velocity of sound in air. So it

is square root of 3 times c square divided by pie times C L constant times h so C L is again a

constant and it is the velocity of bending wave.
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So we have two velocities, one is the velocity of sound in air and the other one is velocity of

bending wave in the solid or the plate. So C L is velocity of bending wave in a plate and that

is equal to E which is the Young's modulus divided by rho of plate times 1 minus square of

Poisson’s ratio and then I take the whole thing and I take it square root. So C L is again

velocity of bending wave, okay. And finally h is equal to plate thickness.

(Refer Slide Time: 26:58)

So using this relation you can figure out what will be the coincidence frequency for a plate,

okay. So once I know the coincidence frequency then I can calculate the transmission loss of

the wall or the plate for a region when I am even exceeding the critical frequency. So for f

exceeding f c where f c is critical frequency and this is an empirical relation, transmission



loss for random incidence so it is going to be average and it is given by this transmission loss

normal at f c.

So this is not a multiple transmission loss normal for incident waves when it is normal to the

plate at critical frequency plus 10 log of 10 of a constant eta and we will define eta later, plus

33 point 2 times log of 10 f over f c minus 5 point 7.
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So I will just explain T L N f c is equal to T L N when f is equal to f c. So I will calculate this

using the relation which I had shown earlier. Meta or eta equals damping in material and this

is a dimensionless number so we can use values like 10 delta for this thing and I will just give

you some perspective on this.

So for aluminium eta is 0 point 001, for regular carbon steel it is a little more but not a whole

lot more. If you look at wood it is 0 point 02 to 0 point 008. Brick, it is 0 point 015. So a lot

of these metals they have really low damping properties.
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So I will also expand on this term. So T L N at f c equals using the relation which we have

seen earlier, it is nothing but 10 log of 10 1 plus M f c times pie divided by Z 0 the whole

thing  square.  So this  is  T L N.  So using this  empirical  relation we can  figure  out  what

happens after we have crossed the first coincidence frequency.
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One thing it is important to note here is that if I am exceeding the coincidence frequency then

in that range if I double my (frequen) this particular range then T L average is proportional to

33 point 2 log 10 of f, okay. So if frequency doubles then T L goes up by 10 d B because if I

have 2 f here log of 2 is 0 point 3 multiplied by 33 point 2, I get 10. So if my frequency

doubles above and beyond coincidence frequency then I get a 10 degree extra off damping.
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So I will now finally draw this chart once again. So I am plotting T L average and this is in

decibels. On the horizontal axis I have frequency in hertz and once again there is a, so I will

do  a  couple  of  curves  here  and I  will  explain  what  these  mean.  So this  is  my stiffness

controlled region and the slope here is negative 6 decibels per octave.
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This is resonance frequency and this equals 1 over 2 pie times square root of 1 over C M

where C is the specific compliance of the system and M is specific mass of the system. Then

up to this range this is mass controlled region and here this is decibels per octave. The slope

is once again 6 decibels but it is a positive slope.
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Then this is my first coincidence frequency and the value of coincidence frequency has been

defined here, okay.
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This  is  my  first  coincidence  frequency.  At  first  coincidence  frequency  all  of  sudden

transmission loss drops and the extent of that drop will depend on eta which is the damping in

the system. So the lower damping, the higher the drop. The more is the damping, less is drop.

So these three curves above and beyond red, green and blue they are for different values of

damping.



So let us say my damping here is eta 1, eta 2, eta 3. So it is in such a way eta 1 is the least. So

I have maximum reduction in transmission loss. Then eta 2 is more than eta 1 and then this is

eta 3. So I have lesser drops.
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And then in this region this is called damping controlled region and here as we saw that the

slope of this transmission loss curve is 10 decibels per octave. So the slope these three lines,

red line, green line and blue line beyond f c they are all parallel to each other and their slope

is 10 d B per octave, okay. So this is the overall picture.
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So  what  I  have  explained  in  last  two  lectures  will  hopefully  enable  you  to  use  this

information that suppose tomorrow you have to work on a design where you have to develop

wall and you expect certain amount of transmission loss across it because you want to kill

sound to a certain extent then the material which has been covered in last two lectures will

hopefully  give  you sufficient  information  so  that  you can  start  developing these  kind  of

structure and you can analyse these walls and panels.

Thank you very much for your patience and we will meet you once again in our next lecture.

Thank you.


