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Good afternoon, in last several lectures we have till so far covered a slew of topics and we

began this journey in the area of acoustics we started with some reviews, we reviewed a

bunch of concepts which we will see that they will come in handy as we walk down this

course. One particular area which we reviewed was the term linearity, what is linearity?

Then we moved further and we had a review of complex numbers that was followed by

review of poles and zeros then pole and zero plots phase and magnitude plots for transfer

functions and then bode plots. So that was pretty much the overall theme for our reviews and

then we started developing equations for sound propagation specifically in one dimension.

So  we  developed  a  pressure  wave  equation  and  then  after  that  we  started  developing

transmission  line  equations  as  sound  propagates  through  medium and  finally  we  started

applying these transmission line equations and pressure wave equation in  context  of 1-D

propagation and we played with a set of boundary conditions and then we also developed a

mathematical basis for (()) (1:56).

So that is what we have covered till so far and today we will be doing a bunch of problems or

examples which will further our understanding of whatever we have learnt till so far. So what

we will start with is a problem and here if you remember that when we were developing 1-D

wave equation we had assumed based on our understanding of reality that the compression in

air as sound propagates this compression and rarefaction process is essentially an adiabatic

process.

This assumption is based on our understanding of reality and it  is based and it  has been

validated subsequently by a very large number of experiments and experimental data. What

we will do today is, we will again revisit that equation and assume in this case it will not be

an accurate assumption but we will still assume that suppose sound propagation was instead

of an adiabatic process it was an isothermal process. So had that been the case then what



would be the implication in terms of pressure wave equation and also how would sound

propagates and how fast it would propagate? What would be the velocity of sound in media? 
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So that is what we are going to do today, so our aim is develop pressure wave equation using

isothermal assumption. So this is 1 aim and then the second aim is what is the value of ‘c’?

That is velocity of sound if air behaved isothermally, okay. So if we recall the way we have

developed these equations of sound propagation, pressure wave equation and velocity wave

equation was by first developing 3 individual equations.

The first equation was a momentum equation or a force balance equation where we took a

small piece of unit of small volume of air and we applied differential pressure on it as a

consequence of this pressure this small volume of air would accelerate governed by Newton’s

first law of motion and we expressed this phenomena through the moment equation.

The  second  equation  which  we  developed  was  material  constitutive  it  related  material

constitutive behaviour and there we assumed that the air  in question was behaving in an

adiabatic way, so that was the second one and then the third one was about conservation of

mass and using principles of conservation of its magnet mass we developed this continue

equation.

So we will again revisit all these equations and see which particular equations get impacted

by it and how it ultimately affects our pressure wave equation. So we will start by momentum



equation and we had assumed that if there was a small volume of air and it was about Delta x

long and I have an external pressure. So x is equal to 0 here, x is equal to Delta x here.

So your total pressure is going to be x plus Delta x and it is also going to be a function of

time and here total pressure is going to be a function of x excuse me, so I will just set up my

coordination system here. Here the value of, so this is my reference x is equal to 0, so here

the value of x is x and here the value of x is x plus delta x. So the net force on this piece of air

is essentially the difference of PT at x plus delta x and PT multiplied by this area, okay.

And let’s call this area as delta A, so net force on this is, so this is the net force and this

should equal the rate of change of momentum of this fluid volume. So the moment of this

fluid volume is density times volume and I will call this volume as Vu and if I have to do it

rate of change of momentum then I do a take a time derivative of it, so it is d over dt and the

reason I have this negative sign as we had explained earlier was that pressure x inverts.

So if pressure on the right side is more compared to pressure on the left side of this fluid

volume then this whole thing is going to accelerate in the negative x direction. So that is the

reason I have a negative sign here. So once again this is my external force and this is rate of

change of momentum. So this is essentially Newton’s second law and this equation we had

seen earlier that we were able to simplify this to this form and as we see that in development

of this momentum equation there is no influence of the behaviour of gas, it does not matter

whether gas is behaving adiabatically or isothermally. So this momentum equation it does not

change.
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Next we will look at the material constitutive behaviour. So we have earlier we assumed that

it was adiabatic but now we are going to use a isothermal gas law. So the isothermal gas law

says  that  pressure  times  volume constant  because  temperature  is  constant  for  isothermal

system. So now if I differentiate this particular equation and time I get dPt over dt times

volume plus pressure times time derivative of volume and that equals 0.

And if I rearrange this what I get is time derivative of pressure with respect time derivative of

pressure is nothing but equal to negative of Pt over Vt times time derivative of volume. Now

we know that Pt is the final pressure and that is equal to initial pressure which is atmospheric

pressure P not plus some incremental pressure and please note that this incremental pressure

is extremely small.

And similarly Vt equals V not  plus Tau, so from these I  can say that time derivative of

pressure is same as dP over dt and time derivative of volume is same as time derivative of

incremental volume. So using these relations if I plug it into here I get dP over dt equals

minus Pt over Vt times dTau over dt.

I process this relation further and what I do is, I break this up into its specific components. So

what I get is, this is the total derivative of pressure with respect to time and this I break it up

into partial derivatives. So what I get is, partial derivative of pressure with respect to time

plus partial derivative of pressure with respect to x times dx over dt is equal to minus Pt over

Vt times d Tau over dt. 



Now this term is a non-linear term and what we know is that this term is extremely small

compared to  del  P over  del  t  because the  increments  in  pressure  and velocities  they are

extremely small. So with this assumption what we do is, we simplify this relation and what

we get is partial derivative of pressure with respect to time equals minus Pt over Vt times

dTau over dt.

And we know further we know but Pt is approximately equal to P not, once again because we

have  seen  that  the  process  of  sound  propagation  is  such  that  incremental  pressures  are

extremely small compared to the ambient static pressure which is atmospheric pressure and

similarly incremental changes or changes in volume and we know that Vt is for similar reason

is  approximately  equal  to  V not.  So  using  these  approximations  what  we  get  is  partial

derivative of pressure with respect to time is minus P not over V not times d Tau over dt.
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So we have developed the force balance equation or the momentum equation and we have

developed the equation which dictates how the gas is behave in this case and this equation is

called  equation  A and  this  equation  as  B,  what  we find  is  that  the  material  constitutive

behaviour has changed because here gamma does not appear because we have isothermal

process.
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And finally we have a very quick look at the continuity equation and if we do the maths

correctly we will find that the continuity equation also does not change. So the only question

which is changing is the material constitutive equation. So the continuity equation remains as

is and it can be written as Vt times del u over del x equals total time derivative of volume

with respect to total time derivative of volume.

So we have these 3 equations, this is my material constitutive equation let’s call this equation

A then I have partial derivative of P with respect to t equals minus P not over V not times d

Tau or dt this is B and the third equation is del P over del x equals minus delta del u over del t

this is equation C, so these are the 3 equations and what we are going to do is that from these

3 equations we will solve for pressure in terms of x and we are going to eliminate Tau.
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So if we looked equations A and B we have this d Tau over dt here and d Tau over dt here, so

from these 2 I’m going to eliminate Tau and what I get is from this equation I get del P del t

times and then this d Tau is same as this number, so I’m going to replace d Tau over dt and

replace it by velocity times du over dx. We also know that Vt is approximately equal to V not.

So what I get is minus P not times Px, so let’s call this equation as D.

Now what we do is we differentiate D with respect t, so we differentiate this relation with

respect to time and then this relation with respect to x and then we again try to eliminate u

from these 2 relations. So if I differentiate equation D with respect to x with respect to time

what I get is second derivative of pressure with respect to time is equal to minus and then

from this equation what we get is, so now we are going to differentiate C with respect to x.
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So what I get is, now once again these 2 terms, this term and this term they are going to be

same as long as my u the function u and its derivatives are continuous in both in space and in

time. So for that particular condition partial derivative of u with respect to t and x is same as

partial derivative of u with respect to x and t and if that is the case then I can eliminate this

term partial derivative of u with respect to x and t.

And what I get is, so this is my wave equation for pressure and once again we notice that

gamma is missing from this case and what that mean is that the system is isothermal and that

is why gamma is missing and this is how the sound is going to get propagated.

If sound propagation was a purely isothermal phenomena and the other thing we have to we

had to find was what is the value of C? So just as what we had found out earlier in case of

adiabatic system in this case c square is nothing but this term, so c square equals P not over

rho not or c equals P not over rho not the whole thing square root and because P not equals

1.05 times 10 to the power of 5 pascals and rho not equals 1.18 kg per cubic meters what I get

is c equals 298.3 meters per second. So this is the value of c which Newton estimated that this

is how fast sound is going to be travelling.

But of course his prediction did not match with reality and as a consequence people had to

relook at this whole procedure and what they found was that in this whole thing this term

gamma  was  missing  because  the  assumption  that  gas  behaves  isothermally  as  sound

propagates was an inaccurate assumption and as a consequence what does prediction for



sound’s velocity comes out be incorrect. So this is the first example of problem wanted to

cover in today’s class. 

So the second example which we are going to do is about a cylinder. So what we have is a

cylinder and this is at room temperature there is air inside the cylinder and what we are going

to do is, we are going to, so this is cylinder which is closed on one end and open on the other

end. So at the open and we are going to put a piston which is airtight, so no air comes out of

it. 

And we are going to have a piston with a finite mass and because of this mass the air is going

to get compressed a little bit because the piston moves downwards and as it moves it settles

down and we are going to analyze this system and we will try to find out what is a natural

frequency of the system? So let me draw a picture for illustration purposes.
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So this is my cylinder and in this cylinder I have a piston, the initial height of the piston, so I

call it h initial is 1 meter and of course gravity is acting in the vertical direction downwards.

Right now when the height is 1 meter the piston is not released and at this point of time the

pressure outside is 10 to the power of 5 Newton’s per square meter. So pressure outside then

also in the inside is 10 to the power of 5 newtons per meter square.

Now I am going to release this piston, so the mass of this piston is 10 KGs and I am going to

release this piston and as a consequence this piston is going to move downwards and this is

going to be the settled position of the piston and the new height is going to be h new. Now



once it settles is there in mind that as it moves down it moves very slowly and then it settles

down at a final position.

So once it has settled down to the final position then I want to find that if I excite this system

the piston because there is air inside it, it will act as a spring so it will try to force the piston

out, so it will act as a spring mass system where mass is going to be predominantly the mass

of the piston and the stiffness is going to come from the stiffness of air. So it is going to act as

a single degree of freedom spring mass system and it will have some national frequency.

So our goal is to figure out what is the value of this natural frequency, so how are we going to

solve this problem? So what we will do is, we will solve this problem in 3 stages, step A we

are going to find equilibrium position, step B for this equilibrium position we are going to

find stiffness exerted by air and then step C we are going to find omega, natural frequency

equals k over m and this is how we are going to find out.

So we will start with step A, so that extra force which is being impressed upon air is this

external force is F and that equals mg and this force is being balanced by the incremental

pressure because once this mass moves downwards, the pressure inside the cylinder is going

to increase so there will be some incremental pressure, so this force is going to be equal to

incremental pressure times area.

And the area, so this diameter again I have to mention this diameter is 0.3 meters, so we plug-

in the values for area mass g and then through that process we can find incremental pressure.

So if incremental pressure is P then P times area equals mg and what I get is P equals mg over

a and that is equal to 10 times 9.81 divided by pi d square over 4 where d is equal to 0.3

meters and thus what I find is my incremental pressure is equal to 1388 newtons per meter

square.

So now I know the pressure in this (()) (31:07) settled position and now I want to know what

is the value of h new? So that is my equilibrium position, now we know that this piston is

settling slowly and what that means in thermodynamic terms is that all the extra heat as this

air is getting compressed it is able to get out and the temperature of air outside the cylinder

and inside the cylinder is because it has to remain, so the overall temperature of cylinder does

not change, so this is an isothermal process.



So once it is an isothermal process then I can use this relation P1 V1 equals P2 V2 and from

that I can find what is going to be my new volume? So for isothermal process PI V1, P1 is

initial pressure, total initial pressure not incremental pressure V1 is initial volume is same as

equal to final pressure times final volume. Now P1 is equal to 10 to the power of 5, V1 is

equal to the volume of the cylinder, so that is A times height and the height is 1, so that is A.

P2 equals P1 plus incremental pressure which is 1388 and then V2 is equal to h new times

area. So I put in all these values in this equation and what I get is 10 to the power of 5 times

A equals 10 to the power of 5 plus 1388 times h new times A, so A goes away and what I get

is h new equals 10 to the power of 5 over 10 to the power of 5 plus 1388 and this what I get is

h new equals 0.986 meters. So now I have found I have completed my first step that is step A.
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So my next step is to find step B stiffness of the system, stiffness of an air column which is

0.986 meters tall and whose internal pressure is 10 to the power of 5 plus 1388 meters per

meter square. So what we know is, that stiffness is equal to small change in force divided by

small change in length. So I have an air column I press it a little bit there is an incremental

force and also the length shrinks by small amount, so the ratio of this change in force and the

change in length that will give me stiffness.

Now this Delta F is nothing but change in pressure times area and this Delta l is basically

Delta  V change  in  volume divided  by  area,  so  what  I  get  is,  now if  these  changes  are

extremely small, if Delta P Delta V are small then Delta P over Delta V in the limit of this

thing going to 0 approaches dP over dV, so therefore K is equal to dP over dV times A square.



So what we have developed is a relation for stiffness that is fitness equals dP over dV times

square of area. So now we have to find what is the value of dP over dV because we already

know what is A. Now we know that the compression of gas or air in the cylinder, when this

10 kilogram of mass was settling down it was an isothermal process, now it has settled down

and now we want to know whether when the vibration happens the gas is going to get again

compressed and you know it will compress and expand and compress and expand.

So again we have  to  make an  assumption  we have to  make an assessment  whether  this

expansion and compression process is adiabatic process or is it an isothermal process because

we may get different results based on our assumption as we saw in the case of speed of sound

also. So right now what we will do is, we will assume that this process is an adiabatic process

and later we will check the validity of our assumption based on some based on some other

approach.

So we will assume that this process of expansion and contraction in gas as these vibrations

are happening it is an adiabatic process and with this assumption we will develop a relation

for dP over dV. So for an adiabatic process Pv to the power of gamma equals c and if I

differentiate it I get dP times V to the power of gamma plus gamma P times V to the power of

gamma minus 1 equals 0 and this gives me dP over dV equals minus gamma P over V and the

negative sign once again as we saw earlier it indicates that as pressure it is increasing in the

system volume contracts and as pressure goes down volume expands. So that is the reason

why I have a negative sign here.

So now in our case P is equal to P not plus incremental pressure and that is 10 to the power of

5 plus 1388 pascals, volume equals the height of air column h new times area and that is

0.986 times area.  So dP is  equal  to gamma and I  am dropping the negative sign for the

purposes of convenience equals, so gamma times 10 to the power of 5 plus 1388 divided by

0.986A and once again A is equal to pi times 0.3 square over 4.
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So if I use this relation into this then I get my k equals 10 to the power of 5 plus 1388 over

0.986A times 1.4A square because they are my equals gamma equals 1.4 is a gas constant and

if I plot the value of A as this thing then this comes out of the 946 newtons per meter. So now

I have completed my second step which is step B, so now I do my step C and that is omega n

equals k over m equals 9846 divided by 10 because 10 is the mass of the piston I am ignoring

the mass of the air column because if I calculate the mass of air column it comes to be less

than 0.8 percent of the mass of state, so mass of the air column is going to have negligible

impact on the vibrational characteristic of the system.

So stiffness is 9846 coming from air, mass is 10 coming from piston and this comes to be

31.5 radiance per second and then frequency natural frequency is equal 31.5 over 2pi equals

5.01 hertz, so that is my natural frequency and with this I conclude my today’s lecture and I

look forward to seeing you in the next class, thank you.


