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 So, we will continue our discussion where we stopped the previous class. So, we developed  

stress diagram from 𝛽 plot. So, we have to convert this diagram to this diagram and  so you 

know that how to convert 𝛽 to 𝛼 and finally we get OA, OB, OC, OD and OE in  terms of stress 

diagram, okay. This is nothing but our yield locus and we can mention OA as 𝛼 = 1 and OB 

as 𝛼 = 1/2 and OC as 𝛼 = 0 and  OD as 𝛼 = −1 and this is the last one where 𝛼 = −∞ we 

say and then correspondingly there is 𝛽 values.  So, now we will see some details about each 

one. So, here you can see in the equi-biaxial  stretching 𝛼 is  𝛼 = 𝛽 = 1 that is basically you 

are if you see  the previous one it is OA, this is OA, OA path. 

 

 So, if you look into it since 𝛼 = 𝛽 = 1 so we are going to develop some relationships which 

will be  useful for our discussion and you will see that 𝜎̅ = √𝜎1
2 − 𝜎1𝜎2 + 𝜎2

2 and this is as 

per Von Mises  yield function and here you will say that if you put 𝛼 = 1 you will see 𝜎̅ =

𝜎1 = 𝜎2  , okay.  So, effective stress is nothing but the principle stresses and when you go to 

next one that  is your OB, okay this is OB, okay. So, here you will see that 𝛽 = 0 and 𝛼 = 1/2, 

right. 𝛼 = 1/2 here, okay. 

 

 So, 𝛼 = 1/2.  So, here you will see that if you put 𝛼 = 1/2 here so you will get 𝜎1 =
2

√3
𝜎̅ =

1.15 𝜎̅ and 𝜎2 =
1

2
𝜎1 because 𝛼 is 𝛼 = 1/2, right.  So, for a given flow stress here you will see 

𝜎1 is greater in this process than  any other we will see that, okay. Here 𝜎1 which is principle 

stresses is 1.15 𝜎̅, 1.15 𝜎̅, okay. And if you go to the next one uniaxial tension  where 𝛽 =

− 𝛼 = 0 if 𝛼 = 𝜎̅ = 𝜎1, okay and then you will see that your 𝜎2 = 0 , 𝜎1 = 𝜎̅ = 𝜎𝑓 which is 

nothing but your flow stress, okay.  So, you can see that both are equal here, 𝜎̅ and 𝜎1 and 𝜎𝑓 

all are  equal but here if you see that 𝛼 = 1.15 𝜎̅ and this occurs in tensile  test. 

 

 If you go to the next one that is drawing where 𝛼 = −1/2 and 𝛽 = −1, if you put 𝛼 = −1/2 

here you will get the membrane  stresses as 𝜎1 = 0.58𝜎̅ which is just half of 𝜎̅,  okay. If you 

go to the previous one, okay you will see that your 𝜎1 = 1.15 𝜎̅, here 𝜎1 =  𝜎̅ and here you 

will say  𝜎1 = 0.5𝜎̅ and 𝜎2 = −0.58𝜎̅. What does that means? That means if you compare  

this with the previous one the magnitude of stresses to cause deformation are at a minimum  

in this process, okay. In drawing, okay when you follow deformation path where 𝛼 = −1, 

𝛽 = −1 then you will have a magnitude of stresses  which is going to be minimum that is in 

magnitude they are only 58% that means 0.58  times 58 % of stress required to yield a 



similar element in simple tension.  So if you go to uniaxial tension, okay you are deforming 

the material and you want to  yield it so then you need to go to 𝜎1 = 𝜎𝑓 but at the same time 

same  material same element you are going to deform it in drawing then it will be only 58 %  

of that, okay. 

 

 So it is going to be minimum in this process whereas you will see that  it is going to be 

greater in this case in plane strain it is going to be greater why  it is because 1.15 𝜎̅. So here 

it is 1.15 times here it is 1 time and here  it is only half of that 0.58 times, okay. 

 

 So in uniaxial compression you will see that  since 𝜎2, 𝜎1 is 0 if you substitute here you will 

get 𝜎2 will be equal to  on the negative side which will be your −𝜎𝑓 and this is going to 

create wrinkling  on the flange of the sheet and we have seen this example uniaxial 

compression at the edge  of the flange region. So you will see that you are going to have 

wrinkling because of  this, okay. So this 5 parts OA, OB, OC, okay and then you have OD and 

then you have OE,  okay all are coming from this particular one OA, OB, OC, OD, OE and you 

will see that  if you are deforming in this particular you know stress path where 𝛼 = −1 you 

can deform the material to reach yielding, okay pretty easily and it is about 58 %  of that 

what is required in uniaxial tension that is what we have shown in this particular  

comparison in this one and this one, okay.  So just to complete the last section of this 

particular then we will go for one couple  of problems you will see that principle tractions or 

tension, principle traction or tension,  okay. So tension is nothing but force per unit length 

transmitted in the sheet, okay  or you can also say it is traction, traction means just pulling, 

okay. 

 

 So 𝑇1 = 𝜎1𝑡 and 𝑇2 = 𝜎2𝑡. So 
𝜎2

 𝜎1
×  𝜎1 × 𝑡 = 𝑇2 and you will see that this is going to  be your 

𝑇1 , okay. So and this is nothing but your 𝛼 . So 𝑇2 = 𝛼𝑇1 . So 𝑇2 = 𝜎2𝑡 = 𝛼𝑇1 . 

 

 So 
𝜎2

 𝜎1
, 

𝜎2

 𝜎1
= 𝛼. Similarly we can say 

𝑇2

𝑇1
= 𝛼. Both are one and the same. So now you can see 

that like 𝜎1 versus  𝜎2 you have a yield locus, okay. We can also have tension locus 𝑇1 versus 

𝑇2 , okay. 

 

  So this can be obtained by from 𝜎1 and this can be obtained from 𝜎2, okay. And  you will see 

that this there is an yield locus, okay. Similarly there will be a tension locus  which is given 

here, okay. There will be a tension locus which is given. This is similar  to what we have 

seen in yield locus, okay. 

 

 So there is something called 𝜎̅ we  discussed, okay. And 𝜎̅ will lead to, 𝜎̅ is nothing but 

effective stress,  right. So effective stress will lead to effective tension which is given by 𝑇̅ =

𝜎̅𝑡. So you can directly write that as (√1 − 𝛼 + 𝛼2)T2, okay. So 𝜎̅ = (√1 − 𝛼 + 𝛼2)𝜎1, right. 

 

 So this will be 𝑇1, okay. This has  to be 𝑇1 I think, okay. What is this one? Into 𝜎1 now. So this 

will be 𝑇1 , okay.  So if you know this 𝑇̅  then you can get this yield locus, right. 



 

 So we are not going  to use it. Rather we are going to use only the yield locus. This will be 

helpful for  us when you evaluate the tensions. And now we are going to introduce 

something which  will be useful for our next chapter, okay. So what is that? Suppose in this 

equation  𝑇1 = 𝜎1𝑡, okay. 

 

 𝑇1 = 𝜎1𝑡. In this equation,  okay, if you use the material law 𝜎̅ = K 𝜀̅𝑛 then what  will 

happen? You can say that this 𝜎1 =
𝜎̅

(√1−𝛼+𝛼2)
 , isn't it? So 𝜎̅ = K 𝜀̅𝑛. So this you can combine 

as 1 and 𝑇 = 𝑡0exp [−(1 + 𝛽)𝜀1]. So if you combine this you will get this particular equation. 

So  𝑇1 = 𝜎1𝑡 where 𝜎1 =
𝜎̅

(√1−𝛼+𝛼2)
 and 𝑇 = 𝑡0exp [−(1 + 𝛽)𝜀1]. 

 

 This we have developed in the previous section itself, okay.  So now you will see that this 

equation is a function of some material properties and  your 𝛽 and 𝛼 and your 𝜀1 strain, 

right. K and n you know strength coefficient  and strain hardening exponent. 𝑡0 is initial 

thickness. 𝛽 is you know your strain ratio  and 𝛼 is the stress ratio and finally only variable 

is 𝜀1 and for 𝜀1 you can get 𝜀  ̅also because by knowing 𝛽 you can get 𝜀2, 𝜀1 and 𝜀2 can be 

obtained. 

 

 So 𝜀3 can be obtained. From this you can get 𝜀 .̅ Finally  you will see that 𝑇1 as a function of 

𝑇1 as a function of 𝜀1  and 𝑇2 as a function  of 𝜀1  can be drawn and here it is given, okay.  So 

from this we can get 𝑇1 and 𝑇2 where 𝑇1 and 𝑇2 are related by 𝑇2 = 𝛼𝑇1, okay. So from this 

equation you can fetch any values for this and you can  get 𝑇1 versus 𝑇2 here, 𝑇1, okay or 𝑇2 

versus , 𝜀1 you will get. So and you will see  that for those cases when you have 𝛽 > −1, 𝛽 >

−1  means  that means this fellows, 𝛽 > −1  means this side, okay. 

 

  So for those cases where you have thinning, for those cases where you have thinning you  

will get maximum load, okay. You will get maximum load and after that you will see that  

maximum load is going to decrease or tension is going to decrease, okay. So 𝑇1 is obtained  

and 𝑇2 can be obtained by knowing 𝛼, right. So if you want to find this maximum tension,  

okay, so then you can get it by taking 
𝑑𝑇1

 𝑑𝜀1
= 0 and if you solve it you  will get 𝜀1 ∗ =

𝑛

1+𝛽
 and 

this value will be this  one from 0 to this, okay.  So you can solve it and find out, okay or you 

can do it graphically also where you can  choose K, n, 𝑡0, 𝛽, 𝜀, 𝛼 you can choose and if you 

change 𝜀1 as  a variable you will get 𝑇1 and 𝑇2 in this way and only for 𝛽 > −1  you will get 

such situation, this kind of situation. 

 

 If it is < −1 then  it will never come down, okay because 𝛽 is not going to be, you know, >

−1then thinning will not happen, okay then you will not see this maximum tension,  okay. 

So only if you have 𝛽 > −1 you will get this particular situation  and the maximum tension 

can be obtained when you have 𝜀1 ∗.  We are going to call this as star because it is going to 

tell the maximum value 𝜀1 ∗ =
𝑛

1+𝛽
 where n is your strain warning exponent and 𝛽 is  your 



strain ratio, 𝛽 is your strain ratio, okay. So if you know 𝜀1 ∗ you can  get 𝜀2 ∗ star as 𝜀2 ∗, 

sorry 𝜀2 ∗ = 𝛽𝜀1 ∗considering proportional  process the 𝛽 is not going to change let us say.  

So now for uniaxial tension suppose 𝛽 = −1/2, okay, 𝛽 = −1/2 if you put 𝜀1 ∗ = 2𝑛 and for 

plane strain if 𝛽 = 0  you will get 𝜀1 ∗ = 𝑛 . 

 

 What does that mean? That means if you  deform a material in uniaxial tension, okay, so the 

material is going to fail at a strain  of 2 times of strain warning exponent at the same time if 

you deform the material, same  material when you have plane strain process 𝜀1 ∗ = 𝑛, okay.  

So what does that mean? That means the material can extend to a larger value of you know 

𝜀1 when you deform the material in uniaxial tension as compared to plane strain. So in  

plane strain the material can fail or material can reach this maximum value which is a 

indication  of something like instability, okay, then that will be reached early in plane strain  

process, okay, at 𝜀1 ∗ = 𝑛. So if 𝑛 = 0.22,  so 𝜀1 ∗ = 2 × 0.22 = 0.44 in case of uniaxial but  

the same time it is plane strain means it is 0.22 only, okay.  So in that case the material is 

going to reach failure or instability in plane strain much  early as compared to uniaxial, 

okay. This is going to lead to a good next chapter some  theories we are going to develop for 

instability this will be a basis for this. So where once  this star indicates that material will be 

in some sort of instability or a maximum load  is reached, maximum tension is reached, 

okay. 

 

 So we will stop this theory part with this.  We will solve two problems in this now, okay, 

which are going to be useful for us, okay.  So first problem is, okay, a small circle of 5 mm 

diameter is printed on the surface  of undeformed low carbon steel sheet with thickness of 

0.8 mm. So, 𝑡0 is nothing but  0.8 mm. So we will take 𝑡0 as 0.8 mm and initial diameter of 

the circle let us say 𝑑0 as 5  mm. Let us pick up this way and it is a plane stress proportional 

process and it is a plane  stress proportional process. So after deformation the major 

dimensions are given, minor dimensions  are given. What are they basically? It is let us say 

𝑑𝑚𝑎𝑗𝑜𝑟  as you can call it as 6.1  mm and 𝑑𝑚𝑖𝑛𝑜𝑟 as 4.8 mm, okay, and effective strain 

relationship is a standard one. So  we need to get 𝛼 here and then 𝑇1 and 𝑇2 and then you 

can get effective strain.   

 

So as we discussed in the previous chapter, so now the point here is once the dimensions  

are given we have to get principle strains, right. So 𝜀1 is you can directly get  𝑙𝑛 (
6.1

5
), okay, 

that will be about 0.199 and then 𝜀2 can be obtained  𝑙𝑛 (
4.8

5
) = −0.041 which is going to be 

negative value. If you know these two you  can get 𝜀3 = −(𝜀1 + 𝜀2) as which will be this, 

okay. So now we need  to get 𝛼, so for that we need to get 𝛽 because strains are known, from 

𝛽   you can get 𝛼 . 

 

 So what is 𝛽? 
𝜀2

𝜀2
, so 

−0.041

0.199
= −0.21 and from here you can get 𝛼 as 0.324, okay. So 𝛼  has 

been found out. So now 𝛼 has been found out, it is fine, then we need to get  the effective 



strain, so that is also another question. So it is understood that it is Von  Mises equation. So 

𝜀̅ = √
4

3
[1 + 𝛽 + 𝛽2]𝜀1, so you substitute 𝛽, this particular 𝛽 value here you will get 𝜀̅ = 0.21. 

And the tensions 𝑇1  and 𝑇2  can be obtained, we just now derived it, okay. 

 

 𝑇1 and 𝑇2 we  just now derived, isn't it? So 𝑇1 is this. If you know 𝑇1, 𝑇2 = 𝛼𝑇1. So 𝑇1 = 𝜎1𝑡 =
𝐾⋅𝜀̅𝑛

√1−𝛼+𝛼2
𝑡0exp (−(1 + 𝛽)𝜀1). So all values  are known to us, so this is your K, right and this is 

your n, so all are given. 

 

 So 
600⋅0.210.22

√1−0.324+0.3242
× 0.8 × exp (−(1 − 0.21) × 0.199). If you calculate 𝑇1, it is going to be 

329.3, about 329 𝑘𝑁 𝑚⁄ ,  okay. So you have to check the units, please check the units, it has 

to be consistently  used, please check it. And 𝑇2  you can obtain by 𝛼𝑇1 . 

 

 What is 𝛼? It is already  known to us 0.324 × 𝑇1, it will be just one third of this, so this will 

be your 106.7  𝑘𝑁 𝑚⁄ , okay. So this is one easy problem, okay. So these all are known  to us 

from the previous chapter, 𝜀  to get 𝜀1 , 𝜀2 , 𝜀3 , 𝛽  and then 𝛼  , 𝜀 ̅ we already done. 

 

 Only difference is now we calculated, we derived an equation for  𝑇1 and we derived an 

equation for 𝑇2 and 𝑇1 and 𝑇2 are nothing but major tension, minor  tension, okay. So that is 

the only extension in this chapter and you know how to get it.  Similar problem, okay. So 

suppose you are doing deep drawing, okay, so this deep drawing,  cup deep drawing you 

know. The strains in the center of the base A, so this point is  let us say A, halfway up the cup 

wall, this is your cup wall B, okay and in the middle  of the flange that is in C, okay. 

 

 These three values are given as 0.015, 0.015, 0.050, 0.15, −0.1. These all values are given, 

okay. This is nothing but strains that is 𝜀1 versus 𝜀2, okay. 𝜀1 and 𝜀2 are given for these three 

locations A, B  and C. 

 

 This A is here, B is somewhere in the middle and C is somewhere in the middle here,  okay. 

The strain hardening of the material is negligible so that effective stress is  constant, okay. 

So here they are saying 𝜎̅ as a constant value. Constant value means  what? Okay, there is no 

hardening in the material. So which means that your flow stress is going  to remain constant 

at 300 MPa which is easy for us to calculate. 

 

  Initial thickness is given as 0.5, so 𝑡0 is given, okay. So what do you need to get is  basically 

at each point, this A, B, C you have to get the new thickness and major tension  that is 𝑇1, 

new thickness t and major tension 𝑇1. That is all you need to get. So now how  do we go 

ahead? So like now strains are given, so directly we start getting one by one what  was the 

requirement we have.  So you need to get t, that is the new thickness, right. So new 

thickness depends on the original  thickness by 𝑡 = 𝑡0exp (𝜀3) , correct. 

 

 So now here you need to  get 𝜀3 because 𝑡0 is known to you, 𝑡0 is already given, okay. 𝜀3 has 



to  be found out. So 𝜀3 = −(1 + 𝛽)𝜀1, right.  So for this 𝛽 should be known, for this 𝜀1 also 

should be known which is already  given for each points. 

 

 So how do you get 𝛽 now? 𝛽 is nothing but 
0.015 

0.015 
= 1, then 

0

0.05 
= 0 , 

−0.1 

0.15 
= −0.667.  If you 

put 𝛽 is equal to 1, 0, −0.667, in this you can get 𝛼. You know that for  𝛽 = 1 , 𝛼 = 1. For 0 it 

is 1/2 , this is known, okay. 

 

 This is  balanced by axial stretching and this is plane strain, okay. So and here this is going 

to  be a variable, okay. It is 0.251, okay. So it is plane strain. 

 

 Plane strain is half,  isn't it? So plane strain is 1/2. We say plane strain is 0, 𝛽 = 0 and 𝛼 =

1/2 .  𝛽 =0. 𝛽 = 0  , 𝛼 = 1/2. 

 

 That has been obtained.  So now everything is known, okay. So all the values are known 

here. 𝜀1 is already  given in the value 0.015. So −1 + 𝛽 is 1. You substitute everything here.  

You will get this value, this value and this value for the different parts, A location,  B location 

and C location, right. So now our question is there is only one variable that  is 𝜀3 here that 

you can substitute in this. 

 

 You will get new thickness 0.485,  0.456, 0.456, right, 476. So there is less decrement in 

balance by axial. You will see  more change in thickness in case of these two.  Now you want 

to get 𝑇1 . What you need to do? You know 𝑇1 = 𝜎1𝑡 . 

 

 So 𝑡 has been found out already. You need to get 𝜎1. 𝜎1 =
𝜎̅

(√1−𝛼+𝛼2)
 . That can be found out,  

right. So 𝜎̅ is nothing but already given, 300 mega Pascal. You have to just substitute  as it is 

because it is not going to be variable.  Divided by √1 − 𝛼 + 𝛼2, you can substitute 𝛼 value  

and you will get 300, 346 and 262, right. 

 

 So you can see that 𝜎̅ and 𝜎1  are equal, isn't it, for balanced by axial stretching, you know. 

So that is what we have  seen in the previous one. You know, you can see that 𝜎1, 𝜎̅ are 

equal, isn't  it. 

 

 So that is what we got here in this problem as well. So which means it is good.  So then if 𝜎1 

is known to you, 𝜎1𝑡 will give you 𝑇1, that is major  tension. t is already known, okay. 

 

 This is about half of each, 300 into 0.485, 340 into  0.476, 262 into 0.476, you will get these 

three values.  So now by knowing, you know, 𝑇1 and 𝑇2, you can get not only the tensions 

corresponding  to the principal stresses but also at which stage of deformation you will get 

maximum  tension which is equivalent to some instability that is going to start. That can be 

obtained  when you put 𝜀1 ∗ =
𝑛

1+𝛽
, right. So basically in this  chapter, we were discussing 

about how to find your strains at different locations of the  sheet and then some concept 

called strain signature we introduced, that is through strain  diagram. Then we introduced 



how to interpret strain  diagram, some important features we understood, then how to 

convert that into stress diagram  and then some important features of this five different 𝛼 s 

and 𝛽 s we understood and  at the end we introduced major tension, minor tension, how to 

get 𝑇1 and 𝑇2 from 𝜎1, 𝜎2 has been found out and some problems we solved just now, two 

problems, two examples,  okay. 

 

 So this, a small circle means it is given  in one location, right. Similarly you can imagine a 

sheet of 200 mm by 200 mm dimension.  In all that location you have so many such circles, 

okay and in each circle you will  have so many, you know, variables inside. Each location will 

have 𝜀1, 𝜀2, 𝜀3  will be varying, each location will have its own 𝛽 𝛼, then 𝜀 ̅ will come  and 

tension 𝑇1and 𝑇2 will change accordingly, okay.  And this example is the best one to 

represent that. So different locations A, B and C, you  will see that A is deforming in this 

fashion, B is deforming in this fashion and C is deforming  in this fashion, okay and your 𝛼, 

𝛽, thickness strain, 𝜎1, 𝜎2, everything  is going to change as per the location and strains that 

we get. So we stop here. So in  the next class.  Thank you. 


