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So, we are into lecture 20 which is also included in module 8.  So, in this particular section we 

are going to discuss about some yield criteria or yield  function in which anisotropy of sheets 

are actually considered ok.  So, they are called as anisotropic yield function, anisotropy yield 

criteria you can say.  So, but these yield functions will contain or yield criteria will contain 

anisotropic  characteristics of sheets.  So, this particular topic is pretty large topic a lot of you 

know scientific things  one can you know derive and discuss, but considering the constraints 

of this particular course  and time limit ok.  So, we are going to discuss only about brief 

account of all this criteria. Specifically, we will look into some important details about 5 

important yield criteria after  that one has to look into you know other textbooks or reference 

books which I already mentioned  for further yield.  So, so when we speak about anisotropy 

of sheets we all know that we are particularly discussing  about plastic anisotropy ok.  So, we 

are going to discuss about how anisotropy affects the plastic deformation part ok, elasticity  

is considered very simple.  So, plastic anisotropy indicates a plastic properties are direction 

dependent. 

 

  So, that is the first thing we briefly discuss how to quantify all these things in the first  

chapter ok, but then here we briefly discuss and then we go ahead.  So, plastic anisotropy 

indicates that plastic properties are direction dependent ok and  this shows that what do you 

mean by that it means that the stress strain curve let  us say or the strain handling behavior 

will vary with directions will vary with direction.  So, that means what suppose if you take a 

sheet just randomly you pick up a square sheet  and you cut a tensile sample along this 

direction you do not know what is this direction and  you cut a rectangular sample along this 

direction from this you make a dog bone type of standard  sample and then you do tensile 

testing they may show different properties, they may show  different stress strain behavior 

or you know strain handling behavior ok.  So, the which is what we are going to call as plastic 

anisotropy.  So, when we speak about sheets when you speak about sheets we know that all 

are basically  rolled sheets and a sheet may be isotropic to start with, but it may become 

anisotropic  due to subsequent plastic deformation specifically in the case of sheets it is going 

to be rolling  of sheets, it is going to introduce subsequent plastic deformation which creates 

preferred  orientation of grains, preferred orientation of grains means grains oriented in a 

particular  direction. 

 

  So, then this rolling of sheet is basically going to control ok the directions that we  are 



discussing about whether it is along the rolling direction or perpendicular to  that or it creates 

at any angle ok.  For example, you get this along this direction could be a rolling direction.  So, 

this sample is along rolling direction whereas, this sample is a transverse to rolling  direction 

ok.  So, with respect to rolled sheet the direction of rolling basically decides the anisotropic  

characteristics and the origin is basically preferred orientation of grains.  So, how to measure 

the preferred orientation of grains all such you know scientific things  one can refer other you 

know courses or other books ok, but you will look into whatever  is required for us. 

 

  So, this is the origin of plastic anisotropy and you want to quantify it with respect to  some 

property or a parameter which we can estimate by experimental measures.  So, in that way 

we can define this anisotropy in as a two different you know quantities  which we are going 

to define the next slide they are actually called as normal anisotropy  and planar anisotropy.  

We have also discussed about it ok I hope you remember what is R, what is �̅� and  what is ∆𝑅 

which we discussed in the first chapter when we discussed about the  tensile properties the 

same one we are going to briefly study here.  So, what do you mean by normal anisotropy in 

sheets plastic properties may differ along  thickness direction when compared to in plane 

properties how do you quantify it that is  where the question comes ok.  So, you take a sheet 

ok so you take a sheet like this and you will see that the in plane  properties are different ok 

when compared to its thickness let us say this is your thickness  these are all in plane 

directions this and this. 

 

  The plastic properties may differ along thickness direction so along this direction it may be  

different as compared to in plane directions ok in plane properties ok so you need to quantify  

it.  For example this is just for example high flow stress in thickness direction suppose  you 

can measure thickness direction flow stress ok how we will see later on briefly high flow  

stress in thickness direction when compared to in plane flow stress is good for deep drawing  

ok suppose you measure flow stress along the thickness direction and you measure flow 

stress  along the in plane direction ok and high flow stress in thickness direction is preferable  

to have a good deep drawing ok.  When we quantify this R value we will see that why briefly 

but it is good why because  it shows good resistance to thinning and tearing it shows good 

resistance to thinning  and tearing.  So, you have you know good strength in the thickness 

direction when compared to in plane  means in plane directions means in the thickness 

direction very difficult to deform the material  it shows good resistance to thinning and 

tearing so you may have good deep drawability.  On the other hand there is another 

parameter called as planar anisotropy ok planar anisotropy  means in the plane itself they 

may vary the properties may vary ok. 

 

  So, in plane properties are different along different directions in a sheet in plane means  in 

one plane other than thickness direction the other in the in one plane the properties  are going 

to be different.  And we are also going to quantify one a good property which is going to you 

know in a way  describe that and you will see that is going to actually control earring which 

is a defect  in deep drawing.  What is earring?  Earring is nothing but a wavy edge on a fully 

drawn cup suppose you have a cup which is  fully drawn like this ok so you may have some 



waviness like this.  So, let us say for example so this is actually called as earring.  This earring 

is actually controlled by this planar anisotropy. So, one should be careful about these 

properties ok.  So, one is good one is actually not good for sheet forming operation specifically 

when  you speak about deep drawing.  So, how are we going to quantify it?  So, you want to 

measure sheet anisotropy then we introduce a parameter or maybe a material  property 

called as plastic strain ratio generally referred as capital R sometimes small r also  depending 

on the situation we use.  It is also called as Lankford coefficient.  It is typically used to 

represent the condition of anisotropy in sheets whose characteristics  vary with direction. 

 

  Again in sheets it is going to be rolling direction.  For example suppose as I told you just now 

so you have a sheet here ok this is nothing  but your rolled sheet.  So, this is a long rolling 

direction means so here in this direction you may have some  properties as compared to this 

as compared to 45°.  So, this is what is called as directional dependence.  So, orientation of 

sheets for measuring R I have written. So, in this way you can measure R in different 

directions with respect to rolling direction.  So, anyway so what do you mean by plastic strain 

ratio R or Lankford coefficient as  you know already R is nothing but true width strain by true 

thickness strain ok.  True width strain is defined as 
ln(

𝑤

𝑤0
)

ln(
𝑡

𝑡0
)

 using volume constancy  equation 

we can write ln (
𝑤

𝑤0
)  remains as it is, but the denominator can be written  as ln (

𝑤0𝑙0

𝑤𝑙
) 

because 
𝑡

𝑡0
=

𝑤0𝑙0

𝑤𝑙
 ok.  So, true width strain divided by true thickness strain and there are 

standards available for  evaluating R value which we already discussed in the first chapter 

itself ok.  So, this is one good definition of R true width strain by true thickness strain. So, now 

along with that to quantify R for practical some practical reasons we are going  to define two 

more important properties which are actually functions of this R value ok.  So, now what we 

are saying is if the measured R value deviates from unity ok.  Suppose R is equal to true width 

strain divided by true thickness strain is equal to 1 let  us say that means true width strain 

thickness strain are same which means we are going to  call this as isotropic material.  So, 

until now we have seen all the discussion whatever done is only for isotropic sheets  ok.  This 

is the first time we are introducing anisotropy. 

 

  So, suppose if it is deviating from unity so not equal to 1, this not equal to 1 ok  indicates that 

the in-plane and true thickness properties or characteristics are going to  be different.  So, 

suppose you say 𝑅 = 2 which means that true width strain would be equal  to 2𝜀𝑡  ok, 2𝜀𝑡 

which means 𝜀𝑤  would be double the  time that of thickness strain which means that the 

material is stronger in thickness  direction that is why you will be able to give lesser strain as 

compared to width direction  strain that is why we are saying that if R value is larger means 

ok it is good for deep  dryability why because the thickness direction material is strong and 

it will you know resist  or defend thinning and tearing ok.  So, now let us go back to our point 

here it indicates a difference in in-plane and true  thickness direction which is often 

represented by a parameter or property called as �̅�  ok.  And it is a measure of normal 

anisotropy, it is a measure of normal anisotropy.  So, how do you consider how do you you 



know define �̅�  if you consider 3 different rolling  directions let us say 𝑅0 , 𝑅45 , 𝑅90 . 

 

  So, 𝑅0  indicates means along the rolling direction 𝑅45  diagonal direction 𝑅0  transpose 

direction  which you already mentioned in the previous slide right.  So, �̅� =
𝑅0+2𝑅45+𝑅90

4
 this 

is the way you define it ok,  but it can also be defined and evaluated by numerical integration 

ok.  So, �̅� =
∫  

𝜋
2

0
𝑅d𝜃

∫  

𝜋
2

0
d𝜃

 ok.  Suppose you can integrate it and find �̅�  may be like by numerical 

integration using  let us say trapezoidal rule you will be able to find out �̅� ok you will be able 

to find  out �̅�.  So, you have to discretize it basically depending on trapezoidal rule you can 

look into numerical  integration part you will be able to get the same equation if you consider 

3 different  rolling direction.  So, now you know R ok you know �̅� so how do you get R you 

pick up a particular rolling  direction and you follow standard method that we discussed 

already and then get 𝑅 =
𝜀𝑤

𝜀𝑡
 you repeat that for  90° and 45°  other than 0°  then you get 3 

values 𝑅0, 𝑅45, 𝑅90 you put it in this formula  you will get �̅� these 2 are done now.  So, how do 

you define planar anisotropy which is going to define how this anisotropy characteristic  

change in the plane itself in plane it is written as ∆𝑅 you know third parameter  is ∆𝑅 which 

is nothing but I also we already discussed about it, it is going to  tell you how different is 𝑅45 

as compared to 𝑅0 𝑎𝑛𝑑 𝑅90.  So, ∆𝑅 =
𝑅0+𝑅90−2𝑅45

2
ok.  So, 𝑅0 + 𝑅90 − 2𝑅45 ok and this may be 

positive or negative ok depending on  that earring characteristics are going to change ok.  So, 

your ∆𝑅  could be positive or it could be negative depending on this your earring  

characteristics will change, earring will be there but characteristics will change ok. 

 

  So, one should look into it but although most of the steels they have generally positive  ∆𝑅 

value ok.  So, since , �̅� is going to control thinning resistance so we already said that for a good  

deep draw ability you need to have larger , �̅�  and lower ∆𝑅 , lower ∆𝑅  means  earring 

behavior would be minimized, earring behavior would be minimized fine.  So, now this R is 

basically one quantity that we are going to use in this entire chapter  R or small r we are going 

to use it in this whole chapter and depending  on the situation we are going to see maybe 𝑅0, 

𝑅45, 𝑅90  and because you know R value  changes you know with respect to rolling direction 

there are chances that real strength may also  change during with respect to rolling direction 

that is why we said that stress strain behavior  would be different ok.  And the strain 

hardening will also be different with respect to rolling direction ok which  means that we may 

see in several locations now depending on the situation, depending  on the criteria we are 

going to use 𝑅0, 𝑅45, 𝑅90, 𝜎0, 𝜎90 like that ok.  So, then and there we will define it and then we 

will go ahead and like in Von Mises you  know yield function we have derived a pretty long 

you know discussion was made to some  extent I mean we have made a long discussion you 

know what is Von Mises yield function, why  do you need it,�̅� equation and then 𝜀  ̅equation 

all these things we discussed. 

 

  But in this particular chapter we are not going to discuss all of them we are going  to see 

mainly the yield function criterion directly and then some important characteristics of  that 



that is what we are going to do and then we go ahead ok.  So, and whatever we discuss are 

very restricted only there are several other yield functions  available beyond what we are 

going to discuss one should go ahead with further reading by  following other you know 

textbooks or reference books.  So, when you speak about an anisotropic yield function or 

criteria Von Mises  himself has  given 1 anisotropic yield function which is written here ok.  It 

is a pretty long one and it is of quadratic nature ok.  This is the first yield function of 

anisotropic sheet that is what it is claimed and which  is a quadratic function ok. 

 

  So, f is nothing but a function and you can see that you have , 𝜎11, 𝜎22, 𝜎33, 𝜎12, 𝜎23, 𝜎31 and 

interactions between them and interactions between them.  So, you know what do you mean 

by 𝜎11, 𝜎22, 𝜎33, 𝜎12, 𝜎23, 𝜎31  they are all normal and  shear stresses which forms a stress 

tensor and all the h values ℎ11, ℎ22 etcetera they  are actually called as ℎ𝑖𝑗  they are nothing 

but coefficient of anisotropic.  If you find these values you plug in into this then yield function 

is actually defined  and these values will of course change from one material to another 

material.  So, how to get all these properties that is a big you know exercise but general you 

know  framework of this yield function looks like this, function looks like this.  So, you can 

refer this if somebody can get this particular reference long back mechanics  of plastic 

deformation of crystals ok. So, one probably one should be able to get into this particular 

equation ok.  Usage of this equation is restricted so there are better you know functions some 

of them  we will see here.  So, this is the first one so wherein your ℎ𝑖𝑗  is actually going to 

describe the anisotropic  characteristics of the sheet and you have to evaluate it by lots of 

mechanical tests.  So, next one which is very important for us is Hill’s 1948 yield function.  

This function is predominantly used of course there are some restrictions to use it we will  

see at the end of this particular yield function before we go ahead in the next yield function. 

 

  So, this Hill's 1948 yield criterion ok is also a quadratic function it is given by this  particular 

expression ok you can look into it.  So, there is a function which is nothing but 2𝑓(𝜎ij) =

𝐹(𝜎𝑦 − 𝜎𝑧)
2

+ 𝐺(𝜎𝑧 − 𝜎𝑥)2 + 𝐻(𝜎𝑥 − 𝜎𝑦)
2

+ 2𝐿𝜏𝑦𝑧
2 + 2𝑀𝜏𝑧𝑥

2 + 2𝑁𝜏𝑥𝑦
2 = 1 .  And this is a 

generalized form of this Hill's 1948 yield function in general coordinate system  that is why 

you have 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 which are all normal quantities and all 𝜏 s are  basically shear quantities 

ok.  So, just for a change we have written here you know 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 until now we were seeing 

𝜎1, 𝜎2, 𝜎3 only right.  So, and then just a small change here so I am using x y and z later on we 

will change  it at the end of this particular section we will change it ok. 

 

  So now where is anisotropic coming into picture here this equation should have some 

symbols  which is going to quantify or some parameter which is going to quantify anisotropy 

of sheet  and they are nothing but this FGHLMN these 6 values ok FGHLMN are actually  

constants which is going to define your anisotropic state of the materials and you know that 

𝜎𝑖𝑗 as I told you all the stress components with respect to orthogonal coordinate system.  So 

when you propose when we propose this particular yield function in this way it is assumed 

that  anisotropy has 3 mutually orthogonal planes of symmetry at every point ok 3 mutually 

orthogonal  planes of symmetry this is very important ok this is where Hill’s 1948 yield 



function stand  actually.  So, the 3 planes of symmetry meet in 3 orthogonal directions which 

are actually nothing but  principle axis of anisotropy ok.  For instance in a rolled sheet the 

rolling direction is taken as one principle axis I  am denoted it by X for a reason the other 

directions are in plane transverse direction  Y and the thickness direction which is nothing 

but Z.  So previously we have shown a diagram 𝑅0 , 𝑅45 , 𝑅90  it is same only but then 3 

orthogonal  you know we are saying principle axis of anisotropy would be there 3 orthogonal 

directions which  may be called as principle axis of anisotropy one principle axis let us say X 

which is on  the plane that is the rolling direction the other perpendicular one is the 

transverse  direction in plane 1 and of course along the thickness direction that is let us say 

Z. 

 

  So this XYZ would be useful for us later on ok.  So now this is a function ok and what we are 

going to do now is we are going to see some  small-small derivations and we will see how to 

rewrite this yield function using known  quantities that is what we are going to do. We are 

not going to do anything else how to  rewrite this particular equation ok in different forms 

for that we are going to put some conditions  some derives on small-small equations some 

case studies cases we are going to pick up  and we see what is going to happen ok.  So now I 

am going to rewrite this in terms of XYZ and RST ok what is XYZ what is  RST it is available in 

this slide ok we can discuss. So what is X I am going to consider  this X direction yield strength 

as X ok suppose I consider X direction ok yield strength let  us say for example rolling along 

rolling direction so that is X direction just XYZ is just  for convenience only so that is that the 

yield strength is X ok. 

 

  So now I am going to take x direction ok and I am going to do tensile test uniaxial tensile  test 

then that yield strength 𝜎𝑥 = 𝑋  only and we know that 𝜎𝑦 = 𝜎𝑧 = 0  you put this in the 

previous equation put it in this previous  equation ok. So what do you say y and z is going to 

go away and only X will remain so  this fellow will remain this fellow will remain it is going 

to be X so I am going to take  (𝐺 + 𝐻)𝑋2 = 1 right so our 𝑋2 =
1

𝐺+𝐻
.  So the yield strength in x 

direction can be written as 𝑋2 =
1

𝐺+𝐻
. Similarly you can do same exercise with respect to y 

direction and z direction perpendicular  to the sheet ok then you can get 𝑌2 and 𝑍2 so here y 

and z are y direction  and z direction yield strengths you can call and 𝑌2 =
1

𝐻+𝐹
 and  𝑍2 =

1

𝐹+𝐺
 

so this you have to exercise you have to do like this  like this you have to do these two exercise 

it is for you to do.  So no 𝑋2,  𝑌2 and 𝑍2 are written in terms of F, G and H right so X,Y,Z are 

written in terms of F, G and H where F,G,H are nothing but in a way it is related  to the plastic 

anisotropy for example 𝑅0, 𝑅45, 𝑅90 may come into picture in due  course you will see that. 

 

 So this 𝑋2,  𝑌2 and 𝑍2 can also be written in this  format wherein on the left side you bring F, 

G, H some simple mathematical calculation  will lead to 2𝐹 =
1

𝑌2 +
1

𝑍2 −
1

𝑋2 ; 2𝐺 =
1

𝑍2 +
1

𝑋2 −

1

𝑌2 ; 2𝐻 =
1

𝑋2 +
1

𝑌2 −
1

𝑍2 ok.  So you can rewrite this ok so now F,G,H in the previous equation 

Hill's 1948 yield  function ok is going to be a function of all the yield strengths ok X is one 

yield strength,  Y is one yield strength, Z is one yield strength ok. The only difficulty here is 



how to find  Z right so basically yield strength in Z direction how are you going to find out 

that is only  concerned here otherwise F,G,H can be calculated.  So we know now what is X,Y,Z 

here similarly you can also get RST, RST is basically they  are all basically shear yield stresses 

they are actually shear yield stresses and from  Hill's 1948 yield function the previous one 

you can put the same conditions you know  similar conditions here ok so 2𝐿 =
1

𝑅2 ok and 

2𝑀 =
1

𝑆2 and 2𝑁 =
1

𝑇2 here we are going to pick up this  part ok and we can get 2𝐿 =
1

𝑅2 ok and 

2𝑀 =
1

𝑆2 and 2𝑁 =
1

𝑇2. So now the simplicity of this particular equation  can be retained if you 

consider only principle coordinate system correct that is what we  were doing right from the 

beginning even in Von Mises also ok. 

 

  So when you go for principle coordinate system this fellow goes off right this fellow goes  off 

only the first three terms will come into picture this fellow goes off only first three  terms will 

come into picture we will see that now ok. So before that if you want to  rewrite that equation 

in terms of plane stress situation that is what we are generally looking  for is not it when you 

form a thin sheet maybe of the order of let us say 2, 2.5 sheet thickness  mm sheet thickness 

or less than that ok if you want to look into that situation which  is what we are considering 

then in that situation you will see with respect to Hill's 1948  yield function which you have 

just now written we are going to put 𝜎𝑧 = 𝜏𝑧𝑥 = 𝜏𝑦𝑧 = 0 wherever z comes they will become 

0 remaining terms 𝜎 s will remain ok 𝜎𝑥; 𝜎𝑦; 𝜎𝑥𝑦 will remain  ok so then the previous yield 

function is going to become maybe you can look into it  it is (2𝑓(𝜎ij) = (𝐺 + 𝐻)𝜎𝑥
2 −

2𝐻𝜎𝑥𝜎𝑦 + (𝐻 + 𝐹)𝜎𝑦
2 + 2𝑁𝜏𝑥𝑦

2 = 1), 𝜎𝑧, 𝜏𝑧𝑥 , 𝜏𝑦𝑧 goes off right. So this will  go this will go this 

entire thing will remain yz will go off zx will also go off this fellow  will remain. So you will 

have F 𝜎𝑦
2  ok so that will be here you have to take 𝜎𝑦

2  common so it will come out ok. 

 

 Then similarly you have  minus 𝐺𝜎𝑥
2  that will have somewhere here so symbols the signs will 

be taken care automatically and  then this has to be expanded (𝜎𝑥 − 𝜎𝑦)
2

 you can expand it  

and you can combine with the other two ok and this since this is going to remain so  you will 

get this particular equation. So in general coordinate system if you take  plane stress then this 

is the equation the previous equation is general coordinate system  considering all the 

quantities non-plane stress type you can imagine ok. So now you will see  that here it becomes 

easy for us 𝐺 + 𝐻 comes into picture your H comes into picture  𝐻 + 𝐹 comes into picture and 

N comes into picture which already rewritten in terms of  your yield strength ok your yield 

strength just before either X,Y,Z or RST ok which is  already written of course there is only 

𝜏𝑥𝑦 here.  So what is 𝐺 + 𝐻 , G plus H is nothing but 𝐺 + 𝐻 =
1

𝑋2 correct so I am going to put  

1

𝑋2  here so 
1

𝑋2 𝜎𝑥
2 − 2𝐻 so what is 2H for me sorry  2𝐻 =

1

𝑋2 +
1

𝑌2 −
1

𝑍2 so plus minus will come 

X,Y,Z so plus  minus X,Y,Z to𝑋2𝑌2𝑍2 so minus is written 𝜎𝑥 , 𝜎𝑦 plus what  is 𝐻 + 𝐹 =
1

𝑌2  that 

is also substituted here.  So 2𝑁 =
1

𝑇2 which already written this particular one and you can 

get  this so this equation 
1

𝑋2
(𝜎𝑥

2) − (
1

𝑋2 +
1

𝑌2 −
1

𝑍2) 𝜎𝑥𝜎𝑦 +
1

𝑌2 𝜎𝑦
2 +

1

𝑇2 𝜏𝑥𝑦
2 = 1 you will see it is 

in general coordinate system this fellow but  in plane stress. 



 

 Now in place of FGH we have written in terms of some material properties  what are they? 

One is X yield strength along x direction and Y along y direction Z along  thickness direction 

and then that is all only T is there T is one of the shear yield . So some known properties are 

inside that and  𝜎𝑥, 𝜎𝑦 and then 𝜏𝑥𝑦 I have usual definitions. Now comes further simplified 

part which is  what we like suppose you want to write in terms of principle coordinate system 

then  this fellow will go off from this equation so you can write 
1

𝑋2 is equal to  I am going to 

change now 𝜎𝑥𝜎𝑦 𝜎𝑧 , 𝜎1, 𝜎2, 𝜎3 anyway will not come  here because 𝜎𝑧 goes off. So I am going 

to write 𝜎𝑥 become 𝜎1 and 𝜎𝑦 becomes 𝜎2 why because these two are  𝜎1𝜎2 are actually non-

zero principle  stresses they are actually non-zero principle. So how do you write? How do I 

write 
1

𝑋2
(𝜎1

2) − (
1

𝑋2 +
1

𝑌2 −
1

𝑍2) 𝜎1𝜎2 +
1

𝑌2 𝜎2
2 = 1 and this fellow goes off  ok so this is a much 

simpler form I have here. 

 

 So what I have done is basically a general  a Hill’s 1948 yield function I have related FGHLMN 

to the corresponding yield strength  by applying this conditions and I rewrote it for plane 

stress first which is a first  simplification then retaining plane stress I have rewritten that in 

terms of principle stresses  principle coordinate system that is the latest one which we got 

here ok.  So this is simple to use this particular one simple to use why because there are only 

few  quantities that you need to measure that is nothing but XY and Z right. Now in this in  all 

these equations there is no R value coming into picture right no 𝑟0, no 𝑟90nowhere it  is coming 

so what are we going to do? The next stage is we are going to relate plastic  anisotropic 

coefficients and Hill’s coefficient. Plastic anisotropic coefficient means 𝑟0, 𝑟45, 𝑟90 depending 

on the situation and we are going to relate that to FGH and further  we are going to modify 

this equation in a very known format which can be utilized easily  by us ok. So now for this I 

am going to consider𝑟0, 𝑟45, 𝑟90 ok as usual with the usual definitions just change here small r 

I am using does not  matter it has got usual definition nothing but plastic strain ratio and I am 

going to  use yield strength that is X becomes 𝜎0 ,  Y becomes 𝜎90  that is all. 

 

 So XYZ we have seen before which I am going to write in terms of 𝜎0 and 𝜎90 these  are only 

changes now I have. So what I am going to do now is I have to find strain increments,  I have 

to find strain increments and for that you know we are going to use a normal condition  which 

we have defined in the second chapter d𝜀𝑖𝑗 = d𝜆
∂𝑓

∂𝜎𝑖𝑗
 where f is your yield function and for 

Hill’s 1948 yield function we have to  use this particular f which I have given here 𝑓 =

𝐹(𝜎2 − 𝜎3)2 + 𝐺(𝜎3 − 𝜎1)2 + 𝐻(𝜎1 − 𝜎2)2 to get strain increment. So what do I need to do? I 

need to put f and  then differentiate it with respect to 𝜎1, 𝜎2, 𝜎3   ok to get 𝑑𝜀1, 𝑑𝜀2, 𝑑𝜀3 

respectively ok. So that one can do and find out and I will just go  through it. This we have 

done it for Von Mises yield function before ok. 

 

 So when we derive 𝜀̅  for Von Mises yield function right now that you know your  

𝜀̅ = √
4

3
(1 + 𝛽 + 𝛽2)𝜀1 we derived.  So for that if you remember ok at initial stage itself we 

derived 𝑑𝜀1, 𝑑𝜀2, 𝑑𝜀3 . So similarly we are also deriving it here ok using this particular 



equation using this  particular yield function of Hill’s 1948 one particular form ok. So 𝑑𝜀1 =

2𝑑𝜆[𝐺(𝜎1 − 𝜎3) + 𝐻(𝜎1 − 𝜎2)] . 𝑑𝜀2 = 2𝑑𝜆[𝐹(𝜎2 − 𝜎3) − 𝐻(𝜎1 − 𝜎2)] , 𝑑𝜀3 = 2𝑑𝜆[−𝐹(𝜎2 −

𝜎3) − 𝐺(𝜎1 − 𝜎3)] So this yield function will be useful for  a this strain increments are going 

to be useful in due course as well. Now what I am going  to do is I am going to do some small 

calculation here to make things easy. So now I let us  see I am going to consider this rolling 

direction ok. This is a sheet actually the blue one  is actually sheet you can consider. Now this 

is along one direction this is along two direction.  So along one is let us say rolling direction 

which is nothing but 0 let us say 0° and transpose direction you have already defined that is 

90° rolling  direction along 2 right in this framework. 

 

 So now I am going to consider RD along rolling  direction. So I know that along rolling 

direction I can write 𝜎1 = 𝜎; 𝜎2 = 𝜎3 = 0.  So then what is 𝑟0  plastic strain ratio in rolling 

direction 𝑟0 or capital 𝑅0 whatever  you can write or RD both are same which is nothing but 

so if you cut a sample in this  way and find R value then this becomes width direction correct 

and thickness is in this  direction perpendicular. So 
𝑑𝜀2

𝑑𝜀3
 correct. So 𝑑𝜀2 is this 𝑑𝜀3 is this you 

divide you get the  ratio 
𝑑𝜀2

𝑑𝜀3
 this fellow ok and then maybe  you can just do some simple 

calculation you will see that you have to put this condition  that is the main thing. 

 

 𝜎2 = 𝜎3 = 0 no.  So if 𝑑𝜀2  is what 2 and 3 are 0 so this fellow goes off 2 is 0 so what do you  

get 2𝑑𝜆 will anyway go off you are going to have 𝐻/3 is what this  fellow goes off this also 

goes off this 2 fellow goes off 3 goes off so you will have  −𝐺 so it will have 
𝐻

𝐺
 ok. So substitute 

this conditions into this equations and get  it. So now we have related one of the R values let 

us say 𝑟0 to H and G this is the way  it turned out 𝑟0 = 𝑟𝑅𝐷 =
𝑑𝜀2

𝑑𝜀3
=

𝐻

𝐺
 ok. Similarly I am going 

to consider transverse  direction so I am going to cut a rectangular sample and let us find 𝑟90 

ok. So in this  going to put 𝜎2 = 𝜎; 𝜎1 = 𝜎3 = 0 ok any axial  situation let us consider ok. 

 

 And now if you want to get R value along 90° let us  say 𝑟90 or 𝑟𝑇𝐷 ok then for this sample this 

becomes width so that means I am going to  write 𝑟90 = 𝑟𝑇𝐷 =
𝑑𝜀1

𝑑𝜀3
=

𝐻

𝐹
. So it is very simple so 

𝑟0 =
𝐻

𝐺
 , 𝑟90 =

𝐻

𝐹
 from this from this entire relationship I am going to  write this 3 I am going 

to write this 3, 𝐹 = 𝑟0 ,  𝐺 = 𝑟90 , 𝐻 = 𝑟0𝑟90 how are we writing it we are writing it in 

combination with these  two suppose you take substitute here 𝑟0 =
𝐻

𝐺
 so 𝑟0 =

𝑟0𝑟90

𝑟90
= 𝑟0 , so 

fine satisfied so 𝑟90 =
𝑟0𝑟90

𝑟0
= 𝑟90 which is also  satisfied. So it is going to be simple for us now 

FGH is becoming 𝑟0, 𝑟90 and 𝑟0𝑟90 respectively ok so now you know what I am going to do we  

can directly write this equation in a simpler way F can be replaced G can be replaced and  H 

can be replaced using this so this you have to get along with this ok. So let us see that  I am 

going to do here yeah so before that this is one important result that we need  to see we 

already discussed that 𝑋2 =
1

𝐺+𝐻
 we derived in the  previous to previous slide and  

𝑌2 =
1

𝐻+𝐹
 this also we derived.  So what is 𝑋2? 𝑋2 = 𝜎0

2 in the previous slide  only I told you 

that 𝑋 = 𝜎0 , 𝑌 = 𝜎90  say definition remains same just a nomenclature is going to be different 



this fellow 𝑌2 = 𝜎90
2 correct. 

 

 So I am going to get a ratio of this 
𝜎0

𝜎90
 that means  your 𝜎 value ok your yield strength along 

0° rolling direction yield strength  along 90° rolling direction you want to get a ratio then it 

could be 
𝜎0

𝜎90
=

√(
1

G+H
)

√
(1

H+F
)

=
√

1

r90+r0r90

√(
1

r90r0+r0
)

= √
r0(1+r90)

r90(1+r0)
. So everything is substituted here and you  will 

get this simple equation you want to get a ratio of 
𝜎0

𝜎90
  for Hill's 1948 yield function then you 

can relate it to 𝑟0, 𝑟90 by the simple equation  this is a very important result for us with respect 

to Heale's 1948 yield function this  ratio is very important. So that means what that means if 

you know 𝑟0, 𝑟90 and 𝜎90 you can find 𝜎0 ok. So only three values are required to evaluate 𝜎0  

or the other way if you want to find 𝜎90 you should get 𝑟0, 𝑟90 and 𝜎0  that way it is going to 

work. So now you will see that this equation implies  that for 𝑟0 > 𝑟90 suppose you pick up a 

case where 𝑟0 >  𝑟90 , 𝜎0 > 𝜎90  and vice versa ok. 

 

 So you can take an example and find  out let us say 𝑟0 is for example let us say 2 and 𝑟90 is let 

us say I do not know maybe  1.5 you can say or you can take 1 also ok and you want you can 

check it here ok.  So your 𝜎0 > 𝜎90 ok. So which means that if  
𝑟0

𝑟90
> 1  then 

𝜎0

𝜎90
> 1 that is 

another way. But the problem is some materials however it has been observed  that some 

materials do not follow this particular pattern. 

 

 You will come back to this, this  is very important result ok. So when you find 𝑟0 > 𝑟90 then 

your 𝜎0 > 𝜎90 but some materials is not going to follow this ok anyway so we will come to  

this later on. So now when the principle directions of stress coincide with principle 

anisotropic  gases that means in principle coordinate system ok we have derived this right 

just  before we have derived this. So now what I am going to do is I am going  to rewrite this 

ok in terms of 𝑟0, 𝑟90 I am going to replace all these things by  r values. So what is 
1

𝑋2 = 𝐺 + 𝐻 

right. So what is 𝐺 + 𝐻 = r90 + r90r0. 𝐺 + 𝐻 = r90 + r90r0 so which I have written here. This 

fellow 
1

𝑋2 +
1

𝑌2 −
1

𝑍2  what is it? It is nothing but 2𝐻  which also we derived which is now 

becoming 𝐻 = r0r90  right that also I have replaced here.  
1

𝑌2 = 𝐻 + 𝐹 = r0r90 + r0  which  

(r0r90 + r90)𝜎1
2 − 2(r0r90)𝜎1𝜎2 + (r0r90 + r0)𝜎2

2 = 1 ok. So now this equation is becoming 

more relevant to us now  in the Von Mises yield function we are going to bring we have 

already brought  𝑟0, 𝑟90 into the equation and now what I am going to do is I am going to just 

rewrite  this ok in this format. So the coefficients are basically divided ok let us say for 

example  I am going to divide it by r0r90 + r90 then 𝜎1
2 −

2𝑟0

1+𝑟0
𝜎1𝜎2 +

𝑟0(1+𝑟90)

𝑟90(1+𝑟0)
𝜎2

2 =
1

𝑟90(1+𝑟0)
=

𝑋2 = 𝜎0
2 =

𝑟0(1+𝑟90)

𝑟90(1+𝑟0)
𝜎90

2 . 

 

 So basically I am going to divide the entire equation by  r0r90 + r90 to get the first part of this 

equation until this part which is  easy for me right. So 
1

𝑟90(1+𝑟0)
= 𝑋2 correct.  So now I am 



going to rewrite this as 𝑋2 = 𝜎0
2 =

𝑟0(1+𝑟90)

𝑟90(1+𝑟0)
𝜎90

2 . So this entire equation now has been modified 

to the  next form ok in which all the material properties are very relevant to us and you can 

see that  this is the Hill’s 1948 yield criterion when principle direction of stress coincide with  

principle anisotropic axis ok which means that in principle coordinate system we are  writing 

this. So what are 𝜎1, 𝜎2 they are principle stresses and 𝑟0 is nothing but plastic strain relation  

0° rolling direction 𝑟90 along 90 ° rolling direction what else you want  to know? Nothing else, 

of course  𝜎0  is yield strength and 𝜎90  is yield strength. 

 

  So what are the properties you need to know? You need to know 𝑟0 of course you need to  

know r90 and one of this 𝜎0 or 𝜎90 because they are already related to each  other ok. It is very 

simple to use this particular gradient is very simple to use ok. So 𝑟0  you can you know how 

to find, r90 also you can find, 𝜎0 also you can find take a  tensile test do tensile test along 0 ° 

rolling direction and find out all the values right.  So now in the above equation you replace 

r0, r90 by 1 if you replace what  will happen? 𝜎1
2 − 𝜎1𝜎2 + 𝜎2

2 = 𝜎0
2 let us say. So this is what 

you get  here know, this is what you get here right, this is the equation you get. 

 

 So this becomes  square root of this fellow right. So  √𝜎1
2 − 𝜎1𝜎2 + 𝜎2

2 = 𝜎0 ok. So you can 

convert this Hill's 1948 yield  function in principle coordinate system again plane stress you 

can convert that into Von  Mises equation which you derived long before by putting 𝑟0 =

r90 = 1 ok. So basically  Von Mises  yield function is a case of Hill’s 1948 yield function ok. So 

now we have seen almost 3,  4 different forms of this equation ok and the one simplicity in 

this equation is 𝑟0, r90 and 𝜎0 can be evaluated and you can use this for any modeling purpose 

ok.  So now there are some cases in this let us say for example this particular sheet any  sheet 

you pick up it is going to take only normal anisotropy, only normal anisotropy means what?  

Your r0 = r90 = 𝑟 both are same basically they will have some value ok but they  are equal 

but they are equal ok. 

 

 So if r0 = r90  then using this equation ok you  can get 𝜎0 = 𝜎90  you can try this. This is 

another important result we are  saying here if r0 = r90 = 𝑟 ok. So any r value you can put ok 

and you will find  out that 𝜎0 = 𝜎90  and what will happen to the previous equation?  The 

previous equation is going to become very simple I am going to replace r0 by 𝑟 .  So 𝜎1
2 −

2r

1+r
𝜎1𝜎2 + 𝜎2

2 = 𝜎𝑦𝑠
2  square both are same. 

 

 So this is another form of your Hill’s  1940 yield function when the material has normal 

anisotropy which means r0 = r90 = 𝑟  and if you use this equation this also means 𝜎0 = 𝜎90 

ok.  So now this equation can be used to check the effect of you know  r and 𝜎𝑦𝑠 ok on the 

locus  and what is the effect of r you see that X and Y axis are actually normalized values 𝜎1 𝑦⁄  

and 𝜎2 𝑦⁄  and you will see that if by increasing r value diagonally ok the yield locus  is going 

to elongate that is one which is I think we have seen this before also.  In the next one if you 

increase the yield strength it simply means that basically the  yield locus is going to expand 

uniformly in the outward direction expand uniformly in the outward  direction and the yield 

locus is defined by its form which is nothing but Hill’s 1948 equation only ok  which is nothing 



but your Hill’s 1948 equation only. So the shape remains same and size increases  with 

increase in yield strength let us say this is what is called as in a way isotropic hardening.  You 

will see that later on so what is isotropic hardening means the material is anisotropic but  

hardening is isotropic what do you mean by hardening is isotropic it means that the  yield 

locus is going to expand uniformly with increase in your flow stress but keeping the  shape 

same because shape is decided by form of the yield function which is nothing but Hill’s 1948. 

 

  So I am just written here that the second figure that is this fellow in this figure  the yield 

locus expands uniformly with increase in yield strength this is called isotropic hardening.  So 

we know that so now there are important things in Hill’s 1948 deal function what are  they 

anomalous behavior what is that so if we say that if 𝑟 < 1 let us say in  general using the Hill’s 

1948 deal function you will see that the yield locus predicted by Hill’s  1948 yield criterion is 

located inside von Mises locus. Suppose 𝑟 = 1 if you say 𝜎1, 𝜎2 and if 𝑟 = 1 ok then if 𝑟 < 1 

your yield locus given by Hill’s  1948 is inside this something like this ok and if 𝑟 > 1 yield 

locus would be outside  it goes out like this that is what is generally observed by Hill’s 1948 

yield function.  But later on Woodthrope and Pearce these two scientists what they notice is 

some materials  particularly aluminum alloys have yield locus outside von Mises though 𝑟 <

1.  Suppose if you pick up 𝑟 < 1 instead of locating inside the von Mises yield locus it  was 

outside von Mises yield locus which is what this peculiar behavior was unable to be explained  

by Hill’s 1948 yield function and that behavior is called as anomalous behavior it is generally  

called as anomalous behavior first order. 

 

 There is some anomaly ok with respect to that  material why because it is not following this 

particular requirement one of the requirement  ok that if 𝑟 < 1 which is what is seen in many 

aluminum alloys ok your yield locus is  going to be outside the von Mises equation ok. This 

peculiar behavior was not explained by Hill’s  1948 so we are going to call that as anomalous 

behavior of first order. This can also be defined  in this way ok in this equation which we 

derived before just now for normal anisotropy if you put  the equi-biaxial tension 𝜎1 = 𝜎2 =

𝜎𝑏  where 𝜎𝑏  is equi-biaxial  yield stress ok you are pulling the material in two directions 

equally like 𝛼 = 1  this will give you 𝛼 = 1   let us say ok 𝛼 = 1   then there will be one yield  

strength that is 𝜎𝑏. If you put this condition in the previous equation you will get 
𝜎𝑏

𝜎𝑦𝑠
= √

1+𝑟

2
 

so in this equation if you see if 𝑟 > 1 then 𝜎𝑏 > 𝜎𝑦𝑠 if 𝑟 < 1 let us  say 0.5 then let us say this 

0.5 means √
1+0.5

2
  let us say then 𝜎𝑏 < 𝜎𝑦𝑠 ok. But if 𝜎𝑏 < 1 this may not  be satisfactory ok 

when we look into this particular cases defined by this anomalous  behavior ok. So this is the 

first anomaly that they found out. So now just a quick note of how  do you find 𝜎𝑏? 𝜎𝑏 means 

what? 𝜎𝑏 is means it is a yield strength in equi by axial  tension that means this is your sheet 

you have to pull the sheet equally in the plane direction in  plane direction and you have to 

monitor its deformation to get the yield strength. So there  are machines that can apply tensile 

loads in two directions at the same time and these machines  are meant for balanced by axial 

tension test that means you have to maintain 𝛼 = 1     let us say. 

 



 So balanced by axial tension let us say 𝜎𝑏  at which yielding occurs is  yield strength in 

balanced by axial tension test therefore 𝜎𝑏 can be estimated from  these machines however 

it is not so easy it is difficult. So you need to have a machine  where you hold it and pull it all 

the sensors have to be properly designed to monitor the  deformation load requirement all 

those things it is difficult. So instead of that what can be done  it is generally like assume that 

the sheet is subjected to compressive stress let us say 𝜎𝑐 the thickness direction for example 

like this. So you have the same sheet element let us say you  are compressing it with the 𝜎𝑐 

this will produce same effect as it of applying tension  in two directions simultaneously as 

depicted below instead of pulling equally in this directions  which mentioned here what do 

you do is you compress it in this direction you provide c  perpendicular to the slide instead of 

pulling it in the in plane direction. So when you compress it  it will anyway expand which is 

what equi-axial tension is going to do. 

 

 So then I do not we have  to see how accurate it is but then therefore 𝜎𝑏 can be equated to 𝜎𝑐 

but 𝜎𝑐  is in the  thickness direction. Your 𝜎𝑐  you have to compress basically sheet the 

thickness direction  that is all. And we can say that this previous equation your 
𝜎𝑏

𝜎𝑦𝑠
= √

1+𝑟

2
 

this fellow can be replaced by 𝜎𝑐. This fellow can be replaced  by 𝜎𝑐 here which is what I have 

written 
𝜎𝑐

𝜎𝑦𝑠
= √

1+𝑟

2
. So many times you know if it is difficult for us to get 𝜎𝑏,  𝜎𝑐  can be  

obtained in this way. Okay so let us complete this part may out of the major demerits of  Hill's 

1948 yield criterion. The first one is it cannot address anomalous behavior of first order  

which we have just now discussed which means for 𝑟 < 1, 𝜎𝑏 > 𝜎𝑦𝑠 were  observed. Just now 

we discussed. There is one more thing which is called anomalous behavior  second order also 

we discussed before. You remember this equation this we derived now  this particular one  

𝜎0

𝜎90
= √

r0(1+r90)

r90(1+r0)
 now. 

 

 Now I we also said that if 𝑟0 > 𝑟90 then 𝜎0 > 𝜎90 but some materials do not agree with this. 

This is actually called as another  anomalous behavior. Okay so this equation which you 

already derived what will happen if 
𝑟0

𝑟90
> 1 but some materials will show 

𝜎0

𝜎90
< 1. Okay so that 

is  one problem with Hill’s 1948. Moreover generally the criterion is applicable to sheet 

material  which has got only 2 or 4 ears during deep drawing. 

 

 So like we said deep drawing no cup  deep drawing earing is formed so only 2 or 4 ears will 

be formed not formed the deep drawing  behavior can be predicted accurately using this yield 

function which has got 2 or 4 ears during  deformation. Okay but practically you will speak 

there will be more ears that can form so which  cannot be addressed by Hill’s 1948. And 

moreover it is also said that in axial tension test the  variation of yield strength with direction 

is poorly predicted by this criterion though  the variation of r value it is described better. 

Suppose you do tensile test and get 𝑟0, r90 and  you also get the 𝜎0 𝜎90 and it is said that the 

variation of yield strength with  direction is poorly obtained but 𝑟0 or 𝑟45prediction is or value 

prediction is acceptable.  So these are the major demerits of this criterion specifically the first 



two are very important  these two anomalous behavior. 

 

 Now before we go to next yield function I thought this particular  small derivation is going to 

be useful for us. How do you relate stress ratio and strain ratio  for an anisotropic sheet or 

sheet in which you are going to include anisotropic while  modeling. Okay and of course when 

you say that the relationship is going to change with 𝛼   and 𝛽  a depending on the yield 

function you choose and at least it has choose Hill's 1948  yield function and how do you get 

𝛼 as a function of 𝛽 or 𝛽 as a function of 𝛼  is what we will see here. So we know this this 

particular equation is known to us know we  derived the following relationship between 𝛼 

and 𝛽 considering sheet to be isotropy using  Levi-Mises equation we already derived it you 

can look into it and using this only we solved a lot  of problems correct 𝛼 =
2𝛽+1

2+𝛽
and 𝛽 =

2𝛼−1

2−𝛼
 right. So we derived this equation before. So now for  Hill’s 1948 yield function in 

principle coordinate system we derived this 3 just now 𝑑𝜀1, 𝑑𝜀2, 𝑑𝜀3 we are going to use it 

how what is 𝛽 here 𝛽 =
𝑑𝜀2

𝑑𝜀1
 right. So this divided by this so 2𝑑𝜆, 2𝑑𝜆 will go off 𝛽 =

𝑑𝜀2

𝑑𝜀1
=

𝐹(𝜎2−𝜎3)−𝐻(𝜎1−𝜎2)

𝐺(𝜎1−𝜎3)+𝐻(𝜎1−𝜎2)
 fair enough. Now how are we going  to write it here for plane stress this 

fellow goes this fellow will go off right. So 𝛽 =
𝑑𝜀2

𝑑𝜀1
=

𝐹(𝜎2)−𝐻(𝜎1−𝜎2)

𝐺(𝜎1)+𝐻(𝜎1−𝜎2)
=

𝛼𝐹−𝐻(1−𝛼)

𝐺+𝐻(1−𝛼)
=

𝛼𝑟0−𝑟0𝑟90(1−𝛼)

𝑟90+𝑟0𝑟90(1−𝛼)
. right very simple equation ok. Now if you consider normal anisotropy  just 

before we discussed where r0 = r90 = 𝑟 so here if you in this equation if you  put r0 = r90 =

𝑟  so it becomes further simple case 𝛽 =
𝛼𝑟−𝑟2+𝛼𝑟2

𝑟+𝑟2−𝛼𝑟2 =
𝛼−𝑟+𝛼𝑟

1+𝑟−𝛼𝑟
 you will get and then  you 

simplify it you get a simple equation here. 

 

 So using Hill’s 1948 yield function of  course plane stress has to be there because you have 

to bring in 𝛼  and 𝛽  and if it is not  the case of normal anisotropy then this is the simple 

equation you have you can relate it and  you put a case here r0 = r90 = 𝑟 then you get this 

particular equation.  In this equation if you put 𝑟 = 1 what will happen to 𝛽  because it is 

isotropic  case now 𝑟 = 1 means 𝛽 =
𝛼−1+𝛼×1

1+1−𝛼×1
=

2𝛼−1

2−𝛼
 we got here right. So now depending on 

r value you see  you know the relationship between 𝛽 and r are actually changing until now 

we were assuming that 𝑟 = 1 then it was simple now all our you know calculations whatever 

we have done in  the same problem is going to change by looking at one r value. Suppose if 

you take r is equal  to let us say any 𝑟 = 1.5 then depending on 𝛼 the 𝛽  evaluation is going to 

be different. So now you can see for anisotropic sheets  by considering this particular formula 

what will be the 𝛼 𝛽 for uniaxial plane strain pure  shear okay and you know other two cases 

balanced by axial stretching all these cases we can find  out anyway so now 1948 is over now 

let us go to Hill’s 1979 we will not discuss much in all  these things we will quickly go ahead. 

So Hill’s has proposed another yield function  Hill’s 1979 which does not exhibit the 

anomalous behavior first order mentioned before okay the  anomalous behavior first order 

which we mentioned before know that means your though 𝑟 < 1 your yield locus is going to 

be outside Von Mises yield locus know for like aluminum alloys.  Then for to avoid that 



particular problem then he proposed another yield function which is given  here a little bit 

complex but values are 

𝑓|𝜎2 − 𝜎3|𝑚 + 𝑔|𝜎3 − 𝜎1|𝑚 + ℎ|𝜎1 − 𝜎2|𝑚 + 𝑎|2𝜎1 − 𝜎2 − 𝜎3|𝑚 + 𝑏|2𝜎2 − 𝜎1 − 𝜎3|𝑚

+𝑐|2𝜎3 − 𝜎1 − 𝜎2|𝑚 = 𝜎0
𝑚  okay. 

So now one advantage here is only principle stresses are allowed here where 𝜎𝑖 are  principle 

stresses and f g h a b c are for example anisotropic coefficients and 𝜎0 as usual  is uniaxial 

yield stress. This is a modification Hill’s has done and here there is one fellow called  m this 

𝑚 > 1  and what value actually  depends on the crystal structure of the material. 

 

 Let us say crystal structure you remember BCC,  HCP,  FCC depending on that crystal structure 

this m value is going to change okay and is  generally greater than 1 sometimes people do 

some optimization to get this value for a particular  material. What are these characteristics 

you can see in this criterion it is assumed that  principle direction of stress sensor coincide 

with the principle direction on isotropy which  means the principle coordinate system only 

we have written therefore the criterion does not  include shear stress terms which is obvious 

from this equation. So it is restricted to loading  around principle axis is what I was telling 

you. Moreover it is also observed I have not included  any data in this but it is seen that the 

criterion does not always satisfy convexity condition which  is a requirement for any yield 

function. So convexity condition you know we remember  that convexity and normality we 

discussed two important points so your yield locus  have to be convex at every point in the 

yield locus right. 

 

 So that condition is not satisfied  by this criterion sometimes that is what is said this is two 

important characteristics of this  particular yield function. So some cases we quickly discuss 

of course you can do this exercise I am  not going to explain you this is very obvious and self-

explanatory but this will lead to one  important result. There are actually five special cases of 

Hill’s 1948 function under  plane stress under plane stress so which means that directly you 

can write 𝜎3 = 0. So if you substitute these conditions belonging to case 1, 2, 3, 4, 5 into  this 

equation you will get some other forms of equation which is what is described here.  So case 

1 if I take 𝑎 = 𝑏 =  ℎ =  0 and 𝑓 =  𝑔 if you put in this condition  you will get this similarly 

you can take case 2 you can try it and check similarly you can take  case 3 similarly you can 

take case 4 and similarly you can take case 5. 

 

 So basically the you know f,  g, h and a, b, c if you put some conditions to it it will lead to five 

different cases.  An important one it is said that this fifth case 𝑎 = 𝑏 =  𝑓 = 𝑔 =  0 and 𝑓 =  𝑔 

if you put it in this equation 𝜎3 will anyway go off this fellow goes off now,  𝜎3 will anyway go 

off 𝑎 = 𝑏 =  𝑓 = 𝑔 =  0 , f this fellow goes off g goes off a also fully goes b  also fully goes and 

𝑓 =  𝑔. So then you will get this particular equation.  So 𝑓 =  𝑔 means where is g for me here 

g is here, g is here now so this is going to become f,  so  

𝑓|𝜎2|𝑚 + 𝑓|𝜎1|𝑚 + 𝑎|2𝜎1 − 𝜎2|𝑚 + 𝑎|2𝜎2 − 𝜎1|𝑚𝑚 = 𝜎0
𝑚  ok and this is what is generally 

called as Hosford  yield function.  So this Hosford one form of Hosford  yield function this 

Hosford- yield function is actually  a case of Hill’s 1979- yield function ok this Hill’s 1979- 

yield function has got this particular  characteristics it has got some restriction also which 



will lead to Hill’s 1990 yield function. 

 

  This is just a general one I am describing we are not going to discuss much there is one more   

yield function called Hill’s 1990 which is little bit complex  

|𝜎11 + 𝜎22|𝑚 +
𝜎𝑏

𝑚

𝜏𝑦
𝑚 |(𝜎11 − 𝜎22)2 + 4𝜎12

2 |
𝑚/2

+ |𝜎11
2 + 𝜎22

2 + 2𝜎12
2 |

𝑚

2
−1

[−2𝑎(𝜎11
2 − 𝜎22

2 ) +

𝑏(𝜎11 − 𝜎22)2] = (2𝜎𝑏)𝑚 and you can understand that here  there is only one small difference 

here that you have got 𝜏𝑦, 𝜏𝑦 is nothing but yield stress  in pure shear 𝜎1 = −𝜎2 let us say that 

also comes into picture and a and b  are material constants m has got usual definition like 

what we have discussed in the previous one.  So we are not going to discuss much here only 

thing we should know that this type of Hill  function exists and 𝜎𝑏 is again available here ok 

fine. Let us go to next one this condition  this criterion is very important for us 1993 Hill’s 

yield criterion described before generally  shows the condition 𝜎0 = 𝜎90 enforcing r0 = r90 

ok which you can  check it by this particular equation correct which you already done. This 

equation is actually in  connection with your anomalous behavior second one ok. 

 

 This is what is been said actually.  However some material such as aluminum alloy and brass 

sheets they show almost equals yield stress  ok they show almost equal yield stress but then 

r values are very different but there r values  along rolling and transverse direction 0 ° is 

along rolling direction 90 is long they are  very different 90 ° is along different. So some of the 

example you can see I have taken  suppose this brass 70-30 sheet but this particular alloy you 

take it 𝜎0 = 126 𝑀𝑃𝑎 𝜎90 = 125 𝑀𝑃𝑎 they  are almost same but you see r0, r90 they are very 

different which is actually breaking this  particular requirement which is actually breaking 

this particular requirement provided by this  particular equation. Similarly this particular 

alloy if you take 𝜎0,  𝜎90  are almost  same but r0, r90  are relatively different. These two 

examples show that ok we need to be  careful using your Hill’s 1948  yield function for some 

materials like this because this particular  equation enforces these two conditions have to be 

there which is not the case in such materials. 

 

  This is referred as anomalous behavior second order. So now the question comes how Hill’s 

1993  is providing what is it providing. So in order to address the above concern Hill’s 1993 

yield criterion was proposed which has a generality of Hill’s 1979 why because in Hill’s 1979 

it is  addressing anomalous behavior number 1 which is what is said at the same time this 

Hill’s 1983 also  should address anomalous behavior 2 ok. So with that Hill’s 1993 was first 

proposed in the biaxial  tension zone. Biaxial tension zone means the first quadrant of your 

yield locus first quadrant of yield locus means this quadrant. 𝜎1 you can take 𝜎2 know this 

quadrant first quadrant of  where is biaxial tension comes into picture know then this 

particular equation was proposed. 

 

  Ok you can just look into this equation ok so of course you know that what is 𝜎1, 𝜎2, 𝜎0, 𝜎90 

all are known to us except three things one is c then p and then q  these three are bit different 

and what is c? c is also given here. c is actually a function of  𝜎0 𝜎90 which are nothing but yield 

strength in 0 ° and 90 ° with respect  to rolling directions which is defined now ok. If you 



know 𝜎0 , 𝜎90 you can get c, c can be substituted here but you need to know p and q. So this 

equation actually can be satisfactory  in two cases that is what is actually I have shown here. 

Suppose you take a uniaxial tension case  ok suppose like you take along rolling direction you 

take one yield strength let us say 𝜎0 since it is uniaxial 𝜎2 = 0 fine. So you put this condition 

in this equation  and check the left hand side would be equal to right hand side ok because 

𝜎2 = 0   know then this entire thing would be 0 this fellow also will become 0, 𝜎2 = 0 means 

this fellow  also will become 0 so then what will happen is 𝜎1 = 𝜎0 so these two will be  equal 

because here it is 1 it is satisfied. Similarly you can also get so when you take  a transverse 

direction so when you call that yield strength as 𝜎90 and you put 𝜎1 = 0 here similarly left 

side and right side would be equal so thus the criterion  is satisfied identically when the state 

of stress is uniaxial. So when you become uniaxial type of  deformation this equation is 

satisfactory. You can also get if it is biaxial 𝜎1 = 𝜎2 = 𝜎𝑏 you put it in this equation ok you can 

find out that it is going  to give you this result which is what we have written it here also. 

 

 It is going to give you  the same result ok. So you put 𝜎1 = 𝜎2 = 𝜎𝑏 in this equation.  I think 

you do the small exercise ok so you will get this particular equation 𝜎1 is replaced  by 𝜎𝑏 , 𝜎𝑏
2 

will come that is all. So 𝜎𝑏
2 will come. So if you simplify this you should get this particular 

equation which also  was shown before here for c this is been satisfied so it is suggested that 

the equation is same as  the equation provided in the previous slide this indicates that the 

criterion is satisfied  in the balanced biaxial or equi-biaxial mode also ok. So now what is p 

and q that is what we are  going to discuss and then we stop here about this particular 

discussion. So now as I told you before  this yield function has 5 different fellows one is your 

𝜎0 𝜎90 𝜎𝑏 and then p and q  ok we said I said c p and q but c depends on 𝜎0 𝜎90 and 𝜎𝑏 so I am 

writing  𝜎0  𝜎90  𝜎𝑏  p and q are there ok with respect to this equation right. 

 

  So this p and q can be evaluated so there is a big derivation available for this so I have  not 

deriving it here so I mentioned very clearly not derived refer some reference book so please  

some reference book so I have also indicated a reference book here look into it and then 

finally  you will see that you will get the simple p and q equation which are actually functions 

of already  known values r0, r90. So we are going to just see the end result here if this is the 

yield function  ok and one of that is c which is already known so then this yield function is 

easy to use why because  all the properties are available with us 𝜎0 can be obtained 𝜎90 can 

be obtained 𝜎𝑏 also can be obtained. Now p and q have you have to evaluate again p and q 

equations also available  for us in which only unknown things are actually r0, r90  which also 

can be obtained ok.  So now finally we can say that in order to use Hill’s 1993 the yield 

function only 5 properties are  acquired 𝜎0  𝜎90  𝜎𝑏  which are already there now p and q 

instead of that you  need to get r0, r90 which are easily available how do you get you can do 

tensile test you can  do r value test and you can do equi-biaxial tension test equi-biaxial 

tension test. So  you plug in all these things into this equation this equation can be used to 

model any deformation  So now this is the case only if you have in biaxial this is how it is 

derived now. 

 

 So now  you want to expand or extrapolate this for other locations 1, 2, 3 these 3 you know 



zones in the  yield locus there is a small modification that is allowed here I have marked it in 

red color  that small changes only there otherwise everything remains same. So 𝜎1 becomes 

|𝜎1|,  𝜎2 becomes |𝜎2| and you can extend it to get other quadrants. The above yield function  

suitable for first quadrant can be extrapolate other quadrants by using this generalized 

function.  So I think with this Hill’s 1993 it is said that it can address the anomalous behavior 

number 1 and  number 2 that is what is said and that is one of the merit of this one both first 

order and  second order anomalous behavior are addressed here it depends on only 5 

material properties  just now we have seen right 𝜎0, 𝜎90, r0, r90 and 𝜎𝑏 which can be evaluated 

easily.  What are the demerits? Useful only if directions of principal sources coincide with 

orthotropic  axis that is why you have only 𝜎1, 𝜎2  ok right. 

 

 It is also said that it does not  allow variation of anisotropic coefficient in axial yield stress in 

the plane of the sheet.  It is another demerit we say but then we have to accept it and go ahead 

because it is satisfying  the first two problems which faced by 1948 ok. So before 1993 1979 

also can be used but it can  address only the first one anomalous behavior first one that is 

what is said ok. So but the  second fellow addresses both, 1990 addresses both fine. So I am 

stopping here with respect to yield  function discussion so there are lot of other yield 

functions ok we have seen only Hill’s 1948,  79, 90 and 93, Hill’s 1948 has been described 

little elaborately ok and other three cases  are discussed minimally to what is actually 

required for us with respect to its characteristics  and merits and demerits. 

 

 So this particular table I took it from this particular book.  So we redrew this particular table 

and this particular table tells you different yield  functions available plus what are all the data 

required if you want to use this yield function.  For example, Hill’s  1948 you need as we 

discussed you need 𝜎0 then r0, r90, 𝜎0 or 𝜎90 any one you need r0, r90, 79 also we have seen 𝜎0 

then of course 𝜎𝑏 was introduced  then 𝑟0 is required, 𝜎90 there are lot of things required you 

can look into that equation,  93 also we said only 5 𝜎0, 𝜎90, 𝜎𝑏, 𝑟0, r90  are there.  There are 

several other yield functions you can look into it ok various Hill’s 1978 and Barlat,  Barlat 

himself has two three important yield functions ok you can see that 1, 2, 3, 4 and  KB is also 

there ok there are 4 parameters in this 6 parameters, 6 parameters so there  are several such 

yield functions available which can predict the forming behavior accurately.  Again it is 

recommended just a recommendation only that Hill’s 1948 is a useful yield greater  than 

model forming of sheets and simple to implement because properties can be available  easily 

but however avoid using it for aluminum alloy forming ok.  But if it is aluminum alloy then 

one can use 1990 or Barlat's yield function any one or  KB's or others also whatever is 

available better suitable for modeling aluminum alloys  however several material properties 

are required so you have to be little bit careful which  one to use to predict what. 

 

  Suppose you want to see the tube forming of aluminum alloy you want to model it then use  

one of this the bottom ones 1990, Barlat's or something but then there could be several  

parameters material parameters you have to characterize ok but it is generally it is  to avoid 

it but if it is a steel cube and you want to study its bending behavior or  sheet you have to 

study its deep drawing behavior or any stamping behavior Hill’s 1948 would be  more than 



sufficient ok because the properties can be easily calculated ok.  So this is what we can discuss 

about anisotropic yield function so we have seen 4 important  yield function predominantly 

Hill’s’s 1948 and Hill’s 1948 also we rewrote that equation in  few different forms that is the 

main thing.  Next one is important one is we using Hill’s 1948 yield function we derived 

relationship  between 𝛼 and 𝛽 which was earlier for us was a simple one without considering 

R  value this 𝛼 𝛽 had R value into that equation which can be used for anisotropic  sheets that 

is the main thing.  So before we complete this we let us briefly discuss about the difference 

between isotropic  hardening and kinematic hardening what is it isotropic hardening was just 

introduced  to you just now it is the case in which yield surface or yield locus remains of same 

shape  but expands with the deformation or increase in stress it is what is shown here for you  

this is well known to you 𝜎1 𝑣𝑠 𝜎2 yield locus we always draw first yield locus  initial yield 

locus and then subsequent yield locus when you deform the material.  So I have drawn here 

a red color line you can see from here to here you can see the  elastic loading and after that it 

is plastic deformation or strain hardening and then you  can unload the material that is the 

way it is going to work and for the yield function  if you want to define which already define 

the function is a let us say 𝑓(𝜎𝑖𝑗) − 𝐾 = 0 in a simple way you can write which also tells a fact 

that the shape of yield locus  specified by initial yield function that f and size changes with 

respect to hardening  parameter K. 

 

  I hope you remember that we introduced this one when we discussed about at the end of  

Von Mises yield function where we are going to discuss about �̅� at that particular  you know 

slide or you know lecture you can see that we wrote a similar one and then I  was discussing 

with you that one part of the equation on the right hand side is going to  decide the form of 

the yield equation that is going to tell you the shape of the yield  locus on the left hand side 

which is nothing but your I think 2�̅�2 = 𝐾 we wrote I think that K was going to decide the 

size.  So now this equation is written now so now what we are going to do is this is also 

something  new for us suppose if you want to write Von Mises yield function so how do you 

write so  Von Mises yield function at yield can be written in this fashion so f is equal to this is 

known  to you right  

𝑓(𝜎𝑖𝑗) =
1

√2
√(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2 − 𝑌, Y is nothing but let  us say 𝜎0 or 𝜎𝑓 

like that we might have used to 𝜎𝑓 is not it.  So now in this if you put 3 is equal to 0 it will lead 

to Von Mises equation we just  now discussed 4, 5 slides back we use discussed that now 

when we study a case of Hill's 1948 it resulted in Von Mises yield locus know the same 

equation this equation is well known  to us which is also equal to we can write the same 

equation in two other forms one is  using 𝐽2  the other one is using deviatoric stress  

𝑓(𝜎𝑖𝑗) =
1

√2
√(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2 − 𝑌 = √3𝐽2 − 𝑌 = √

3

2
𝑆𝑖𝑗𝑆𝑖𝑗 − 𝑌 this 𝑆𝑖𝑗  is nothing 

what is 𝑆𝑖𝑗?  𝑆𝑖𝑗  is nothing but stress deviator tensor this also we have seen in expanded form 

when  we derive Von Mises you know equation there is one particular stage where we derived 

that  equation as a function of 𝜎ij
′ right that is nothing but this 𝑆𝑖𝑗 only there we  have used 

𝜎1
′, 𝜎2

′, 𝜎3
′ here we are just using 𝑆𝑖𝑗 only where 𝑆𝑖𝑗 is nothing  but deviatoric stress but only 

difference is here we are writing in indical notation  this is index notation we are writing 



there we wrote expanded form so how to expand it  one has to understand from different 

book we are not going to discuss here.  Y is known to you what is 𝐽2?  𝐽2 is a second invariant 

of deviatoric stress invariance you know there are invariance like  𝐼1, 𝐼2, 𝐼3 and 𝐽1, 𝐽2, 𝐽3 ok so 

𝐼1, 𝐼2, 𝐼3are generally related to stress tensor and  𝐽1, 𝐽2, 𝐽3 are related deviatoric tensor and J2 

is a second invariant of deviatoric stress  that also can be written in this way.  So these are 

the different forms we use these two forms are already known to us only this  one is 

something new I have written here this also you should know that  

𝜎‾ = √3𝐽2 = √
3

2
𝑆𝑖𝑗𝑆𝑖𝑗  which is what you  have written here. 

 

  So now with respect to the previous equation what I am going to do is I am going to just  

substitute this you know this function ok this function is nothing but f is becoming  now this 

is a function so I am going to use this  

𝑓(𝜎𝑖𝑗, 𝑘𝑖) = √3𝐽2 − 𝑌 − 𝐾 = 0 ok this is how Von Mises yield function can be written ok.  So 

now isotropic hardening simply implies that if the yield strength in tension compression  are 

initially the same they remain equal even in further deformation with increase in plastic  

strength which means Bauschinger effect is not considered here which means Bauschinger  

effect is not considered here.  So I think we have also seen studied this in bending no spring 

back if you take 𝜎  versus 𝜀 so you deform it like this and then you unload it and then you go 

this  way ok you will see that there is no change in yield strength because of softening in  the 

compression side they remain equal they remain equal.  So which is what is a general 

assumption we are making here so we are saying that if the  yield strength in tension 

compression are initially the same they remain same during  the evolution also which means 

you cannot use you cannot define or model Bauschinger  effect with respect to this which 

actually lead to kinematic hardening.  So what is that to model Bauschinger effect where 

hardening in tension will lead to softening  in compression will lead to softening in 

compression which means that in the compression side your  yield strength will be less than 

what it was in the first cycle in the tension side. 

 

  Then if you want to include that then we can include we can do that by kinematic hardening  

and kinematic hardening if you want to describe with respect to yield locus it will look like  

this again blue one is the initial one and the red one is the current one because of  kinematic 

hardening.  So this is a elastic part and this is a plastic deformation part and then unloading 

part is  written and you will see here that the shape is same your yield locus actually gets 

translated  in the stress space.  The yield surface remains same shape and size but translate 

in stress space.  The shape and size remain same but it gets translated it moves in the stress 

space which  actually is a good one to model Bauschinger effect.  So how are we going to write 

it?  We are going to write that yield function any yield function you pick up with respect  to 

kinematic hardening if you want to write it then you can write a 𝑓(𝜎𝑖𝑗, 𝛼𝑖𝑗) = 0 where 𝛼𝑖𝑗  is 

called as back stress or shift stress.  So what do you mean by 𝛼𝑖𝑗?  𝛼𝑖𝑗means it is a back stress 

or shift stress which can be defined schematically  like this.  So let us say 𝜎1, 𝜎2  you are 

drawing let us say this is initial yield locus.  So the locus is shifted by 𝛼𝑖𝑗 , locus is shifted by 

𝛼𝑖𝑗  relative to the stress  space as shown in this figure.  So you are going to shift the entire 



yield locus by 𝛼𝑖𝑗  that is what meaning of  this particular equation.  So now what are we going 

to do is very simple we are going to rewrite this particular equation  in this format. 

 

  Now in this what I am going to do is I am going to use this equation is okay so I am  going to 

use this known format for me.  The deviatoric stress tensor this particular form √
3

2
𝑆𝑖𝑗𝑆𝑖𝑗 − 𝑌 

now what  am I going to do is this 𝑆𝑖𝑗  is a deviatoric stress tensor or no and what am I going  

to do here is 𝜎𝑖𝑗 − 𝛼𝑖𝑗  right.  You imagine that this 𝛼 has got one deviatoric part which I am 

going to remove from  𝑆𝑖𝑗  okay which is what I have written here.  By considering Von Mises 

material again Von Mises is used but kinematic hardening which  is the simplest case Von 

Mises isotropic hardening we have seen just before okay Von Mises kinematic hardening is 

what we are looking at here.  Other yield function and then kinematic hardening is further 

complex by considering Von Mises material and using deviatoric part of 𝜎 − 𝛼  okay 

deviatoric part of 𝜎 − 𝛼  instead of deviatoric part of 𝜎  okay.  So I am going to write that 

√
3

2
𝑆𝑖𝑗𝑆𝑖𝑗 − 𝑌 = √

3

2
(𝑆𝑖𝑗 − 𝛼𝑖𝑗

𝑑)(𝑆𝑖𝑗 − 𝛼𝑖𝑗
𝑑) − 𝑌 = 0 where 𝛼𝑑  is nothing but  a deviatoric 

part of 𝛼 . 

 

  Since we are speaking about a deviatoric stress then 𝜋 plane or deviatoric plane  will come 

into picture and what is it?  It is what is given in this particular figure in 𝜋 plane or deviatoric 

plane we know what  is it deviatoric plane means on the deviatoric plane you know how Von 

Mises going to be  it is going to be a circle right which we discussed long back on the deviatoric 

plane  Von Mises going to be a circle in 3D actually it is a surface a cylinder right.  So when 

you look on the deviatoric plane it will look like a circle okay.  So now with respect to that 

what is this 𝑆 − 𝛼𝑑 is going to tell that is what  is discussed in this particular figure.  So in 𝜋 

plane the deviatoric part of 𝛼 deviatoric part of 𝛼𝑑 let us say denotes  shift of Von Mises circle 

as shown in this figure okay what happens so this is your Von Mises circle 𝜎1
′, 𝜎2

′, 𝜎3
′  you 

see this  is a Von Mises circle okay on the deviatoric plane pi plane we have given here.  Now 

this circle is shifted here okay let us say by 𝛼𝑑  times 𝛼𝑑  shift is seen  here with on the 𝜋 plane 

then 𝑆 − 𝛼𝑑  denotes this particular vector if this is  the S what is S? S is nothing but 𝑆𝑖𝑗  which 

is a deviatoric part 𝛼𝑑  is nothing but  the deviatoric part of back stress and S minus 𝛼 d is this 

which is what is actually  put here to define your kinematic hardening Von Mises material 

using Von Mises yield  function. 

 

  So it is very simple to tell √
3

2
𝑆𝑖𝑗𝑆𝑖𝑗 − 𝑌 = 0 which is a the conventional  Von Mises yield 

function is going to be modified as √
3

2
(𝑆𝑖𝑗 − 𝛼𝑖𝑗

𝑑)(𝑆𝑖𝑗 − 𝛼𝑖𝑗
𝑑) − 𝑌 = 0.  So this part is the 

deviatoric part of the back stress that is what is written here of  course one can write it with 

respect to 𝜎𝑖𝑗 also that is another way people write okay  that is also possible there is only 

one small thing that we are going to do now what is  that we are going to see how this 𝛼 is 

connected to your plastic strain increment  or the direction of plastic strain increment.  So 

this linear kinematic hardening model it defines actually how yield surface is translated  with 



respect to direction of strain increment you can see that suppose this is a  𝑑𝛼  okay how is it 

actually connected to the direction of 𝑑𝜀𝑝  direction of 𝑑𝜀𝑝  is  known it is actually 

perpendicular to the normal drawn at any point in the yield locus  right.  So in linear kinematic 

hardening model we are introducing here the back stress assumed  to depend on plastic 

strain following this particular equation you can say that your  𝛼𝑖𝑗 = 𝐶𝜀𝑖𝑗
𝑝  that means it is 

linearly related using C where  C is actually a material parameter and it is constant when you 

speak about linear kinematic  hardening model okay.  So what does that mean it means that 

yield surface is translated in the same direction  as a top plastic strain increment linear 

kinematic hardening model as shown in the schematic  if this is the direction perpendicular 

to it your 𝑑𝛼 or 𝛼 is going to be in  the same direction but if C if your C changes deformation 

then you need a non-linear kinematic  model which is not discussed here you can go through 

it okay. 

 

  So now if you want to replace 𝛼𝑖𝑗  by 𝐶𝜀𝑖𝑗
𝑝 we can do that in the  previous equation and you 

can modify the kinematic hardening model.  So thank you.  Thank you. 


