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  So, we will continue our discussion in this module 2.  So, in the in this particular lecture.  

So, in the previous section what we discussed was basically I introduced this yield locus.  

So, we know how to find the onset of plastic deformation or yielding occurs when you go  

for any axial type of deformation.  Now you have general state of deformation and in that 

we consider plane stress because  of sheet deformation.  So, we need something called as 

yield locus that is what we discussed in the previous  section. 

 

  So, we are going to continue our discussion you know here ok.  So, this yield locus or 

yield surfaces in 3D ok can be described in the form of some  expressions or equations ok.  

And they follow something called as yield functions or yield criterion as said here  ok.  And 

there are several yield functions or yield criteria available for the materials that  we are 

discussing ok. 

 

  So, we will discuss some of them in this particular subject.  So, the first one is basically 

called as Tresca yield criterion.  We are going to discuss one more yield function after this 

ok.  And after that you know little later in this course we are going to introduce 2, 3 other  

yield functions ok not in detail ok.  So, these two we are going to discuss in detail. 

 

  The first one is called as a Tresca yield function or yield criterion.  So, the statement as 

per this Tresca yield criterion ok it goes like this.  The statement is yielding occurs ok so 

or yield point is reached you can say yielding  occurs when the greatest maximum shear 

stress reaches a critical value.  Greatest maximum shear stress reaches a critical value.  So, 

in the previous section we have seen 𝜏1  , 𝜏2 , 𝜏3  ok. 

 

  So, in that the greatest one ok if it whenever reaches a critical value then we say that  

yielding occurs as per this criteria ok.  So, the greatest is basically you can say for example 

in general if you want to write  it in the form of an equation we can say we had in the 

previous you know section we had  𝜏1 , 𝜏2, 𝜏3 which will be 𝜎1 say for example we said 

here that it is 
𝜎1−𝜎2

2
, 

𝜎2−𝜎3

2
 and 

𝜎3−𝜎1

2
 is not it.  So, out of this we are going to pick up one in 

particular but in general we can say  
𝜎𝑚𝑎𝑥−𝜎𝑚𝑖𝑛

2
  ok and if it reaches a critical value so what 



is the  critical value ok can be obtained by using uniaxial tensile test type of situation where   

𝜎2 and  𝜎3 are actually 0 ok.  If you put that in any one of that equations let us say 𝜎2 and 

𝜎3 are 0 so then there will  be 
𝜎1

2
 only and that 𝜎1 we are going to call it as 𝜎𝑓.  So, the 𝜏𝑐𝑟𝑖𝑡.  

can be written as 
𝜎𝑓

2
. 

 

  So, I am going to write in general that 
𝜎𝑚𝑎𝑥−𝜎𝑚𝑖𝑛

2
= 𝜏𝑐𝑟𝑖𝑡. =

𝜎𝑓

2
   which can be written in 

this  form and with the convention generally if you find all the principle stresses let us  say 

𝜎1, 𝜎2, 𝜎3 ok in the previous section I was telling you one should  know how to find this 

principle stresses given a stress tensor but then if you know how to  find out this then it can 

be arranged in this convention ok. 𝜎1 ≥  𝜎2 ≥  𝜎3  this is the convention with which we are 

going to arrange it.  So, if we arrange it like this then out of  𝜏1, 𝜏2, 𝜏3 we are going to pick 

up  only one ok 𝜏 that will that can be written as 𝜎1 − 𝜎3 = 𝜎𝑓 where this would be the 

highest value and this will be the lowest value we can say 𝜎1 − 𝜎3 = 𝜎𝑓 ok.  So, now if you 

see that we put a condition that if it is uniaxial tensile test for example  to test it then 𝜎3 =

0 so 𝜎1 = 𝜎𝑓,  𝜎1 = 𝜎𝑓.  So, 𝜎𝑓 is nothing but your yield strength or in general you can say 

flow stress ok. 

 

  Flow stress means the first time it is going to yield let us say that is nothing but your  yield 

strength.  So, we are going to use 𝜎𝑓 you know uniformly in all the slides ok.  So, now if 

you can say uniaxial tensile test then 𝜎1 will become 𝜎𝑓 if that is  the case then yielding 

will start is the thing that we already know that we already  discussed in the first section 

itself whenever reaching the yield strength material is going  to enter into plastic 

deformation right.  So, now we are going to have another case like uniaxial you have this 

you also have  yielding in pure shear ok that condition can be written as 𝜎1 = 𝑘  and  𝜎3 =

−𝜎1 = −𝑘 ok.  So, 𝜎3 = −𝜎1 is nothing but your pure shear they are equal and opposite  

in nature they are equal and opposite in nature and that will be equal to −𝑘 what is  k here 

k is the shear yield strength of the material this should not be confused with  strength 

coefficient that we have studied in the previous section 𝜎 = 𝐾𝜀𝑛 that K is called as strength 

coefficient that is different this k is called  as shear yield strength. 

 

  So, during shear deformation there must be some yield strength ok and that is called  as a 

small k here ok.  So, when we say 𝜎1 = 𝑘 and 𝜎3 = −𝜎1 they are  opposite in nature and 

equal that will be equal to −𝑘 ok then under pure shear  we can write this equation 𝜎1 −

𝜎3 = 2𝑘.  So, if you can substitute it here you will get 2k, 𝜎1 = 𝑘 minus 𝜎3 = −𝑘 so plus 

it will become 2k it will become 2k right.  So, here one should note that there is no 𝜎2 part 

at all in this equation ok in  both the equations there is no 𝜎2 coming into picture because 

we are referring to 𝜎1  and 𝜎3 ok.  So, now combined way of writing this ok with respect 

to your this particular equation ok  and combining this equation with this so Tresca yield 



criterion can be written as 𝜎1 − 𝜎3 = 𝜎𝑓 = 2𝑘  ok. 

 

  This is the appropriate expression important expression with respect to Tresca yield 

function  and you can say that this also gives you relationship between uniaxial yield 

strength to shear yield  strength which is nothing but 𝜎𝑓 = 2𝑘 ok.  So, your uniaxial yield 

strength will be twice that of your shear yield strength ok or if  you want to find k then you 

can divide this by 2 which will give you k ok.  So, shear yield strength of any material if 

you want to find out if you follow a Tresca yield function then it would be 
𝜎𝑓

2
 ok.  So, this 

Tresca yield function generally can be drawn in a plane of paper in this format  ok this is 

just a schematic of you know the Tresca yield function and is generally written  as a 

hexagon which is not actually regular in nature ok.  It is drawn as hexagon which is not 

regular it is not a regular hexagon ok. 

 

  So, we are going to draw between 𝜎1 and 𝜎3 in this case ok and you are going  to say that 

so you have this kind of hexagon I am just redrawing here this is the second  zone third 

zone fourth zone then you have fifth zone then you have sixth zone ok.  So, zone 1, 2, 3, 4, 

5, 6 so in all this zones you can show the state of stress schematically  I have drawn here 

ok.  So, one should also know that when you follow one particular 𝛼 when you follow one 

particular  𝛼 , 𝛼 you know 𝜎2 by 𝛼 is nothing, but 
𝜎2

𝜎1
 that is a proportional  path we are 

going to pick up then once we reach here it means we are entering into plastic  deformation.  

So, on set of plastic deformation would be there.  So, our yielding is going to start that is 

why you are written it as 𝛼  this 𝛼   could be any 𝛼  in this space ok. 

 

  So, in this 6 zones you will see the first one you will see that both are pulling type  ok this 

if you pick up an element from a material which will be in this in this zone let us  say zone 

number 1 ok you will see that this element will be pulled in both the directions  tensile in 

nature.  If you come to second zone the same element ok will be in pulling only, but 

different  proportion, but they will have different proportion maybe you should pick up one 

𝛼 here they  will have different proportion.  If you come to zone number 3 ok.  So, you will 

see that one will be pulling another will be compression one will be in  tension other one 

will be in compression is not it.  So, your 𝜎1  is negative is not it. 

 

  So, 𝜎1 is actually negative.  So, 𝜎3 is anyway positive here.  Come to zone 4 ok.  So, both 

will be compression ok both the axis both the elements will be compression in both  the 

sides ok.  Same case in 5 also, but 5 will be of different proportion as compared to 4 and 

when you come  to 6, 6 is just opposite to this. 

 

  So, you will have pulling on one side, but pushing on the other side compression side,  

but it is 𝜎1 and 𝜎3.  So, 𝜎1 is pulling and 𝜎3 is actually compression type ok.  So, you may 



see in sheet deformation sheet forming process if you want to make any component  you 

may end up in different state of stress like this at different locations and as per  this 

particular 𝛼  you are going to reach the yield point in that particular locus that  is the 

meaning of this ok.  So, now during strain hardening ok this is the first yield locus.  In the 

previous section we have discussed that the first locus is nothing, but the initial  yield locus 

we say. 

 

  So, we can call this as let us say initial yield locus ok.  We can call it as initial yield locus.  

Now, with further deformation because of strain hardening what will happen your 𝜎𝑓 will  

try to increase ok.  So, you can see that 𝜎3 = 0 ok 𝜎1 = 𝜎𝑓 here.  This is what this equation 

is going to tell you now. 

 

  This is what this equation is going to tell you when 𝜎3 = 0 , 𝜎1 = 𝜎𝑓 that is your uniaxial 

yield strength here ok.  If this is initial yield locus ok.  So, with strain hardening the 𝜎𝑓 is 

going to increase ok.  So, this is very brief idea about Tresca yield function which is going 

to tell you when the  material is going to start plastically deforming or it will start 

permanently yielding.  Now, a similar one which is also very you know profoundly used 

in a metal forming is  nothing, but Von Mises yield function or Von Mises yield criterion 

ok. 

 

  So, what is the statement here?  When the root mean square value of maximum shear 

stress reaches a critical value yielding  is going to start that is the statement.  When the root 

mean square value of the maximum shear stresses ok.  So, you have 𝜏1, 𝜏2, 𝜏3 with respect 

to that you have to get root mean square and  if it reaches a critical value then we say 

yielding is going to start.  So, this is what is written here ok.  This is a root then it is mean 

of the squared terms. 

 

  So, √
𝜏1

2+𝜏2
2+𝜏3

2

3
 .  When it reaches a critical value yielding will start.  So, what is the 

critical value we do not know.  So, what are we going to do is again we are going to use 

our own friend that is your uniaxial  tensile test which is easy for us to put the condition.  

So, you know that 𝜎1 exists in 𝜎1 is going to be there, there is some value  for 𝜎1 in this 

𝜎2 = 𝜎3 = 0 . 

 

  So, what is 𝜏1?  𝜏1 =
𝜎1

2
, 𝜏2 = 0, because𝜎2 and 𝜎3 will be there, 𝜏3 = −

𝜎1

2
  right.  So, I 

am going to substitute all these things in this equation ok.  So, √
(

𝜎1
2

)
2

+0+(−
𝜎1
2

)
2

3
.  So, there 

is only one 𝜎 here principal stress. So, I am going to use f, there is nothing but my 𝜎𝑓, 𝜎1 

becomes 𝜎𝑓 here  in general 𝜎𝑓 ok because there is only one 𝜎 here ok.  So, if you calculate 



this particular function then finally, you can write this 3 way will  go off ok you can write 

√2(𝜏1
2 + 𝜏2

2 + 𝜏3
2) = 𝜎𝑓   .  This is the first level of equation for von Mises yield 

function.  Though this is not used you know mostly ok because there is 𝜏1, 𝜏2, 𝜏3which  

can be related to 𝜎1, 𝜎2, 𝜎3  and that will be the best equation to use for any sheet  

deformation or any metal deformation process if you want to model it. 

 

  So, ok.  So, now this since this is one stage of you know equation of course, this is one 

expression  for one masses you can say.  Now instead of 𝜏1, 𝜏2, 𝜏3 ok.  So, I am going to 

write this in terms of principal stresses ok.  So, again 𝜎1, 𝜎2, 𝜎3 I want to rewrite this entire 

thing 𝜏1, 𝜏2, 𝜏3 now because you know what is 𝜏1, what is 𝜏2 and what is 𝜏3  in terms of 

𝜎1, 𝜎2, 𝜎3 we have studied that.  I have not derived it here, but it is for you to work it out on 

a small you know paper  ok you can easily get it. 

 

  So, if you substitute 𝜏1, 𝜏2, 𝜏3 instead of that if you write 
𝜎1−𝜎2

2
, 

𝜎2−𝜎3

2
 and 

𝜎3−𝜎1

2
  and then 

substitute here and then solve that  equation finally, you will get this particular form which 

is nothing, √
1

2
{(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2} = 𝜎𝑓   .  This is also written in 

several resources as (𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2 = 2𝜎𝑓
2 ok.  You take square 

in both sides and then bring 2 here it will be 2𝜎𝑓
2 it will  be 2𝜎𝑓

2.  So, that is a one this is 

one important you know stage of this your Von Mises equation  and this is a famous 

equation with respect to Von Mises yield function.  So, now we can also rewrite this 

equation in terms of deviatoric stresses ok. 

 

  So, why because you can always write 𝜎1, 𝜎2, 𝜎3 as a function of 𝜎1
′, 𝜎2

′, 𝜎3
′ these are all 

deviatoric stresses right.  So, the𝜎1
′, 𝜎2

′, 𝜎3
′can be related to 𝜎1, 𝜎2, 𝜎3  in this way ok.  

𝜎1
′ =

2𝜎1−𝜎2−𝜎3

3
 this we have  studied before this we got it when we discussed about the 

hydrostatic stress.  You remove hydrostatic part from your general state of stress then you 

will get a 𝜎1
′, 𝜎2

′, 𝜎3
′ that we already discussed.  I am putting etcetera here which means 

like 𝜎1
′, 𝜎2

′, and 𝜎3
′
 equation which you have to use ok and rewrite that 𝜎1

′, 𝜎2
′, and 𝜎3

′
 

ok in terms of or rewrite 𝜎1, 𝜎2, 𝜎3 in terms of 𝜎1
′, 𝜎2

′, 𝜎3
′ and then you have to substitute 

it in this equation and some steps are available  then finally you will get yield condition as 

√
3

2
(𝜎1

′2 + 𝜎2
′2 + 𝜎3

′2) = 𝜎𝑓  ok. 

 

  So, this is another form of same equation ok.  So, either this form or this form is majorly 

used well known form or this form can also be seen in the form of to describe your Von 

Mises yield function ok.  Again I am reporting here that like 𝜎1
′ you need to have equation 

for 𝜎2
′, and 𝜎3

′
 and rewrite your 𝜎1, 𝜎2, 𝜎3  in terms of 𝜎1

′, 𝜎2
′, 𝜎3

′ .  So, that you can 

substitute in this equation and you will get this particular equation  after few steps and this 



also in a way tells you about Von Mises yield criteria ok.  So, Tresca and Von Mises yield 

condition they have different statement ok, but finally will  tell you when material is going 

to yield. 

 

  So, if you pick up this particular equation which is predominantly used ok which is 

predominantly  used you will see that the nomenclatures are 𝜎1, 𝜎2, 𝜎3 are again principle  

stresses and 𝜎𝑓 is nothing, but your yield strength of the material or we can simply  say 

𝜎𝑓 here.  So, now this is I am going to pick up this equation this is a very famous equation 

we  are going to pick up this equation and if I am going to put plane stress if I want to  put 

plane stress condition here that means, 𝜎3is going to become 0,  𝜎3 is going  to become 0.  

So, this fellow will go off and this fellow will go off ok.  So, this you have to expand 

(𝑎 − 𝑏)2  this is 𝜎2
2  this is  minus 𝜎1

2 . 

 

  So, 𝜎1
2 ok.  So, that is what I am going to do it here because we say sheets are going to 

follow  a plane stress type of deformation during any component manufacturing.  So, you 

can rewrite the previous equation ok the form of 𝜎1, 𝜎2 when you go  for plane stress.  So, 

plane stress meaning 𝜎3 will be equal to 0 here ok.  The previous equation if you substitute 

it you will get this particular equation ok and  this equation can be further simplified as this 

in this form ok.  So, because this is 2𝜎1
2
 then 2𝜎2

2
 is this ok then 2 will come  out all will 

be cancelled. 

 

  So, you have √(𝜎1
2 + 𝜎2

2 − 𝜎1𝜎2) = 𝜎𝑓  and since it is a function of 𝜎1  and 𝜎2  I can 

rewrite this in terms of 𝛼 . 𝛼 =
𝜎2

𝜎1
 which will give me a simple equation 

(√1 − 𝛼 + 𝛼2)𝜎1 = 𝜎𝑓 right.  So, what does it mean? If we closely look into look into it 

so, if I know 𝜎1 and if I know 𝛼 I can get  𝜎2 let us say or if I know 𝜎1 and 𝛼 ok then I can 

substitute in this equation  and I can check ok if it is equal to 𝜎𝑓 or not if that is going to 

happen the material  is going to yield ok.  So, this equation ok in principle stress space 

because a function of 𝜎1 and 𝜎2 ok can be drawn in this fashion ok 𝜎1 in Y axis 𝜎2 in X 

axis if you see ok  it is generally in the form of a fantastic ellipse ok and the same 𝛼 which 

I mentioned  in Tresca is written here ok you pick up one path if it reaches this particular 

locus here  then you are into P, P means plastic deformation.  So, yielding is there and after 

that you are going to have a plastic deformation that is  the meaning right. 

 

  So, you can follow any 𝛼 you want ok.  So, this is a von Mises locus in plane stress 

condition ok von Mises locus in plane stress  condition which is an ellipse actually ok von 

Mises locus in plane stress is going to  be an ellipse like this which can be drawn like this 

ok and this fellow is going to be  your 𝜎𝑓 is also uniaxial your 𝜎𝑓 yield strength if it is initial 

yield locus  if it is initial yield locus this is your 𝜎𝑓.  You can also put that condition say 

for example, if you put 𝜎1 = 0 here ok.  So, then it will be 𝜎𝑓 would be 𝜎2 = 𝜎𝑓.  So, you 



can check it ok 𝜎1 is let us say 𝜎2 = 0 ok.  So, this fellow will go this fellow will go square 

root. 

 

  So, 𝜎1 = 𝜎𝑓  ok.  So, in that way you can evaluate and it can also be shown that the for 

this is an ellipse  right.  So, this is a semi major axis it can be written as a √2𝜎𝑓 and semi  

minor axis can be written as √2/3𝜎𝑓 and I have shown a small  derivation here for that.  

So, same diagram ok.  So, Y axis 𝜎1 and 𝜎2 here ok 𝜎1 and 𝜎2 here and let us pick up one  

particular stress path ok defined by 𝜎2 = 𝜎1.  So, 𝛼 = 1, you can say 𝜎2 = 𝜎1and I am 

going to reach  this particular point let us assume that this is reaching the yield locus this 

reached the  yield locus ok. 

 

  This distance I am going to call it as small a let us say ok.  So, because it is reaching yield 

locus I can say this could be one 𝜎𝑓 in that particular  locus.  So, this is my first equation 

which I have derived before right.  So, √(𝜎1
2 + 𝜎2

2 − 𝜎1𝜎2) = 𝜎𝑓  right.  So, this is 

nothing, but my this equation this particular equation √(𝜎1
2 + 𝜎2

2 − 𝜎1𝜎2) = 𝜎𝑓 correct. 

 

  So, now, in this particular path I can say 𝜎1 = 𝜎2  ok.  So, when I am substituting it here 

you will find out this particular simple expression  𝜎1 = 𝜎2 = 𝜎𝑓 which is also mentioned 

in that diagram  ok.  So, now, what is a from this figure? 𝑎 = √𝜎1
2 + 𝜎2

2 ok.  So, I am 

going to replace it here ok with this condition.  So, √𝜎𝑓
2 + 𝜎𝑓

2 = √2𝜎𝑓 . 

 

  So, 2 times the √2𝜎𝑓 will become square will become 𝜎𝑓  ok which  is what we have 

shown in that semi major axis right.  So, this will √2𝜎𝑓.  So, when you go to the other zone 

when you go to the next zone let us say you are going  to pick up this side ok you are going 

to pick up this side ok this this should be like this  ok the if you are going to pick up this 

particular side ok.  So, then what we are going to or in the other side we can say same 

𝜎1, 𝜎2  is there.  So, I am going to pick up this particular point which is let us say touching 

the yield  locus ok and this b strain path can be written as or a stress path can be written as 

𝜎1 = −𝜎2  ok −𝜎2 when it reaches yield locus I am going to  call this location as 𝜎𝑓 ok. 

 

  So, now same equation when 𝜎1 = −𝜎2.  So, I will get 𝜎1 = 𝜎𝑓 √3⁄   you can check it.  So, 

now this b figure will is going to tell you √𝜎1
2 + 𝜎2

2 which is nothing but square root of 

you can substitute these two you know conditions  here ok and finally, you will get √2/3𝜎𝑓 

ok.  In this way one can prove that your a which is a semi major axis and b which is semi 

minor  axis √2𝜎𝑓 and √2/3𝜎𝑓.  In many resources this ratio they mention ok the ratio is 

mentioned ok your major to  minor ratio. 

 



  So, 
√2𝜎𝑓

√2/3𝜎𝑓
 this  ratio ok you can calculate what is it, it could be  √3: 1 ,could be √3: 1.  

So, that is also very important result for us ok.  So, now let us take for example if you take 

von Mises you know yield locus.  So, von Mises yield locus where do you see such 

situations just example I am telling you ok.  So, this is basically I would say this is basically 

a partially I will say drawn cup  ok you can say partially drawn cup right. 

 

  So, if you rotate it through 360° you will get a full cup and this is actually called  as flange 

region right and this is your cup wall this we already introduced in the first  class and this 

is your cup bottom ok cup bottom region right.  So, this is just one quarter of that a part of 

that is shown in this diagram ok for easy  understanding ok and this is your sheet thickness 

ok this is your sheet thickness instantaneous  thickness you can say ok and this was your 

initial sheet this is your initial situation  and it is a partially drawn to this much of height 

ok.  So, now this is a conventional yield locus and an elliptical yield locus is drawn only  a 

part is drawn just for explanation.  So, now where are the situations suppose you pick up 

this particular stress path ok if  you particular this particular 𝛼 let us say it is called as a 

biaxial it is called  as biaxial deformation because your 𝜎1, 𝜎2 is going to be equal ok.  So, 

that means an element which is undergoing this type of deformation will have this type  of 

pulling ok it is pulled in both the directions ok. 

 

  You will see this type of situation in your cup bottom you can see here in a cup bottom  

you will see that this particular element is actually pulled in both the directions.  Now if 

you pick up a plane strain why it is plane strain we will see later on because  this is 

𝜎1 versus 𝜎2 and I am going to call this as plane strain that you will  see later, but then you 

can assume this as a plane strain process ok.  The same sheet which is deformed along this 

𝛼 which is equivalent to plane strain  type of deformation still it is plane stress because 𝜎3 

is not in the diagram ok.  So, if that is the case then what is the meaning it means that it is 

actually pulled in only  one direction rather in the other direction the strain is not that much.  

So, you can keep it as a plane strain that is the meaning you will see that later on. 

 

  This type of situation you will see in cup wall region ok.  So, if you come to this one this 

45° is actually called as pure shear ok the same  thing which we have discussed in the 

previous one this one ok.  It is pure shear let us say which means that one will be equal and 

opposite to the other  one ok that means it is getting pulled here ok and this is getting 

compressed here.  This type of situation we will see in the flange region ok because here 

you will see  that one is actually pushed the other one is actually pulled ok.  So, this type 

of situations are seen you get to see that center that means cup center  and in the wall region 

and in the flange region ok.  Just to give you some example why it is important that is what 

I was telling you when you deform  a sheet different locations may have different this kind 

of state of stress which can be  obtained from the yield locus ok. 

 



  So, now I am going to draw a 3D figure of this two yield functions or these two yield  

criterion and they are going to be called as yield surfaces ok.  So, if it is uniaxial type of 

deformation is just one point called yield strength.  If it is in 2D on paper ok then in plane 

stress type of deformation you have 𝜎1, 𝜎2.  So, you have a curve that is called yield locus 

we decided ok and then now if 𝜎3 is also there ok then this is become a surface ok that is a 

3D plot.  So, how are they going to you know compare?  So, von Mises and Tresca can be 

compared in this way. 

 

  This is a standard diagram you can see in many text books.  So, I have referred one of the 

text books you can say that.  So, this can be plotted like this there are lot of features in this 

first of all you can  see that there is 𝜎1, 𝜎2, 𝜎3 axis principle stress axis that is what I  have 

written as geometric representation of yield criteria these two in principle stress  space in 

principle stress space.  So, what are the features here axis 𝜎1, 𝜎2, 𝜎3 are there and then ok 

you  will see that there are two yield surfaces the black one I have written as Von Mises  

yield locus or is part of yield surface and Tresca yield locus or you can call the entire  

surface which is going to be generated in 3D form as yield Tresca yield surface ok.  

Generally this Tresca is inscribed inside Von Mises yield surface that is a way you  

generally keep it.  So, that is why I have given this blue one is actually inside this cylinder  

ok this hexagonal 3D structure is actually inside the regular cylinder ok that is the  way it 

is drawn ok. 

 

  So, and the center of this this axis you can call this is called actually hydrostatic line  

hydrostatic line means we said hydrostatic stress 𝜎ℎ right.  So, in that case you will see that 

𝜎1 = 𝜎2 = 𝜎3   in the hydrostatic line ok.  So, now ok there is one particular plane called 

deviatoric plane which is described by 𝜎1 + 𝜎2 + 𝜎3 = 0 that is going to cut this 

hydrostatic line perpendicular  in a perpendicular manner that is what it is drawn ok.  So, 

there is a plane you can imagine ok there is a cylinder you can you can you can imagine  

like a tube like a metallic tube or something like that it is the cylinder given here regular  

cylinder which is representing one axis and I am going to cut you know perpendicular to  

its axis.  So, I am going to get a plane you know that is nothing, but your deviatoric plane 

which  is described by 𝜎1 + 𝜎2 + 𝜎3 = 0 . 

 

  So, now there is a projection of this locus on the deviatoric plane correct there is your  

since you are going to cut it ok.  So, this shapes two shapes will also be cut right and that 

is what I have inscribed here.  So, this this black line ok is my Von Mises again and this 

black line this hexagon ok  is my Tresca yield locus on the deviatoric plane on the 

deviatoric plane ok.  So, these are the features you have here ok.  So, I am going to write 

this Von Mises yield surface it is radius is nothing, but √
2

3
𝜎𝑦  ok. 

 



  So, we have proved it is one of the you know semi axis ok one of the axis is nothing, but  

√
2

3
𝜎𝑦.  Now Von Mises surface has got radius √

2

3
𝜎𝑦 that is one thing  you should know.  

So, I have written here that Von Mises actually right circular cylinder ok and Tresca is  

going to be your regular hexagonal prism and this regular hexagonal prism is actually put  

inside your Von Mises in this fashion ok.  So, now these are different ways of drawing 

your surfaces.  Tresca we have drawn separately, Von Mises we have drawn separately, in 

3D format this  is the way you can draw. 

 

  So, now this diagram also I am going to use to discuss one important thing which I was  

discussing with you previously that why hydrostatic part or stress does not affect yielding 

we  removed that is not it and then we said that only deviatoric part is going to play a role  

right.  So, this also can be explained from this particular diagram given here.  So, I am 

going to consider a state of stress OA ok I have given here OA you consider state  of stress 

ok.  So, this OA now can be you know resolved into two components OB that is one another 

vector  and OC is another vector ok.  So, this OB is along the hydrostatic part there is an 

equivalent component to that in  deviatoric plane that is OC. 

 

  So, OB is in hydrostatic part is the hydrostatic part of OA and OC is a deviatoric part of  

the same OA ok.  So, because your state of stress can be divided into two parts hydrostatic 

plus deviatoric  right.  So, that is what I have drawn here.  So, OB this vector is along the 

hydrostatic line which is nothing but a hydrostatic part  OC is actually on the deviatoric 

plane and it is a deviatoric part of OA right.  So, now what I am going to do is assuming 

that this A, OA is actually in elastic state  A part is not reached the yield surface A part is 

not reached the yield surface right. 

 

  So, when it reaches yield surface we say that material is started yielding plastic 

deformation  is going to start after that.  So, now the point here is so any deformation if I 

want to increase OA without contributing  from OC ok.  So, without sorry without 

contribution from OB which is a hydrostatic part ok.  So, let us say for example, if I want 

to increase OA with a contribution only from OB ok.  So, only OB is going to increase let 

us say for example, only hydrostatic part is going  to increase. 

 

  So, with the same OC ok what will happen this A will never reach the yield surface ok.  

So, OA I want to increase its length or by increasing the deformation let us say OA I  have 

to deform further right.  So, that has got contribution only from OB let us say ok.  So, it 

means that OC is not going to increase let us say then what does it mean?  It means this 

point will never reach the yield surface if you have contribution only from  OB ok.  So, 

which means OC has to have some contribution to OA only then this A point will reach 

the  yield locus here ok or yield surface here and then yielding is going to start ok. 



 

  So, that is why we always say that this hydrostatic part is not going to play any role ok in 

the  onset of plastic deformation or yielding.  So, the contribution OB alone if you take 

then A part will not reach the yield surface  you need to have contribution from OC to push 

this A to the plastic deformation or onset  of yielding ok.  That is why your hydrostatic part 

will not play any role in onset of plastic deformation  or yielding.  But this A point can 

reach either Von Mises yield locus or Tresca yield locus you know  depending on which 

model you are going to use depending on which model you are going  to use and for a given 

value of 𝛼 it is said that these two gradient predict less  than 15 % difference.  So, maximum 

difference it can have is only 15 % between your Von Mises and Tresca  yield function 

that is generally said. 

 

  And you should also note down one important point this Von Mises and Tresca are meant  

for isotropic materials that is why there is no intimation of plastic strain ratio or  any other 

equivalent term in any of these equations.  There is no intimation of R, R is kept as one of 

isotropic material know right.  So, there is no intimation of R or including R in any of this 

equation ok.  So, I hope you understand this particular part why hydrostatic part does not 

affect  yielding is mainly because if OA has to further increase and reach the surface if it 

has got  contribution only from OB then A will not reach the surface it has to have 

contribution  from OC ok.  But which yield surface is going to reach first generally it is 

going to be Tresca ok  if that is the case it will yield according to Tresca yield function but 

they may have  maximum difference of the order of 15 % in one particular 𝛼  ok. 

 

  And these two are meant for isotropic yield functions ok.  So, with this I am going ahead.  

So, this two yield locus you know or yield loci ok can be drawn on the deviatoric plane  on 

the deviatoric plane deviatoric plane is this plane right.  So, you see from this side ok you 

see from this side that means you are going to cut  the hydrostatic part with the surface and 

on that how do they look like it will look  like this these two will look like this ok.  This is 

the loci of Mises or Von Mises in yield surfaces on the deviatoric plane  ok. 

 

  One should note that 𝜎1  , 𝜎2  axis are not on the deviatoric plane.  Let us be careful 

𝜎1, 𝜎2, 𝜎3 these are not actually on the deviatoric plane  ok.  So, how do they look like when 

the state of stress such that it is hydrostatic part is 0 ok when the hydrostatic part is 0 then 

you have only deviatoric part ok and the geometric plane representation reduces to two you 

know yield locus on the deviatoric plane.  How are they going to look like?  One is basically 

Von Mises criterion which will look like a circle with radius √
2

3
𝜎𝑦 that is what we have 

mentioned in the previous 3D plot also  which is represented here ok √
2

3
𝜎𝑦 ok this is the 

radius  ok.  Now, Tresca would be a regular hexagon ok which is inside Von Mises circle 



ok this is  a Von Mises circle ok and this is your you know Tresca hexagon is a Tresca 

hexagon is  going to be inside your Von Mises circle which Von Mises circle has got radius 

√
2

3
𝜎𝑦 and this diagram also gives you several state of stress you can  see here. 

 

  These all are basically good denoting Tresca yield functions at different locations ok.  So, 

how do you get these two yield locus?  These two yield locus are obtained by generated by 

intersection of yield surface with the  deviatoric plane that is what intersection is this where 

they are intersection is this  it is intersected by deviatoric plane.  So, you are going to have 

these two they are called yield loci on deviatoric plane ok they  are called yield loci on the 

deviatoric plane ok.  So, you can imagine that this is plane stress this is plane stress 𝜎3 = 0  

ok and in principle stress space both are there principle stress space 𝜎1, 𝜎2  principle stress 

space ok and 𝜎3 = 0 ok.  This one is 𝜎1, 𝜎2, 𝜎3 all are shown with a 3D figure and they are 

going  to called as yield surfaces and these two yield locus can be compared on the 

deviatoric  plane in this fashion ok.  So, different figures are there one has to be really 

careful with this and this also  is discussed in terms of 𝜎1, 𝜎2, 𝜎3  only ok. 

 

  So, I am going to move ahead with this.  So, these are the tool yield functions which are 

very important for us and as discussed in the previous slide you should know that these two 

are meant for isotropic materials  for anisotropic sheets anisotropic materials we will see 

later on ok very briefly what  are the important yield functions where R also comes into 

picture plastic strain ratio.  Now when we speak about this yield functions ok there are two 

important things one is a  normality and other one is convexity these two can be explained 

in this way ok.  So, what is this ok?  So, it will lead to two important things that one should 

know ok.  Suppose to start with let us pick up a strain diagram ok like this ok let us pick 

up a strain  diagram like this the elastic part is actually zoomed in and little drawn in a 

bigger way  ok and this part is actually transition between elastic to plastic you can say this 

is nothing,  but your yield strength let us say 𝜎𝑓 flow stress yield strength ok.  So, 𝜎𝐴 is 

essentially an elastic part and 𝜎𝐵  I am going to pick up a you know  plastic stress and this 

loop this loop ok is nothing, but a cycle for me. 

 

  So, I am going to start from here ok I am going to consider a loop which is starting  from 

𝜎𝐴 which is an elastic part and I am going to pick up one plastic part and  I am going to go 

along the hardening part ok and I am going to go along the hardening  part and I am going 

to come down and I will reach the initial point and I am going to  close that loop that cycle 

is closed ok cycle is closed.  So, it starts with the 𝜎𝐴 goes to 𝜎𝐵 and then the envelope is 

created by the  hardening part of the stress strain graph decreases and it closes the loop the 

arrow  mark is given here for your reference ok.  So, this I am going to call it as 𝑑𝜀𝑝 plastic 

strain increment ok plastic strain  increment ok and this rise in 𝜎 I am going to call it as 𝑑𝜎 

this rise in 𝜎 is going to call it as 𝑑𝜎 this 𝑑𝜎 basically signifies hardening in this loop  



correct because from let us say this strain let us say this strain the material is hardened  this 

much right.  So, I am going to call it as 𝑑𝜎 ok.  So, this brown colour one is area of the 

rectangle that is going to give me my work  done I am just going to call it as 𝑊2 which is 

nothing but my (𝜎𝐵 − 𝜎𝐴)𝑑𝜀𝑃  ok. 

 

  So, and this can be seen in the form of a triangle and I am going to call it as 𝑊1  as a work 

done during the cycle is nothing but  
1

2
𝑑𝜀𝑃𝑑𝜎 ok.  So, area of triangle is 𝑊1 and this is 𝑊2 

it is going to be my work done in this two  regions and work done along the closed path is 

𝑊 which is nothing but 𝑊1 + 𝑊2 where  I am going to write this plus this is a total work 

done along this particular closed path  which has got boundary between 𝜎𝐴, 𝜎𝐵 and the 

strain hardening region.  So, now if you see in this equation the equation is good because 

if 𝜎, 𝑑𝜀𝑃 sorry  is 0 , 𝑑𝜀𝑃 = 0 means work done is 0.  So, no work done 𝑊 = 0 which 

means it is a pure elastic response right it means it is a pure  elastic response.  So, now 

these are the two parts right (𝜎𝐵 − 𝜎𝐴)𝑑𝜀𝑃  and 
1

2
𝑑𝜀𝑃𝑑𝜎  I am going to pick up this 

particular part first and I am  written here these two points are very important for us. 

 

  I am going to say that the (𝜎𝐵 − 𝜎𝐴)𝑑𝜀𝑃 is should be strictly positive  it should be strictly 

positive ok because 𝑑𝜀𝑃 cannot be 0 ok it is anyway it  is going to it is an increment ok 

plastic strain increment ok.  Then this product has to be strictly positive only then plastic 

deformation is going to happen why because then 𝜎𝐵  is going to be larger than 𝜎𝐴 , 𝜎𝐵 

should always  be larger than 𝜎𝐴 only then this will remain strictly positive for me ok that 

is  number 1.  And number 2 this 
1

2
𝑑𝜀𝑃𝑑𝜎 also should be positive that means, your 𝑑𝜎 

should also be positive for me it is also signifies that strain hardening  is going to happen 

strain hardening is going to happen right.  If this is not going to be positive negative then 

it means that there is 𝑑𝜎 which  is going to be negative which is actually due to the downfall 

of your two stress or  load like that which is not describing your strain hardening behavior 

ok.  So, my this product (𝜎𝐵 − 𝜎𝐴)𝑑𝜀𝑃 should be strictly positive  
1

2
𝑑𝜀𝑃𝑑𝜎 should also be 

strictly positive ok which means my 𝑊1  this fellow  and 𝑊2  both should be greater than 

0 for a stable plastic response. 

 

  Stable plastic response means the way we understand plastic response right start with this 

deformation  across the yield point ok elastic point that part is covered then you have to go 

for plastic  deformation strain hardening is going to happen ok.  If that has to happen then 

this work done 𝑊1 should be greater than 0 and 𝑊2 should  also be greater than 0 that is a 

very important condition for that ok.  So, now convexity ok let us pick up one thing 

convexity this convexity is going to tell  you why yield locus is convex at each and every 

point in that locus ok. Why yield locus  is a convex let us say 𝜎2 versus 𝜎1 we have let us 

pick up first quadrant you  take any point and put a tangent here ok. So, we say that the 

material has to have maintain  this point should be the yield locus should be convex at each 



and every point in that  particular yield locus why is it so ok. 

 

 So, for that we are going to consider a case  just opposite to that this is actually the yield 

locus this is actually your yield locus  let us say and there is a small region where there is 

a small dip it is going to come down  it is going to increase like that ok. So, I am going to 

map the 𝜎𝐴 the same 𝜎𝐴 here 𝜎𝐵  I am going to map it like this. So, 𝜎 this diagram you will  

see 𝜎𝐴 is elastic. So, I am going to keep it below the yield locus correct 𝜎𝐵 is on the yield 

locus because it is in plastic deformation ok because it is in plastic part,  but a is still in the 

elastic part let us say it is inside the yield locus ok.  So, now you will see that the main 

requirement is (𝜎𝐵 − 𝜎𝐴)𝑑𝜀𝑃 > 0 . 

 

 So, I am going to pick up this particular part I am going to  pick up this particular part this 

particular part ok my 𝑊2 part ok that is the main requirement  why otherwise you will not 

have stable plastic response ok. This means this means that 𝜎𝐵 > 𝜎𝐴  otherwise plastic 

deformation will not happen.  In this figure you will see that 𝜎𝐴 looks larger than 𝜎𝐵 which 

is actually not  acceptable which means that the 𝜎𝐵 − 𝜎𝐴 has negative projection on 𝑑𝜀  

which also means that your 𝑊1 is actually less than 0, but for stable plastic response  we 

said that your 𝑊1 should be greater than 0 ok. So, this is not accepted that is happening  

why why because 𝜎𝐴 > 𝜎𝐵  which is forbidden from plasticity point  of view ok. 

 

 So, we can also say that no elastic states  can be available outside the tangent line to the 

ill locus. So, you draw a tangent line  to the ill locus ok at any point here, here, here ok. So, 

let us pick up this particular  point you are drawing a tangent let us say for example no 

elastic states can be available  outside the tangent line. So, that is here 𝜎𝐴 which is actually 

in elastic part  ok 𝜎𝐴 is an elastic part which is actually beyond the tangent line to the yield 

locus ok.  So, always 𝜎𝐵 > 𝜎𝐴this is possible only when the yield  locus is convex at every 

point, this is possible only when you have yield locus which is a convex  at every point this 

is an important condition. 

 

 So, this should be greater than 0 only then  your work done is greater than 0 that is point 

number 1.  Next one is there is something called normality condition which will tell you 

the direction  of 𝑑𝜀 which will tell you the direction of 𝑑𝜀 for that I have drawn a simple  

schematic here let us say this is your yield locus ok this is just your yield locus ok. So,  now 

we are going to pick up the next one another part in that work done which is 
1

2
𝑑𝜀𝑃𝑑𝜎 > 0 

ok for strain hardening  to happen for strain hardening to happen that is where this fellow 

comes into picture right.  So, now in this you can say 𝑑𝜎 and 𝑑𝜀 can be seen as in general 

as vectors.  So, we can write this as 𝑑𝜎. 𝑑𝜀 > 0 this means 𝑑𝜎 and 𝑑𝜀  have a positive 

projection on one another what does that mean? That means,  it is a dot product know 

positive projection on that means, angle between them is less  than 90°. So, maximum 

angle it can have is 90°  between them for any choice of  𝑑𝜎  that produces plastic 



deformation for any choice of 𝑑𝜎  that produces plastic  deformation ok. 

 

 What does it mean? That means, suppose this  is a point I am going to pick up the material 

is let us say following one particular 𝛼  and reaches this particular point ok. So, then I am 

going to draw a tangent I am going  to draw a tangent to this and I am going to pick up any 

choice of 𝑑𝜎 1, 2, 3 ok,  4, 5, 6 maybe here also any choice of 𝑑𝜎 I can have the simplest 

choice of selecting  the direction of 𝑑𝜀  because it can have a maximum angle of 90° 

between  them is actually perpendicular tangent drawn here this particular point.  So, I am 

going to draw a line perpendicular arrow perpendicular to the tangent and that  I am going 

to represent as 𝑑𝜀 that will be my direction of 𝑑𝜀. So, I written  that the simplest choice of 

direction of 𝑑𝜀 is normal to the yield surface 𝑓 let  us say this is your yield locus or surface 

𝑓  ok. This choice of direction when you are  choosing of 𝑑𝜀  is called as a normality 

condition or normality rule ok. 

 

  So, the maximum angle it can have is 90° ok it can have is 90°. So, the best  choice is to 

pick up 𝑑𝜀 direction perpendicular tangent drawn at any point in the yield locus.  If you 

pick up this point then if you draw this tangent then perpendicular to that is  a direction of 

𝑑𝜀 that is what is told by this normality condition. So, if you pick  up a work done in a 

closed path in a closed loop ok 𝑊1, 𝑊2 and they can explain why  the yield locus has to be 

convex at each and every point in the yield locus ok.  So, it has to be convex why because 

only then your 𝑊1will be greater than 0 only  then plastic deformation will happen the way 

we understand it ok. And the other part why  or the direction of 𝑑𝜀 how should it be it 

should be perpendicular to the tangent  drawn at any point in the yield locus and that is 

mainly because your the angle between  any choice of 𝑑𝜎 you pick up the angle between 

𝑑𝜎  and 𝑑𝜀  should be less  than 90°  or maximum it can have is 90°  ok. 

 

  So, this normality condition can be written in a mathematical way in this way of course  

this can be derived but we have not done it here one should remember this 𝑑𝜀𝑖𝑗 =

𝑑𝜆 (
𝜕𝑓

𝜕𝜎𝑖𝑗
)  of course there is one small change here  you can see this 𝜀𝑖𝑗 and 𝑑𝜎𝑖𝑗 are I think 

integral notation ok. So, which  we are not discussed but I think you can go back and refer 

it the 𝜎𝑖𝑗 is nothing  but is going to describe stress tensor and different elements in the stress 

tensor and  this is going to give you different elements in the strain tensor.  But the strain 

increment 𝑑𝜀𝑖𝑗 = 𝑑𝜆 (
𝜕𝑓

𝜕𝜎𝑖𝑗
)  where f is your nothing but your yield function that you have 

going to derive or  you already derived it could be Tresca yield function or von Mises yield 

function ok. And  𝑑𝜆 is actually an arbitrary constant we will also see in due course 𝑑𝜆 can  

be replaced during any derivation ok. So, this equation significance of equation  is basically 

you can use this equation to find the strain increment suppose if you want  to find 

𝑑𝜀1, 𝑑𝜀2, 𝑑𝜀3 ok you can partially differentiate the yield  function which is a function of 



𝜎1, 𝜎2, 𝜎3 you can differentiate with respect  to 𝜎1, 𝜎2, 𝜎3 and then you will get 𝑑𝜀1, 𝑑𝜀2, 𝑑𝜀3 

that is the  significance of this equation maybe the assignments or in the you know in the 

example problem  we can show one or two examples how to get 𝑑𝜀1, 𝑑𝜀2, 𝑑𝜀3  ok. 

 

  So, with respect to Von Mises and Tresca yield function this is what we discussed and 

then  normality and convexity is two for any yield function which can be simply explained 

in  this way ok. So, now let us go to Levy-Mises flow rule ok there are small small things  

now this is very important for us ok why you will know now.  So, this Levy-Mises flow 

rule ok is going to tell you something which we already discussed  briefly we said that 

deviatoric stress components that is you are in principle format you can  say 𝜎1
′, 𝜎2

′, 𝜎3
′  

together with hydrostatic components make up actual  stress state correct that we know. As 

a hydrostatic stress is unlikely to influence deformation  in a solid that deforms at constant 

volume that is during plastic deformation why we  have seen that before in the 3D yield 

surface why hydrostatic part of the stress or hydrostatic  is unlikely to influence the 

deformation we have seen during plastic deformation.  It may be said that it is the deviatoric 

components ok that will be the ones associated with the  shape change right what you do 

in plastic deformation ok this is the hypothesis of Levy-Mises flow rule this is the 

hypothesis of Levy-Mises flow rule. 

 

 So, using this it can  also be stated that the ratio of strain increments will be same as a ratio 

of deviatoric stresses.  The ratio of strain increments will be same as that of the ratio of 

deviatoric stresses  strain increments 𝑑𝜀1, 𝑑𝜀2, 𝑑𝜀3 ok 1 along length 2 along  width 3 along 

thickness. So, how are they related to length width and thickness we already seen and given 

a particular case let us say for example, uniaxial or something like that  you can relate all 

these 3 using constant volume equation correct that you already discussed.  Ratio of 

deviatoric stresses what are deviatoric stresses 𝜎1
′, 𝜎2

′, 𝜎3
′  ok  which can be written in a 

mathematical way in this way like this  
𝑑𝜀1

𝜎1
′ =

𝑑𝜀2

𝜎2
′ =

𝑑𝜀3

𝜎3
′ = 𝑑𝜆 ok. The same thing written 

little differently the ratio of strain  increments will be same as a ratio of deviatoric stresses 

𝑑𝜀1

𝑑𝜀2
=

𝜎1
′

𝜎2
′
 . In other way you can write 

𝑑𝜀1

𝜎1
′

=
𝑑𝜀2

𝜎2
′

=
𝑑𝜀3

𝜎3
′
  let us be careful  here it is 𝜀, 𝜀, 𝜀 

here it is 𝜎, 𝜎, 𝜎 strain increment here  deviatoric stresses that will be equal to 𝑑𝜆 ok. 

 

  So, this is the expression for Levy-Mises flow rule and with this also you can get the  

strain increments ok. You can say 𝑑𝜀1 = 𝜎1
′ × 𝑑𝜆  correct 𝜎1

′ is already known to you it 

is a function of 𝜎1, 𝜎2, 𝜎3 that we already derived right it is a function of 𝜎1, 𝜎2, 𝜎3 ok.  So, 

in that way you can find , 𝑑𝜀1. Similarly,  𝑑𝜀2 can be found , 𝑑𝜀3 can also be found out ok 

can also be found out if you know 𝜎1, 𝜎2, 𝜎3  ok. So, now I think this also we derived in the  

previous class previous discussion is not it. Your 𝜎1
′, 𝜎2

′, 𝜎3
′  as a function of 𝛼, 

𝜎1
′, 𝜎2

′, 𝜎3
′  in the function of 𝛼 I  think we already discussed which means that 𝜎3 is not 

there because you are having  only 𝜎, 𝛼 now 
𝜎2

𝜎1
⁄  which means 𝜎3  is not there we already 



discussed  this derived this ok. 

 

 So, now what we can do we can substitute the  𝜎1
′, 𝜎2

′, 𝜎3
′  in this equation and we can 

write 𝑑𝜀1 divided by your, by you know your 𝜎1 ,3, 𝜎1, 3, 𝜎1, 3 are common it will it will 

get removed ok.  So, then you can write 
𝑑𝜀1

2−𝛼
=

𝑑𝜀2

2𝛼−1
=

𝑑𝜀3

−(1+𝛼)
 ok.  So, this equation can be 

modified to this form using this relationship which you already  discussed fine. So, if a 

material is deforming in plane stress proportional process ok plane  stress meaning here 

𝜎3 = 0  proportional process means 𝛼  remains same ok. The above  equation can be 

integrated we have already seen three conditions right the above equation  can be integrated 

in terms of true strains and you can modify the previous equation like  this ok. 

 

 So, what is the equation 
𝑑𝜀1

2−𝛼
=

𝑑𝜀2

2𝛼−1
=

𝑑𝜀3

−(1+𝛼)
 that is already there  here 𝑑𝜀1 is integrated. 

So, we get 𝜀1 it will become 𝜀2 it will  become 𝜀3 these three parts are already known to us 

ok for a plane stress proportional  process you can write this. Other than these two there I 

am going to add two more which  will help which will be helpful for us now what is this I 

am going to this is completed  this also complete this completed 𝜀2 is nothing, but 𝛽𝜀1 right  

𝛽 =
𝜀2

𝜀1
. So, 𝜀2 = 𝛽𝜀1 , I am going to put here this will remain same ok 𝜀3 = −(1 + 𝛽)𝜀1 

this also we derived before which I am going to substitute here  divided by −(1 + 𝛼) it can 

be rewritten in this way  
𝜀1

2−𝛼
=

𝜀2

2𝛼−1
=

𝛽𝜀1

2𝛼−1
=

𝜀3

−(1+𝛼)
=

−(1+𝛽)𝜀1

−(1+𝛼)
 will give me this ok. So, 

now there is one important point that  using this equation we can find a relationship between 

𝛼 and 𝛽 relationship between  𝛼 and 𝛽 for an isotropic material how are we going to find 

it is very simple here  ok. 

 

 So, now what I am going to do is I am going to compare this fellow and this fellow  I am 

going to compare these two I will pick up let us say this ok. So, I am going to compare  this 

with this this part ok. So, 𝜀1 and 𝜀1 will be cancelled. So, I can directly  write 𝛽 =
2𝛼−1

2−𝛼
 

right 𝛽 =
2𝛼−1

2−𝛼
 right. So, which is what I have given here which  is what 𝛽 =

2𝛼−1

2−𝛼
 then of 

course, you  can also get this relationship from this ok 𝛼 =
2𝛽+1

2+𝛽
ok. 

 

 You can get this relationship from this relationship  you can rewrite this and find out you 

will be able to get  𝛼 =
2𝛽+1

2+𝛽
t ok. So, relationship between stress ratio and strain ratio 𝛽  

can be obtained from the Levy-Mises flow rule in this way ok. So, just to get a quick  

picture what is 𝛼 for uniaxial 𝛼 for uniaxial 
𝜎2

𝜎1
⁄ . So, 𝛼 = 0 uniaxial tensile test 0 if you 

put 0 here what will happen −
1

2
 . 

  So, 𝛽 = −
1

2
 which is what we have seen in the previous  class ok. I hope you remember 



that which class we have seen that it is this particular  class this particular section 

somewhere we have seen yes. 𝛽 = −
1

2
 , 𝛼 = 0 for uniaxial tension test right right. So, this 

we have discussed without  knowing the relationship now we are proving that if you put 𝛼 

is 𝛼 = 0 , 𝛽 = −
1

2
 uniaxial tension test that we have already seen right that  is what we are 

getting in this equation also right.  So, just to summarize there are important points that 

you should know ok. So, it may  be seen that while the flow rule ok Levy-Mises flow rule 

gives relationship between stress  and strain ratios 𝛼 and 𝛽 ok it does not indicate the 

magnitude of strains. 

 

 So,  the magnitude of strains one should get from the original definition it should just give  

you the ratio only. If the element deforms on the given stress state let us 𝛼 is  known the 

ratio of strains can be found from the above equations ok that is what we got  just now ok.  

Just to give you a quick picture of this entire thing in one diagram ok some of this you have  

not discussed much but I am just going to summarize that ok this is one diagram ok you  

have got both strain increment as well as principal stresses 𝜎1 in Y axis 𝜎2 in X axis 𝑑𝜀1 in 

Y axis 𝑑𝜀2 in X axis both are drawn here which means  𝛼 and 𝛽 can be represented in one 

diagram right.  So, 5 different in 𝛼 and 𝛽 are given 1 2 this is 3 this is 4 and this fellow is  

going to be 5, 5 different I was telling you when we discussing about 𝛼 and 𝛽 that  only 

uniaxial that is the case right. So, there could be many other 𝛼 and 𝛽 values  prominent of 

them are this 5 of course, you can have in between also in between also you  can have, but 

these are all prominent ones. 

 

 We will let us quickly discuss about it let  us pick up this particular line let us pick up this 

particular line ok.  So, here you will see that this is both are 1 ok let us say for example, 

you have a 𝜎1 = 𝜎2. So, 𝛼 = 1. So, 𝛼 = 1 here 𝛼 = 1 if you substitute in the previous 

equation  𝛽 =
2𝛼−1

2−𝛼
 , 

2−1

2−1
. So, 𝛽 = 1  which means 𝑑𝜀1 = 𝑑𝜀2  fine. 

 

 So, now, let us pick  up this particular stress path where it is 
𝜎2

𝜎1
=

1

2
 ok. So, let us put  𝛼 =

1

2
  here  what will happen 𝛼 =

1

2
. So, 1 − 1 so gone. So, 𝛽 = 0 that means, 𝑑𝜀2 = 0 right 

this is a known thing for us Y axis along Y axis  this particular stress path is known thing 

for us right why because here your 𝜎2 = 0 that means, it is uniaxial. So, which means 𝛼 =

0 if 𝛼 = 0 we already seen that 𝛽 = −
1

2
 which is what I have written 𝑑𝜀2 = −𝑑𝜀1 2⁄ . 

 

 So, 𝑑𝜀2 𝑑𝜀1⁄ = − 1 2⁄  this is on the other side ok is on the other side.  So, what is 𝛼 here? 

So, this is going to be my 𝛼,  𝛼 =
𝜎2

𝜎1
⁄  which is 𝛼 = −1 ok if it is 𝛼 = −1 what will 

happen? So, this is 𝛽 =
2𝛼−1

2−𝛼
 , 

−2−1

2−(−1)
  

−3

3
 which will be 𝛽 = −1 which is −1. So, 𝛽 = −1, 

𝛼 = −1,  𝛽 = −1 like that ok and this is actually  just opposite in this direction in this 



direction. So, one can work it out and find out that  this is nothing, but 𝛽 = −2 , 𝛽 = −2.  

So, you will see that your 𝛽 value is going to move from 𝛽 = −1 here  ok it is going to 

cross 𝛽 = 0 and then 𝛽 = −
1

2
  and then 𝛽 = −1 and  then you are getting 𝛽 = −2. So, it 

starts from 1 it goes up to −2 that  is what is shown in this diagram and we have already 

seen in this diagram the deep drawing  one part of the component I have shown here know 

this part. 

 

  So, you can coincide this diagram with this diagram which I have shown and you can see  

what type of things are going to come in which part of different deforming when you 

deform  the cup right. So, you can coincide these two because there is also 𝜎1, 𝜎2 here also 

𝜎1, 𝜎2. So, you can find out where it is going to come ok.  So, a brief explanation for this 

with this we are we will stop it here ok. 

 

 So, we are  going to say that a simple example problem I have just shown here the current 

flow strength  of a material element is 300 MPa ok. The current flow strength let us say 

you are we do not  current flow strength means we do not know what is it. 

 

 So, we write 𝜎𝑓 = 300𝑀𝑃𝑎. In a deformation process the principle strain increments are 

0.012 and 0.007 right.  So, the larger value you can always take it as 1 ok. So, I am writing 

𝑑𝜀1 as 0.012  ok and my 𝑑𝜀2 as 0.007 in 1 and 2 directions it is already given. Determine  

the principle stresses associated with this in a plane stress process the question is  given. 

So, we can directly say 𝜎3 = 0. So, it is a 𝜎3 = 0  process ok. What do you want to find? 

You need to find principle stresses. So, you need  to find 𝜎1, 𝜎2  only ok 𝜎3  is known. 

 

  So, how do you proceed? Whenever you have got a strain increment directly you can find  

out 𝛽. This is the way you have to think about ok. So, whenever you have strain increment  

one thing directly you can get it is your 𝛽 . 

 

 So, I written here that 𝛽 =
𝑑𝜀2

𝑑𝜀1
  is nothing, but 0.007 0.012⁄ = 0.583. So, 𝛽 = 0.583 

right 𝛽 = 0.583  means it is somewhere in between these two  is not it. 

 

 This is 𝛽 = 1 this is 𝛽 = 0 , 0.583 means it is somewhere  in between the somewhere in 

between 0.5 and 0.6 you can keep ok. So, it is somewhere in between  that is what is just a 

simple reference to that.  So, 𝛽 is found out 𝛼 can be found out right 
2𝛽+1

2+𝛽
  which you 

already derived. 

 

 So, you substitute 𝛽 value in this equation you will get 0.839  that is 𝛼 that is all. So, what 

do we need we need 𝜎1, 𝜎2. So, 𝛼  is known which means 𝜎1 can be found out first ok. How 



do you find out 𝜎1?  𝜎1 = 𝜎𝑓 √(1 − 𝛼 + 𝛼2)⁄ , how do you get this? This you are getting 

from Von Mises yield function unless otherwise  said we are going to follow Von Mises 

for all the problems. We just derived this we just now derived is not it this equation where 

is it this equation comes here yes this  equation know this fellow this equation. So, 𝜎1 =

𝜎𝑓 √(1 − 𝛼 + 𝛼2)⁄  ok and 𝜎𝑓 is  already given current the current strength or flow strength 

is already given 300 MPA. 

 

  So, this would be your  will 300 √(1 − 0.839 + 0.8392)⁄  give you can calculate it 

should be about 323 MPA that is all. If 𝛼 is known then  𝛼. 𝜎1 will be 271 MPA. This is 

the route whenever new dimension and old dimensions  are given or whenever strain 

increments are given directly ok you can use this ok. If  strains are not given and if it is 

original new dimensions are given then you have to  calculate 𝜎, 𝑑𝜀1, 𝑑𝜀1to get 𝛽 then you 

can get 𝛼 by knowing  𝛼 and by knowing current flow strength you can get the principle 

stress ok 1 first  principle stress by knowing 𝛼 you can get a 𝜎1 which is nothing, but 𝜎  

next principle stress 323, 271, 0 ok. Together is going to cause this particular flow strength  

as 300 MPA, but whether this is less than the yield strength of the material or greater  than 

we do not know. 

 

 So, only this much of information we can get from this particular  problem ok. So, we are 

stopping here and we will continue our discussion in the next part.  Thank you. 


