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Okay, so let us continue our discussion from the previous module. So today, now we are  

going to start module 3. Okay, so module 1 and 2 are completed. So we are extending our  

discussion from module 3, which I have named as deformation of sheet in plane stress, 

deformation  of sheet in plane stress. So in this is actually a small module. So in this we are 

going to  discuss about some theoretical and some practical aspects, okay and some 

calculations, you know  like that. 

 

 Okay, so to start with in the previous chapter, we were discussing about we can evaluate  

strains, principal strains 𝜀1, 𝜀2, 𝜀3, which is going to depend on the initial  and original 

dimension of a particular element. We worked out some problem, 2 problems also in  the 

previous chapter, right. So now then further strains if you calculate, you can calculate  

effective strain, then effective stress by knowing some flow stress model, from effective 

stress by  knowing a yield function, you can get 𝜎1 and by knowing 𝛽, 𝛼 , you can get a 𝜎2. 

Okay,  so from there onwards, you can get a hydrostatic stress and principal stress, your 

deviatoric  stresses. 

 

 So all this can be calculated along with the work done. That is the way we started,  right. So 

now the first important thing is to evaluate the, you know, strains at different  locations of a 

sheet. So how do we do it practically? So, so we start with that discussion  and then we go 

ahead with some important aspects in this particular chapter. So now, so here I have  given 

3 figures A, B and you have C. 

 

 Okay, so you can imagine that A is basically an undeformed  sheet. Okay, this is basically an 

undeformed sheet and this is a deformed sheet. Okay,  and this is a deformed sheet. And this 

is a deformed sheet. Okay, so now the question is,  how do you calculate your strains? So if 

an undeformed sheet of thickness 𝑡0, let us say  initial thickness 𝑡0 is marked with grid of 

circles of diameter 𝑑0 . 

 

 Okay, so or a square  mesh or a square grid of, you know, dimension, let us say 𝑑0. Okay, 

then during uniform deformation,  the circles will become ellipse. Okay, with major and 

minor diameters as 𝑑1 and 𝑑2. Correct. So what  does that mean? That means, suppose you 

have a sheet, you know, through which I mean using that  you are going to do deep drawing 

or stretching or any sheet forming operations. 



 

 First of all,  you have to put lot of circles on the sheet surface. Okay, you have to itch or you 

have  to print several circles of known dimensions. Say for example, this 𝑑0. Okay, so I have 

just  given you some example 4 circles, 1, 2, 3, 4 of diameter 𝑑0. 𝑑0 could be maybe about, let 

us say,  20 mm, let us say 2 centimeter, you can say 20 mm. 

 

 Okay, so let us say 2 centimeter, you can say.  Okay, so, you know, small, you know, circles, 

you can, you can put, okay, or maybe like, you know,  10 mm, you know, circles, you know, 

like which is 1 centimeter dimension, like that you can put,  okay, small dimensions. Okay, 

and smaller the diameter of the, you know, these grids,  you can calculate strains at a very 

localized region. Okay, that is a, you know, thing. Okay,  so I just given you a reference, okay, 

like this. 

 

 So, you can look into, you know, different  standards how to do it. So, anyway, so now given 

a sheet, you know, you are going to put lot of  circles on the sheet surface. Okay, and what 

will happen to the circles when you deform it,  it is going to become an ellipse like this 

depending on whatever 𝛽 or whatever  𝛼  you are going to deform it. Okay, so, 𝑑0 is going to 

become 𝑑1 and 𝑑2 and 𝑑2, we are going to call  it as your minor axis, which is nothing but 

minor diameter and 𝑑1 as a major diameter. Okay, so,  sometimes what we do is instead of 

circles, we can put square also, square grids are also possible,  okay, which is going to 

become 𝑑1 and 𝑑2 like a rectangle or any other distorted rectangle you  can have, but it is 

always better to put the grids of circles, grids of circles. 

 

 Okay, so,  now what will happen? Okay, so, given, you know, deformation or  𝛼, 𝛽  this 

ellipse is going to have some dimension, okay, you will get 𝑑1 and 𝑑2 and from 𝑑0,  which is 

original dimension, you can get 𝜀1, 𝜀2. So, 𝜀1 = 𝑙𝑛
𝑑1

𝑑0
  because the major, no. So, let us say you 

have major and minor axis.  So, 𝜀1 = 𝑙𝑛
𝑑1

𝑑0
   and 𝜀2 = 𝑙𝑛

𝑑2

𝑑0
  . Okay,  so, you have to be a little 

bit careful in which orientation you are going to pick up these two  strains, but we have seen 

some examples accordingly you can take it. 

 

 Okay, so,  now the new thickness t and the deformation stresses are 𝜎1, 𝜎2, okay, which are  

also referred here. So, this has become t, small t and you have 𝜎1 and 𝜎2,  these are two 

principal stresses acting on the sheet, which is responsible for deformation,  okay and this 

𝜎1, 𝜎2 will give rise to 𝑇1 and let us say 𝑇2, which are actually called  tension or traction, 

tension or traction. Okay, so, that T can be evaluated from 𝜎𝑡. Okay, if you want 𝑇1, it will be 

𝜎1𝑡, if you want 𝑇2, it will be 𝜎2𝑡,  which is what I have given here. Okay, t is known as 

tension or traction, which means it is always  pulled in one direction. 

 

 Okay, suppose in principle direction 1, you have 𝑇1 = 𝜎1𝑡,  assuming t to be a constant 

value, new thickness but constant. Okay, 𝜎1,  𝑇1 = 𝜎1𝑡, which is nothing but major tension, 

generally it is positive in  nature. Okay, and you have 𝑇2 = 𝜎2𝑡, which is generally called as 

minor tension,  it is positive in stretching, but opposite negative when you go for 



compression type  of deformation. Okay, so, T can be found out as 𝜎𝑡. Okay, so, now, you 

know how to  calculate 𝜀1, 𝜀2 and from there you can calculate 𝜀3 or you can directly  

calculate 
𝑡

𝑡0
. 

 

 Okay, with respect to this figure, you can get 𝜀3 = 𝑙𝑛
𝑡

𝑡0
. We have seen some examples before 

in the previous chapter. Okay, so, now, such evaluation  of strains will give you something 

called as a strain distribution. Okay, in the entire deformed  sheet, which will give you some 

important information during the deformation process.  Okay, so, what do we do? Say for 

example, you take a deep drawing, I just given you as example,  cup deep drawing, 

cylindrical cup deep drawing. 

 

 Okay, so, you have a blank and you have punch,  you have die and there is a blank holder. 

So, you know what is the meaning of blank holder?  Blank holder is going to hold the sheet 

between the die and the blank holder and you are going  to give some force let us say, you 

give a force of BHF, let us say a blank holding force is given  here. Okay, and you know that 

there is no restriction for the moment of sheet in the  radial direction, it moves actually. 

Okay, but only restriction is through friction. Okay,  there is otherwise there is no 

constraint. 

 

 So, finally, you are going to get a cylindrical  cup like this, you have seen this example 

before. Okay, so, now, I have a partially  drawn cup. Okay, similar diagram we have seen 

before I have partially drawn cup. Okay, I  have just shown you one sector of that. So, this 

you know is a flange region is a cup  wall region and this is a cup bottom region. 

 

 Okay, that is known to you. So, now, we want  to evaluate strain. Now, we want to we are 

going to pick up this deep drawing as a process,  we are going to evaluate strain at six 

different locations 1, 2, 3, 4, 5, 6. Okay, so, we are  starting from cup center to the know your 

this, your punch corner, then in the cup wall,  then in the die corner and somewhere in the 

flange and at the edge, six different locations  we are picking and you imagine that this 

entire sheet on the sheet surface from top view if  you see, okay on the sheet surface is going 

to be a sheet is going to be a circular one  and there are a lot of circles, you know printed on 

it and you are doing deep drawing  and you are going to pick up this six locations to get 

strain distribution. Okay, and that  is what they simply referred as we evaluate strain in all 

these locations and by measuring  the grids. 

 

 Okay, and I can plot a graph between . Okay, 𝜀1, 𝜀2 and  you should note down here that  𝜀2 

can have negative and positive value and  𝜀1 we are keeping always as a positive value. 

Okay, so, 𝜀2 is in X axis and  𝜀1 is in Y axis and you are going to calculate all the strains and 

you are going to plot  here I have shown two different stages. Okay, so, this is your stage 

number 1 and this distribution  is for stage number 2 at six different locations. So, it starts 

with the edge, this edge is  here. 

 



 Okay, it starts with the edge and it moves to a center. So, this is your center  of the cup. 

Okay, so, you can see that you know maybe in the stage 1. Okay, let us pick  up stage 1. Okay, 

which has got the lower strains as compared to stage 2 naturally. 

 

  Okay, and stage 1 is center location you have strain here and then here and then the third  

location is somewhere on the Y axis. Okay, and the fourth location is here, fifth location  is 

here and the edge it is somewhere in the negative you know 𝜀2. Okay, probably  𝛽 is going to 

be minus in there. So, now if you further deform it and the same location  same grids I am 

going to monitor the new dimensions, new diameters and I am going to get 𝜀1, 𝜀2 and I am 

going to plot here in the six different locations and you will see that  this is a second stage.  

So, what do you get from this? You can get the present status of deformation in the six  

different salient locations, six different salient locations and six different locations  will have 

six different 𝛽  and 𝛼 . 

 

 You can see this dotted line tells let us  say this is one 𝛽, this is another 𝛽, this is 1, 4, 5, 6, 6 

different 𝛽 s you  can imagine. Okay, this will give you the entire feel for how strain is 

getting distributed  in this. And when you compare first stage and second stage, the regions 

are not equally  deformed.  The regions are not equally deformed, you see that. So, here the 

strains are closer  and when you move towards the edge it is deviating a lot, it is deviating a 

lot. 

 

 So, it will  also tell you which location is going to deform significantly as compared to the 

other locations.  Okay, so such a strain distribution can be evaluated for any sheet 

deformation or even  for tube deformation process also to get an idea where you are going 

to have, what type  of strain distribution, where you are going to have strain localization 

which is going  to be responsible for let us say instability or you know fracture which you 

are going to  see later on or necking like that. Okay.  So, I just summarized you know 

whatever I have discussed with you here. Okay, the strains  are located at locations 

mentioned in figure b, the strains are plotted on these locations. 

 

  Okay, on these locations, okay in strain space 𝜀1, 𝜀2 graph and strain locus can  be obtained 

in a particular stage. So, this is called as one strain locus, this is called  as another strain 

locus, same location, two different stages.  You can also have third stage which could be 

something like this. So, fourth stage,  something like that until you have a full cup form. 

 

 Okay. The strain locus may expand  uniformly till a stage and later some points may stop 

straining. Okay, then a process limit  is reached. That is what I gave an example. Probably 

this region will stop straining if  you further deform it because the strain gradients are very 

low here but here you will see that  there is significant deformation going on in these 

locations. 

 

 Okay.  So this typical strain pattern is called as a strain signature. Okay, the strain signature  

can be obtained for different processes at different stages and there are certain advantages  



of that. Okay. So, just to summarize how do you calculate the principal strains, you have  𝜀1 

which is nothing but 
𝑑1

𝑑0
 , 𝜀1 =

𝑑1

𝑑0
 , what did I write? Yeah, so  𝜀1 = 𝑙𝑛 (

𝑑1

𝑑0
), 𝜀2 = 𝑙𝑛 (

𝑑2

𝑑0
)  and 

𝜀3 = 𝑙𝑛 (
𝑡

𝑡0
)  or  you can get it from 𝜀1, 𝜀2 at a particular location like this you are going to get 

for  all the grids.  Okay, so now if you know 𝜀1, 𝜀2, okay, so then you can get 𝛽. 

 

 That is why  we have 6 different locations, 6 different you know 𝛽, 6 different strain ratios 

or  strain paths, 𝛽 =
𝜀2

𝜀1
=

ln(
𝑑2
𝑑0

)

ln(
𝑑1
𝑑0

)
. Okay.  And if 𝛽 is a constant we call that as a linear strain 

path. What do you mean by  strain path? Strain path is nothing but the mode of deformation. 

 

 Okay, nothing but the  mode of deformation. So, strain path means this is one strain path. 

Okay, let us say  we are going to pick up from 0, okay, this particular limit is following this 

particular  strain path like this. Okay, essentially 𝛽. Okay, that is considered as linear. It is  

not going to change, it is not going to become non-linear. 

 

 If it becomes non-linear which  can happen then you have to be little bit careful. There is 

something happening when  there is a change from you know one slope to another slope. 

You have to be careful.  Okay, so how do you get 𝜀3? We are actually summarizing what is 

required for  such strain signature. So, 𝜀3 = ln (
𝑡

𝑡0
) = −(1 + 𝛽)𝜀1 = −(1 + 𝛽)ln (

𝑑1

𝑑0
) . 

 Okay, so you do not need to measure this. Rather you can get 𝑑0 which is known  to you. 

Okay, let us say 10 mm and let us say you have 𝑑1 you can measure it and get  it. So, 𝛽 is 

fixed. Okay, so you can substitute it and you will get 𝜀3. And from 𝜀3 you can get the current 

thickness which is nothing but 𝑡 = 𝑡0exp (𝜀3) = 𝑡0exp [−(1 + 𝛽)𝜀1] . 

 

  So, 𝜀3 you can substitute here. Okay, alternatively you can get t as you know volume  

remains constant okay in a particular grid. Okay, you can get this equation and from there  

onwards you can get t. 𝑡 =
𝑡0𝑑0

2

𝑑0𝑑1
 , where 𝑑0 𝑖𝑠 nothing  but diameter of the initial circle grid 

and 𝑡0 is at the thickness original thickness  at that location and 𝑑1 and 𝑑2 are the new 

dimensions of that ellipse. That will give  you t. So, either you can get t from this or you can 

get t from this. 

 

  So, the entire summary of this is you can get just by putting circle grid so you can  get 

𝜀1, 𝜀2, 𝜀3. Okay, and you can plot it at any number of locations which will  give you a strain 

locus or strain distribution in the entire section and that will give you  some idea of what 

type of deformation you are going to have and whether it is equally  deforming at different 

stages or it is going to be different type of deformation, different  locations that can be 

obtained. Okay, this I think I told you. Okay, the whole summary  is this assuming 𝛽 to be 

constant. 

 

 Okay, 𝛽 can change. Okay, 𝛽 can change. Okay.  So, now let us come to modes of 

deformation. We will give some, you know take more ideas  into these modes of 



deformation or modes of deformation is nothing but 𝛽 or 𝛼.  Okay, so what all the 

information that we are going to get from this. Each point in  the strain diagram indicates a 

magnitude of final major and minor strain and the assumed  linear strain path to reach this 

particular point. Right, suppose you pick up this particular  point let us say, okay this is 

again a plot between 𝜀1, 𝜀2 . 

 

 Correct,  let us pick up this particular point let us say A. Okay, it has got a magnitude of 

𝜀1, 𝜀2 assuming this linear strain path to reach that particular point. Same  way for OB, OC, 

OD and OE. Right. So, now this ellipse which I have shown here,  this ellipse which I have 

shown here, okay is nothing but a contour of equal effective  strain 𝜀  ̅just to give some idea. 

 

 It is a contour of equal effective strain.  Okay, it is a contour of equal effective strain. That 

means you deform the sheet along OA and  you stop here, OB you stop here, OC you stop 

here, OD you stop here and OE you stop here  and they have to be stopped at almost same 

effective strain. Okay, and then you join  it to create a contour. Okay, so and from the work 

hardening hypothesis they will all  have same 𝜎𝑓 at that particular location. Okay, so the 

ellipse shown in the contour  is a contour of equal effective strain 𝜀 ,̅ each point on the ellipse 

will represent  strain in the material limit that from work hardening hypothesis has the 

same flow stress  𝜎𝑓 . 

 

 Okay, anyway so that is just one small information  but what is very important for us is 

what is this signify? OA, OB, OC, OD and OE. That  is what we are going to discuss now in the 

next this particular sections. So, before  discussing just get a you know some idea from this 

diagram. So, this anyway is a plot between  𝜀1, 𝜀2 and you will see that I am representing OA 

path which is denoted by 𝛽 = 1   . Okay, that means 
𝜀2

𝜀1
= 1, 𝜀2 = 𝜀1 . 

 

 Okay, and here OB when you go along this path you are going to have 𝛽 = 0  . Okay, which 

is nothing but  𝜀2 = 0  which could be called as a plane  strain process. Okay, because as I 

already told you when you have OA this particular  point. Okay, there is one  𝜀2 and 𝜀1 

associated with this point A and there is  𝜀3 inside that. Okay, so 𝜀3 has to be calculated from 

this location  𝜀2  and 𝜀1 . 

 

 So, 𝜀3 exist inside. Okay, so which means that you can call this as  𝜀2 = 0. So, that is why you 

have only  𝜀1 but 𝜀3 exist. So, it is you can call  this as a plane strain deformation. Okay, 

similarly OC you can say 𝛽 = − 1 2⁄ , OD you can say 𝛽 = −1  and OE which is also a critical 

strain  path 𝛽 = −2 we get and you can also see how this ellipses are going to  how the 

circles are going to get deformed. 

 

  So, here the circle will become a larger circle. Okay, so that if you get 𝛽 = 1. Right, so this 

dimension 𝑑0 is known to you. Okay, and the new dimension let us  say this 𝑑1, 𝑑2 both are 

same, 𝑑2 both are same. So, you can calculate your  𝜀1, 𝜀2 from the previous formula. Okay, 

and you will get the strains to be same that is  why 𝛽 = 1  . 

 



 If you come to this particular plane strain you will see that  it is going to become ellipse but 

the minor axis will be same as that of your circle that  is why you have strain to be 0 in that 

direction but otherwise you have  𝜀1 and  𝜀3 and here onwards ellipse is going to be inside 

the circle. Okay, so you can see ellipse  has gone inside further inside and further inside 

ellipse is actually getting compressed.  Okay, in the width direction. What is this thin and 

thickens we will come to this after  this particular discussion. Okay, so now there is a limit 

for this 𝛽 , there is a  limit for this 𝛽 , 𝛽  generally changes from 1 to −2 . 

 

 Okay, that is what I am  saying 𝛽 = 1 is one limit, 𝛽 = −2 is another limit. Okay,  and in 

between you can have any number of 𝛽  depending on what deformation you are  going to 

do but we are just shown here 5 different 𝛽. Okay, 5 different 𝛽, 1, 0, − 1 2⁄ , −1 and −2. 

Okay, so now let us go into some important details about this  each strain path OA, OB, OC, 

OD and OE and where do you see this type of situations that  also we can have to some 

extent we can have some idea. Okay, let us go for point A, point  A is along that means you 

are picking up OA path. 

 

 Okay, you are picking up OA path, this  path is actually called as balanced biaxial stretching 

or equal biaxial stretching. Okay,  we call it as 𝛽 = 1. Okay, so what are the salient features 

in this, this 𝛽 = 1 can be seen in this type of situations. Okay, what is the situation? Situation 

is there  is a circle and circle is going to become a bigger circle, so it will become a 

concentric circle.  Okay, so and you will see this type of situation in a circle which is 

inscribed on the uppermost  point when you do this kind of deformation like there is a sheet 

which is kept in a blank  holder. 

 

 Okay, and the punch is you know getting displaced here and your sheet is getting deformed  

here right, so this is the height of deformation, this is your height of deformation, this much  

it has deformed and you will see 𝛽 = 1situation somewhere in the mid portion,  in the 

uppermost portion that is the pole region. That element is actually if you put  a circle on that 

particular location it is pulled equally in both the directions, so  it will be like this. Okay, so 

𝛽 = 1. Okay, what will happen to thickness strain?  Thickness strain can be obtained, so if 

𝛽 = 1 what is thickness strain? So,  thickness strain with 𝛽 what is the equation we have? 

We have this equation isn't it. So,  thickness strain is equal to  −(1 + 𝛽)𝜀1correct. 

 

 So, 𝛽 = 1 isn't it, so 1,  −2𝜀1, 𝜀3 = −2𝜀1.  What does it mean? That means so you have a 

particular strain okay and your thickness  is going to decrease rapidly with respect to your 

strain in principle direction 1. Okay,  so it is −2 times of − signifies the thickness strain is 

negative which means you  are going to have thinning and twice, twice means the thickness 

is going to reduce more  rapidly with respect to  𝜀1. Okay, so  𝜀1 is you know like in that 

location   𝜀1 you can get from 𝑑0 and 𝑑1, 𝑑2 but for a particular  𝜀1 okay if the element  is 

actually stretching like this then you will have thickness decreases more rapidly as per  this 

particular equation twice, it is going to decrease twice. Okay, and there is one more  

important feature that we need to understand 𝜀̅ = 2𝜀1 ,  𝜀̅ = 2𝜀1 . 

 



 So, how do you get the moment you go for 𝜀  ̅which is nothing but your effective strain by 

using von Mises equation we already derived  this okay, we already derived this equation in 

the last section and you can put 𝛽 = 1  here so this is going to be 1, 1 so 3, 3 will be 

cancelled it will be yeah so 2𝜀1.  Okay, so 𝜀̅ = 2𝜀1 what does that mean? That means the  

sheet is going to work out and rapidly with respect to  𝜀1. So, you give strain in  principle 

direction 1 and you calculate it but you will see 𝜀  ̅effective strain will  be twice than that of 

that. Okay, so now you can get 𝜀  ̅from this and 𝜎̅ = 𝐾𝜀𝑛 you can substitute for constant K 

and n you can get 𝜎̅. Okay,  and you will see that the sheet work hardening is going to be 

rapid in this particular type  of deformation that means you have a sheet that is component 

that is made okay and at one particular  location let us say a set of elements are deforming 

in equi-biaxial stretching and strain path where  𝛽 = 1 then in that location you will see 

thinning is going to be significant  and work hardening is also going to be significant. 

 

 Okay, so with respect to what because when we are  saying you know thickness strain is 

going to be we know the thickness is going to decrease you know  rapidly and strain 

hardening is going to be rapid now with respect to what? With respect to 𝜀1 but then we are 

also comparing with other strain paths. Let us go for point B this point B okay is  like this so 

wherever you have this OB strain path you will see that if there is a circle,  circle will 

become an ellipse but the change in dimension in this direction okay is going to be  

negligible so it will remain as a plane strain type of analysis it will become plane strain.  So 

where is OB in this diagram? OB is here you go along Y axis but 𝜀3 is there inside huh so  

here 
𝜀2

𝜀1
= 0 so 𝜀2 = 0 so  𝜀1 = −𝜀3 .  Okay, so now here I just simply made a single circle 

expands only in one direction and circle  becomes ellipse in which minor axis is unchanged 

like this and you can see such situation in a  channel a side wall you can see okay suppose 

this is a channel sheet channel that is made okay  channel type of deformation okay you will 

see somewhere in the cup wall region you may see  that kind of situation. Let us come to 

point C path OC, path OC is what? Path OC is this path  𝛽 = − 1 2⁄  this is known to us 𝛽 =

− 1 2⁄  for that 𝛼 = 0 which means it is a uniaxial type of deformation it is uniaxial tension 

we have seen  that predominantly. 

 

 So when 𝜎2 = 0 like in the uniaxial tensile test that is the  situation you see here okay that 

means your street stretches in one direction and contracts in the  other direction so ellipse 

started going inside the circle dimension and generally you can see  such type of situation 

exists in the whole expansion test at the edge okay. So one has  to really look into it but 

some idea you will get from this kind of application okay you can see  suppose a whole 

stretched actually pushed in this direction you may see this kind of situations  here. Point D 

this point you already discussed in one of the problem your point D that means  you are 

following path OD and you are reaching this point D okay which is described by 𝛽 = − 1 2⁄  

okay. This OD path is also called as drawing or constant thickness process.  Constant 

thickness process I think a constant thickness process this example we have seen in  the 

second problem of the previous module is not it where we are trying to compare two 

different  you know 𝛽 right one of that is basically drawing or constant thickness process I 

also  referring to the calculation and say that 𝜀3 = 0 there which means thickness is not 



going to  change at all and you will see in such cases ellipse is going to further compressed 

inside  okay in the your minor dimension side okay minor dimension it has gone is further 

compressed and  you can see such situation existing in the flange region of the cup that is 

formed okay. 

 

  So here you will see that the principal strains are equal and opposite 
𝜀2

𝜀1
= −1 so equal and 

opposite okay. So observed in flange region of drawing that is what I was  telling you and 

work hardening is gradual work hardening is gradual how will you find out okay  you will 

see that here okay. So before that you can find out 𝜀3 = −(1 + 𝛽)𝜀1  and 𝛽=−1 so 𝜀3 = 0 . 

What does it mean?  That means if you deform a material in this particular strain path you 

can deform the  material path to a particular strain but without much change in the 

thickness. 

 

 So thickness strain  is going to be almost 0 okay. So now for this also you can get 𝜀  ̅right. So 

what is  𝜀 ̅? 𝜀 ̅ is this equation and your 𝛽 = −1, 𝜀̅ = √
4

3
[1 + 𝛽 + 𝛽2]𝜀1  , √

4

3
[1 − 1 + 1]𝜀1 , 

√
4

3
𝜀1. So 

2

√3
𝜀1which is nothing but 1.155𝜀1 and you when you compare  this with the 

previous fellow that is your 0.8 is 2 times of 2𝜀1 this is what  I was telling you. If you 

compare these two process  𝜀̅ = 2𝜀1  and  𝜀̅ = 1.155𝜀1 and you can say that here work 

hardening is actually  very gradual in the other case when you go for balanced biaxial 

stretching or equi biaxial  stretching is going to be rapid okay. So one has to be very very 

careful in this type of  deformation which deformation you are going to pick up and there is 

one more point called as  point E okay and if you pick up a point OE that is the least one 

okay −2 okay here also you  can see that 𝜀̅ = −𝜀2  and of course you can also get this  type of 

relationship okay if you put a 𝜎̅ = √(1 − 𝛼 + 𝛼2)𝜎1  is not it is there if you put you can get 𝜎̅ 

and you will see that 𝜎̅ = −𝜎2 and 𝜀 ̅ equation can also be obtained 𝛽 = −2 , 𝛽 = −2 , 1 −2 

+4 −2 = 2 okay into this 1.  So you will get −𝜀2,  𝜀̅ = −𝜀2. So now there is one  more point to 

this here this point E is generally seen in the edge of the flange okay we call it as  uniaxial 

compression that means the ellipse is going to further compressed in the width  direction 

okay and this is actually a location where sheet is going to thicker okay we have  seen one 

example know in the first problem where sheet thickness is actually a little bit increased  

okay. 

 

 So I think initial thickness was 0.8 and after calculating the new thickness it was 0.8  0.8 or 

0.84 like that so which means the sheet thickness has increased that type of situation  can 

come probably at the edge of the you know this flange and you have to be very careful with  

point OE because that can create wrinkling okay it is pulled in one direction and pushed in 

this  direction know so in plane right. So what will happen now the sheet will try to move up 

out of  plane okay which is what you are going to call it as wrinkling on the flange region 

which is a  defect actually which is a defect that is why you are actually providing sufficient 

blank holding  force to suppress it okay so that will happen here okay. So these are the five 

important you  know modes of deformation okay 𝛽 or 𝛼 you can say of course now we are 



going to see how to  get 𝛼 from 𝛽 and this all this 𝛽 is going to have different situations okay 

from OA  being you know equi-biaxial okay then you have OB which is a pain strain then you 

have uniaxial  then you have drawing then you have uniaxial compression okay this five are 

going to be  important and of course you can have any strain paths in between in between 

also you can have any  strain paths to pick up your deformation okay. 

 

 So now there are there is one more point in this  diagram I have copied the same figure 

here  𝜀1 versus  𝜀2 in this you will see you can  divide this 𝛽 into two parts okay one a 𝛽 >

−1 one greater than you know 𝛽 > −1 that means a −1 −2 0 and 1 in these strain parts if 

you see the  material will actually thin down okay material actually thin down okay and 𝛽 =

−1 is a transit okay there is a transit region and that is why you have 0 thickness  strain that 

means it is not going to thin it is not going to be thickening so no thinning and no  

thickening okay this is a transit region and if you go on this side right hand side okay of this  

diagram then you will have a thinning in all these strain parts and if you go on this side of 𝛽  

that means your 𝛽 < −1  that is between −1 and −2 you will see  the sheet becomes thicker 

you will see sheet becomes thicker. So 𝛽 with respect to 𝛽  you can divide the sheet forming 

deformation into rather two parts one is those deformation  process which involves 

thinning and that will be 𝛽 > −1 this side okay and the  other part is actually 𝛽 < −1 which 

is going to be sheet getting thicker.  Okay so now we will come back to this after this 

discussion so now this part this small part we  are going to discuss about different effective 

stress strain loss okay so effective stress  effective strain loss means how do you relate  𝜎̅ to 

𝜀 ̅ okay so one or two  equations we have already seen okay but we will see that in the 

effective terms okay.  So the first law that we are going to see and we are we already seen 

this several locations  including problems that is nothing but  𝜎̅ = K 𝜀̅𝑛 it is called  power 

law it is called power law okay and this equation is predominantly used in all the  

calculations and we have also used this equation similar equation in our problem also when 

you are  trying to find  𝜎̅ from 𝜀 ̅ and you remember  𝜎̅ can be related to 𝜎1 and  𝜎2 by any 

yield function like von Mises is yield function which you already derived okay.  So now you 

know how to find K and n from this right so standard procedure is there you do  uniaxial 

tensile test get the load displacement graph convert that into true stress strain data  right so 

and for isotropic material we say that effective stress strain curve is going to be  coinciding 

with uniaxial stress strain curve that we already derived okay  𝜎̅ = 𝜎1 and 𝜀̅ = 𝑑𝜀1 = 𝜀1  is 

we already discussed so if that is  the case then you can get K and n from the slope of natural 

logarithm plot of 𝜎 as a natural  logarithm plot of 𝜀 and that will be n and the intercept will 

give you K value correct. 

 

  So now if you substitute this equation this equation is ready let us 𝜎̅ = 200 𝜀̅0.25means by 

giving different 𝜀 ̅ values you can get  different  𝜎̅ values and that can be compared with 

experimental data like this okay  and depending on how you fit you will have agreement 

between these two curves okay.  But there is one problem to this problem is for 0 strain you 

will have 0 stress for 0 strain you  will have let us say 0 stress okay it does not predict the 

actual yield stress what does it mean  that means suppose the material is already undergone 

some deformation before coming to  tensile test that means the material is already 



hardened to some extent is not it that will not  be captured by this fit this equation why 

because when you put 𝜀̅ = 0   you will get  the strength as 0. So that means it is going to 

start from here okay as if like there is no  yielding happened okay actually there is a initial 

yielding that has happened which is going to  actually start from here which will not be 

predicted by this particular power law but  still it is predominantly used. Now to capture 

that the change in strength when you do tensile  test you introduce something called as a 

pre strain okay this is what we used it in the  previous problem as probably 0.008 or 0.0008 

which a small value we used okay it is generally  a small value okay. So now if you put 𝜀̅ = 0  

you will see that there is a small  you know effective stress staying with that material and 

they may coincide somewhere here  okay what is the physical meaning of this this pre strain 

meaning 𝜀 ̅ is called as pre  strain okay it is going to take care of the materials hardened in 

the prior process.  If the material is hardened or not in the prior process, prior process 

means let us say for example rolling okay the material is rolled and then you are going to 

characterize its tensile  properties okay or you know several stages of deep drawing let us 

say there are several different  stages of deep drawing that means with respect to second 

stage first stage is prior form with  respect to third stage there are two stages before. So 

how do you capture the change in  strength one way is to model the stress strain behavior 

using this equation just by putting this  constant 𝜀0 it is going to capture the initial strength 

of the material and the physical  meaning of 𝜀0 is this difference okay. So you will see that 

this 𝜀0  is such a small strain that you are going to give and 𝜀̅ = 0  it is going to start with a  

particular strength which is nothing but the yield strength of a material which actually is 

equivalent  to metal it is already hardened ability before process in the prior process. 

 

 So but in this how  do you get K and n? K and n can be obtained by fitting it okay. So what 

you can do is like you  can use this equation okay to know K and n that you know already 

and you can use that K and n here  okay and calibrate your you know stress strain data such 

that your experiment and you know the  data from this equation are going to match there 

will be one particular value of 𝜀0  from each you know at which you are going to have you 

know very good agreement between these two  that could be the value of 𝜀0. But how to get 

K and n? K and n you can get from the  the other hardening law  𝜎̅ = K 𝜀̅𝑛 okay.  These two 

are other simple equations generally we do not use these days okay. So again you can  see 

the plot actual stress strain behavior is this only the dotted ones are actual stress  strain 

behavior you can say from experiments okay you can say this is from experiments  okay this 

is also from experiment okay. 

 

 So now you can have an equation  𝜎̅ = 𝑌 + 𝑃𝜀 .̅ So when you have strain 0  𝜎̅ = 𝑌 and that is 

this point which is  nothing but your yield strength okay. It starts from yield strength but it 

is not going to have  you know a power law based strain hardening behavior it is going to 

vary linearly with the  strain and the fitting is going to be varying significantly at different 

locations you can  see the difference. But if you do not have any material constant one can 

use it.  The fourth one is further simple  𝜎̅ = 𝑌 this is also called as rigid perfectly  plastic 

model. Your actual experimental curve data point is this but you are modeling it  with the 

horizontal line which is equal to  𝜎̅ = 𝑌 and this is nothing but your Y  only nothing but the 



yield strength and it is not going to harden at all okay which is called as  rigid perfectly 

plastic model. 

 

 So these are four equations one can use but other than that there  are several other forms of 

equation okay there are maybe another four five important forms are there  one can look 

into literature for that we are not going to discuss it here okay.  And just to complete this 

particular discussion okay so here what I have done is for different  𝛽𝑠 which you have 

already seen okay 1, 0, −1/2 , −1, −2 we can calculate 𝛼  is not it. So that you know 𝛼 ,𝛼 

relationship with respect to 𝛽 you know  is not it. So we already derived it using Levi Mises 

flow rule is not it. So in that way you can  calculate different 𝛼 and you will see that for equi-

biaxial stretching this is one and this  is also one plane strain this is 0 this is 1/2  uniaxial 

tension this is −1/2 this is 0  for drawing it is −1, −1  uniaxial compression it is −2 and if 

you convert  that into for 𝛼  it is going to be −∞  okay. 

 

 So now this diagram can be  converted to this diagram okay this diagram is we already 

know it is basically nothing but a plot  between 𝜀1, 𝜀2. Now I want to convert that into 𝜎1 

versus 𝜎2 which is our  well-known yield locus which is our well-known yield locus okay 

since we are speaking more of  von Mises type then it will be in the form of an ellipse of 

course 𝜎3 = 0 it is plane stress  process okay. So and the same paths are noted here OA, OB, 

OC, OD and OE are noted here OA,  OB, OC, OD and OE but you have to be very very careful 

in comparison okay OA will have almost  the same location of what you see here is not it 

because both are one okay. So now of course you  know that this element is actually pulled 

equally in both the directions so 𝛼 = 1 .  So now you pick up OB, OB is actually coinciding 

with Y axis which is a plane strain mode of  deformation okay for that if you get 𝛼 it is not 

going to coincide with Y axis we have to be  very careful it is going to be little on the right 

hand side of Y axis that is your OB okay where  𝛼 = 1 2⁄   it is also pulled in both the 

directions but in different proportions. 

 

  OC if you pick up it is on the left hand side of Y axis here in the strain diagram but that is 

going  to coincide with Y axis here why because your 𝛼 = 0 which means your 𝜎2 is  not 

there okay and 𝜎3 is anyway not there and you are going to have you know along the Y  axis 

and here you will see that it is actually pulled in only one direction okay. So OD here  and OD 

here are you know looks same because it is −1, −1   okay and you will see that  the square 

element is actually pulled in one direction and pushed in other direction or  compressed in 

other direction maintaining 𝛼 = −1 okay. So you have to be a  little bit you know very 

careful in this okay. So I think in when we discuss about yield locus  I shown some example 

of different locations of yield locus with respect to deep drawing  and I was referring there 

in the yield locus we are referring to plane strain right.  So you have to be little bit very 

careful that this plane strain OB is actually here  is actually here in your 𝜎1 𝜎2 plot. 

 

 This OB is actually plane strain is actually OB  here okay. So the last one is actually you 

know purely compression that is along the X axis okay  when you have 𝜎1 and 𝜎2 which is 

going to 𝛽 = −2 okay. So in this way  you can convert all this 𝛽𝑠 into 𝛼𝑠 okay we have done 



some numerical problems also where  once you got 𝛽 you can get 𝛼 and these are the 5 

prominent 𝛼𝑠 and 𝛽𝑠  you know through which you can deform material to any strain.  You 

can have in between also it depends on the material okay and what type of deformation you  

are giving you can have in between these two you can have between plane strain in the axial 

in the  axial to drawing, drawing to in the axial compression okay. So you can have a variety 

of  values in this okay and this can be separated and this can be separated as I was telling 

you  one is going to be thinning and that is 𝛽 in this side 𝛽 this side 𝛽 > −1 , 𝛽 < −1 will be 

divided into two parts one for thinning one for  thickening like what we discussed here this 

slide so okay. So we will stop here and we  will continue our discussion further. 


