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So now I am interested in finding out how good my assumption was in terms of whether this

is an adiabatic process or not. So what we are going to just verify is, how good was my

assumption? So this is what I am going to figure out.

(Refer Slide Time: 00:37)

So we know based on literature survey that for atmospheric conditions the thermal diffusion

waves, it moves at a speed called C t and that is equal to omega over 160 where omega is the

frequency of oscillation. So if I have an air column and there are pulsations going on in this

air column, there are pressure fluctuations happening in this air column, the heat generated in

such an air column is going to propagate at this speed C t.
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And what this means is now omega is 31 point 5 so the value of C t is and that comes to 0

point 035 metres per second. So this is how fast heat is going to move out or move into the

system. Now just consider this air cylinder. This distance is 0 point 3 metres. So from the

centre this distance is r and r equals 0 point 3 divided by 2, point 15 metres per second. So

suppose at the centre there is a small amount of air which is getting compressed because of

this vibration in the system.

Now when it is getting compressed what does that mean? Heat will get generated and this

heat is going to try to move out. It is going to radially propagate outwards and it will try to

escape the system.
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Now let us try to figure out how much time it is going to take for this heat to move out. Now

I know that time delta t is equal to this velocity of heat wave, distance it has to travel divided

by C t and this is going to be 4 point 3 seconds. So this heat will take 4 point 3 seconds to

move from this point to the outward of the cylinder, to the outside boundary of the cylinder.

(Refer Slide Time: 03:08)

Now in 4 point 3 seconds the piston and consequently the gas will go through a series of

oscillations. It is not that once the thing has gotten compressed it will stay in that situation for

all the time. It will again you know expand and compress and expand and compress. So in 4

point 3 seconds we would have 4 point 3 times 5 because 5 is the natural resonance of the

system, natural frequency of the system, and that equals 21 point 5 oscillations.

So what does that mean that by the time heat moves a little bit out in the radial direction you

start having again expansion and as a result cooling starts happening in the centre so heat

again  comes  back  in.  Then  once  again  heat  radiate  comes  back  in.  Then  in  the  next

compression cycle again heat gets generated, moves a little bit out and it again moves little

bit in. So as a consequence heat is kind of trapped in the cylinder primarily because of the

fact that C t is extremely small.
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Now if the C t was extremely high compared to the natural frequency of the system then it

would have been different. But because the thermal diffusion, the waves speed is extremely

small, heat is unable to escape the system. And what that means in the sense is that the system

is more or less adiabatic. Now of course there will be some heat escaping from the edges. The

bulk of the heat which is contained inside the cylinder, deep in the cylinder, it remains there.

So our assumption that the cylinder is going to behave in an adiabatic way, the air column is

going to behave in an adiabatic way is a reasonable one and our answers are correct. So that

was the second problem. The first problem was about developing a pressure wave equation if

we had an isothermal system instead of an adiabatic system. In the second problem which we

just concluded was about developing a relation for natural frequency in air column.

Now we will do two more problems and these will be in context of transmission lines and

transmission line equations. So this is the third problem. So what we have here is let us say

we have a 1 D tube and this 1 D tube is terminating in some material and this value is R. The

impedance of this end of the tube is R. And here I have a loud speaker and it is generating

sound which propagates in this tube.

Let us say the length of this tube is L and we have to figure out the value of this L based on

some conditions we will talk about. And what we are interested in finding is before we go

there we have a velocity mic here. So this is a velocity mic and what we are interested in

finding out is how much time delay for particle velocity between speaker on the left and

microphone on the right? So the time delay that is what we are interested in.
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And in this context what we are trying to find out is that what is the value of this terminating

resistance? So this is first question. What is the value of this terminating resistance such that

there are no reflections? What does that mean? That as sound comes from open end of the

tube to the closed end sound will come and get reflected back and we want to prevent these

reflections from happening.

So what kind of value we should have at the terminal point? So that is one thing we are

interested in. I will also put my coordinates system x is equal to 0 here and x is growing in

this way, okay.
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The second question we are interested in knowing is that if there has to be a delay, so our first

goal is to determine the value of R such that there are no reflections at extreme end of the

tube, at closed end of the tube. The second goal or second thing which we are interested in

finding out is what is the value of transfer function for velocity? So this microphone is going

to measure some velocity.

So what is the transfer function U mic, velocity measured microphone divided by velocity

measured at source. So you have U source here and U mic is at this point. So what is this

value?
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Specifically what is this value such that the system is providing a 0 point 3 second delay?

And the third thing is what is the value of L if I have to have a 0 point 3 second delay? Okay.

So these are the three questions. So we will start with our transmission line equations. So

pressure and velocity we know are related to P plus and P minus using these equations. Now

we know that at x is equal to 0 there is no reflection going to happen. So this is my boundary

condition. There is no reflection.

We do not want the reflection there. So if that is the case then at x is equal to 0 P x t or

actually it should be 0 t and U of 0 t is equal to, so this has to be positive times e s t. And

from these two I can develop a relation for transfer function. So P over u at x is equal to 0

equals R. And when I take the ratios of these two entities I get Z 0 because this  Z 0 is

embedded here. So when I divide P plus e minus s x over c times e s t by this entire number

then I get this relation.

(Refer Slide Time: 11:56)

So we know that R has to be same as Z 0 and we know that Z 0 is nothing but P 0 C. So that

addresses the first part of my question that what is the value of R. What is the value of R if

we do not want to have any reflections?
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Now my second question was what is the value of this transfer function U microphone with

respect to U s that is source velocity? So U mic over U s. What is this value? So now we

know that as P negative you know as this term is 0 because there are no reflections, so P of x t

is equal to P plus e minus s x over c times e s t and U of x t equal to P plus e minus s x over c

e s t over Z 0. Now from this relation I can find the value of U mic and also I can find the

value of U at source. So U mic is equal to U x t at x is equal to 0.

And this is I have to put x equals 0 in this relation. So this is equal to P plus e to the power

minus s x over c when x is equal to 0 is 1 times e s t over Z 0. And U s is equal to U L t,

excuse me, x is equal to L because my source is located at x equals L and that is equal to P

plus e minus s L over c e s t over Z 0. So U mic over U source, if I take the ratio of these two

terms what I get is e.
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So I will calculate U mic over U s and before I start doing that I have to make a small minor

modification in this picture. I had indicated that x is growing in this direction which is not

right. Actually x is positive in this direction because that is my direction of P plus.

(Refer Slide Time: 15:04)

So if that is the case then x is equal to 0 at closed end and x is equal to minus L at open end.

So  with  this  modification  I  go  back  and  here  in  this  relation  I  make  another  small

modification and x is equal to minus L. And once I put x equals minus L, this negative sign

becomes positive. So what I get here is e to the power of minus s L over c. This is the value

of the transfer function. Now we know that s is equal to j omega so U mic over U s equals e

minus j omega L over c. So this is my transfer function for U mic over U s.
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Now the question was that what is the value of L when I have a time delay of 0 point 3

seconds? So if there is a time delay of 0 point 3 seconds what it physically means is that it

will take 0 point 3 seconds for sound to travel the distance of L and in that case L is equal to

time it takes to reach the other end which is 0 point 3 seconds times velocity of sound. So it is

0 point 3 c.

Now if I put this value L in this relation then I get U mic over U s is equal to e minus j

omega, and I am replacing L by 0 point 3 c, times 0 point 3 c over c and what I get is e minus

0 point 3 omega j. So this is the transfer function U mic over U s which is consistent with

device which provides 0 point 3 second time delay and also ensures that there is no reflection

happening at the close end.
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And the final question was what is the length of this tube? So we have already calculated this.

The length of the tube is 0 point 3 c and if I want to find out the actual number then this times

345 equals 103 point 5 metres. So that is the third problem which we have covered today and

the final problem which is the fourth problem which we will do today is again related to this

transmission  line  theory.  So  I  will  frame  the  problem  for  first  and  then  we  will  start

discussing its detail.

(Refer Slide Time: 18:10)

And in this case the problem is not specifically in the area of acoustics but rather in the area

of electromagnetism and electrical engineering. But we will see that whatever concepts which

we have developed related to transmission line theory apply in area of electromagnetics as



well. So that is one reason because later we will use a lot of mappings from mechanical to

electrical to acoustics and develop a lump parameter model for complex acoustical systems

and in that context we have to become familiar with these equivalences.

So what we have here is this kind of a system. So let us say I have a plate. So this is one plate

and then I have another plate. These are two parallel long plates and they are metallic plates,

uniform thickness across the length and let us call this L and let us give a number let us say L

equals 30 centimetres.

So these are two parallel  plates and once again x equals 0 here and x is growing in this

direction. And then at this end of the plate I am putting a voltage. And this voltage is V and

the value of this voltage can change with respect to, so it is a function of omega. So it can

change with respect to omega, input voltage.

(Refer Slide Time: 20:05)

What we are interested in finding out in this system is what will be the nature of this lumped

element with the same impedance Z equals V over I. So what does that mean? Now I am

applying some voltage on the system. As a consequence there will be some current going into

the plate and I am interested in finding out Z and how this Z going to behave and the way I

define Z is its ratio of V and I. And this value of Z it depends on x. So I will rewrite this

relation.

So Z will change with respect to x and with respect to omega because V is changing with

respect to x and omega and I is also changing with respect to x and omega. So what I am



interested in finding out is value of Z at x equals minus L. So this is x equals minus L. Here x

is equal to 0. So this is the first thing I am interested in finding out.

(Refer Slide Time: 21:19)

And then special case of that expectation is that I will find the relation Z x omega at x equals

minus L and then also what is Z as omega becomes extremely small? So this is a special case.

So I will find the exact relationship and then I will find an approximate relationship and then

we will see how good is our approximation within 5 percent. So that is the second thing. And

then the third thing is we are going to find something related to the capacitance of the system.

So we know from principles of electrical engineering that capacitance between two parallel

plates C is equal to A epsilon 0 over d where A is the area of the plate, epsilon is a material

property, its permittivity of the medium between these two plates in this case it is air  or

vacuum and d is the distance between these two plates.
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So if I know the capacitance of the system I can take a metre and find the capacitance of the

systems. If I know this then what is the value of Z 0? Now this is how the problem has been

formulated. To solve this problem I have to know how V propagates along the length of the

plate and how I propagates along the length of the plate. So given, V and I both they have a

behaviour which is very similar to what we saw in acoustics.

So voltage and current, there is a V plus component so there is a voltage and then at this end

there may be some reflection.  So this  is  given.  Similarly these  are  the  transmission line

equations for voltage and current.
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So we will use these transmission line equations to come up with answers on these three

points, okay. So C in this case is velocity of wave propagation and that equals 3 times 10 to

the power 8 metres per second which is basically the velocity of any electromagnetic wave.

So this  is  what  we know. Z 0 as we saw in acoustics  here also we call  it  characteristic

impedance. And this is again a property of the material and it does not change from one

system to other system. So with this background we will start solving this problem.

(Refer Slide Time: 25:12)

So we will write down the relations for transmission line equations and then we will impose

boundary conditions at x equals L and at x equals 0 and then we start solving for V plus V

minus and so on and so forth. So one thing we know that at x is equal to 0 there is no current

flowing at x is equal to 0 because if at x is equal to 0 there was a current then it will (vialite)

violate Kirchhoff’s current law because no current can pass from this point to this point.

So there is no current at x equal to 0. So we will apply a boundary condition. B C 1, at x

equals 0, I is equal to 0. And what that means is my relation for current is I is equal to V plus

over Z 0 times e minus s x over c minus V minus over Z 0 e times s x over c. So my current is

0, so 0 equals V plus e minus 0 s over c over Z 0 minus V minus over Z 0 e plus s times 0

over c and because e to the power 0 is 1 so I get V plus equals V minus.
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Now this result is very similar to what we saw in the area of acoustics that if I have a closed

boundary condition then the velocity at that point is 0 and what that means is that at that

particular position P plus is same as P negative. So this is my first equation. Now the second

condition is that B C 2 and what it is that voltage at x is equal to minus L. So at x is equal to

minus L my equations are, and here I am going to put instead of x, L.
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So now if I put 1 in 2 then I get, I am replacing V negative by V positive so what I get is V

plus times e to the power of minus s L over c plus e to the power of s L over c. And s is equal

to j omega so I get V plus e to the power of minus j omega L over c plus e to the power of j

omega L over c and this is same as 2 V plus cosine omega L over c.



Similarly I is at x is equal to negative L is same as once again if I put V plus equals V minus

in this relation, the second relation for current then current at x is equal to minus L, I can

solve for it and I get this relation, 2 V plus by Z 0 times j sin omega L over c.
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Now what we wanted to know was what is the value of impedance at x is equal to minus L?

So I am going to take a ratio of V and I. So therefore Z, then what I get is Z 0 over j times

cotangent omega L over c. So this is my relation for Z at x equals minus L.

(Refer Slide Time: 30:18)

Now my goal was to find what happens at extremely low frequencies? What is the value of Z

as omega tends to 0. So as omega tends to 0 this cotangent term it starts approaching as



omega tends to 0, cotangent of omega L over c starts approaching 1 over omega L over c. So

as omega approaches 0 the cotangent of omega L over c approaches 1 over omega L over c.

(Refer Slide Time: 30:57)

So  if  that  is  the  case  then  Z  minus  L  omega  as  omega  approaches  0,  I  make  that

approximation in the exact relation which is this and then what I get is instead of this equal

sign I have almost equal to or approximate to 1 over j times 1 over omega times L over Z 0 c.

So this is my approximate relation for complex impedance. And this is my exact relation.

(Refer Slide Time: 32:11)

So,  what  I  am now interested  in  finding  out  the  second  question  that  how good  is  our

approximation? So what value of omega is at good within 5 percent? So I want to know that



what is  the difference between exact and approximate answers and up to what values of

omega will this difference not exceed 5 percent of the exact number? So all we have to do is

plug in different values of omega, calculate exact value, calculate approximate value and then

see, is the difference exceeding 5 percent or not?

And so that is what we are going to do. So I am just going to write these tables. I have

already calculated these results. So in first column I have omega then my approximate value.

So what I am going to do is I am going to eliminate Z 0 and I am going to compare c over

omega L with respect to cotangent of omega L over c. So the second column is going to be c

over omega L. And then the third column is and then this is my error. So this is exact and this

is approximate.
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So we pick up a frequency. Let us say omega equals 10 to the power 4 radians per second. So

I  find  that  c  over  omega  L  is  10  to  the  power  5.  Same  thing  cotangent  and  error  is

approximately equal to 0. I pick up a higher number, omega is 1 megahertz 10 to the power 6

radians per second, c over omega L goes down to 1000, same cotangent and again my error is

still 0. So I increase my omega to 10 to the power 8, c over omega L further drops down and

it becomes 10 and we now start seeing some difference.

Cotangent omega L over c is 9 point 967 and my error is 0 point 33 percent. And then I do a

hit and trial and try to find for what value of omega this error is approximately equal to 5

percent? So this is the number. 10 to the power 9 times 0 point 38, my c over omega L is 2

point 63 and this value cotangent of omega L over c is 2 point 5 and this is about 5 percent.
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So the reason I wanted to make this illustration, do this example is because later in acoustics

low course we will be making a lot of approximation and we will be making statements like

omega is  getting very small  or this number is  becoming very large.  Then we have to be

cognizant of the fact that what is the context in which we are talking about things which are

small or things which were large? Now in a Layman's view all these values of omega, 10 to

the power 4, 10 to the power 6, 10 to the power 8 and so on and so forth they are extremely

large.

But it turns out that are approximate and exact results, are fairly close as long as my omega is

less than point 38 times 10 to the power of 9, okay. So this number it corresponds to 60 point

5 megahertz, okay.
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The last question we were interested in finding is that I know from electrical engineering

theory and physics that capacitance between two plates which are parallel to each other is A

area of the plates times epsilon permittivity constant divided by d. If this is my capacitance

can I find the value of Z 0? So that is what I am going to do in next few minutes. So we know

that c equals A epsilon over d.

The other thing we know is that when I see this approximate relation my Z is impedance V

over I at x equal to minus L. It is basically 1 over j times omega times L over Z 0 c. Now we

know that for a capacitor the impedance that is V over I is 1 over j times 1 over omega c. So

you know capacitance is equal to 1 over omega c impedance. So this term is also capacitance.
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So this is my one relation for capacitance and then the other relation for capacitance is L over

c Z 0. From here I am getting and now from this block I can find the value of Z 0.

(Refer Slide Time: 38:00)

And Z 0 is equal to L over A epsilon times d over c where L is the length of the plate, d is the

distance between these two plates, c is velocity of electromagnetic waves which is 3 times 10

to the power 8, A is the area of these plates and epsilon is permittivity of free air. So with this

approach we are able to calculate the value of Z 0.

(Refer Slide Time: 38:39)

So that concludes my today's lecture and what we have talked about is basically a review of

all these concepts which we have done in past several lectures through four examples. And



with this I conclude my today's lecture and look forward to seeing you in the next class.

Thank you.


