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So, this particular module we are going to discuss about Cylindrical Cup Deep Drawing  ok. 

So, this is a new model and then let us see how to develop some expressions equations  for 

predicting certain things in deep drawing, Sheet Cup Deep Drawing. So, we are going to  

specifically discuss only about Cylindrical Cup Deep Drawing in this particular module.  So, 

this Cylindrical Cup Deep Drawing we already discussed this briefly in the first chapter,  this 

is how the process will look like, this is schematic. You will see that so initially  we have a flat 

sheet, initially we have a flat sheet like this and on top of that you  are going to rest the punch 

and before punch starts moving down we have to clap the sheet  on the die ok that will be 

done with the help of a blank holder ok. 

 

 And we know that we have to  give appropriate blank holding force, we know how to get 

blank holding force that we already  discussed in the stamping analysis. So, we have to give 

appropriate blank holding force so that  the inward movement of the sheet can happen with 

some restriction due to the contact friction  between the sheet blank holder and the die ok. 

And when the punch moves down so you will see  that basically the cup bottom is formed 

first, this is your cup bottom we know that, this is  your cup bottom that is going to form first. 

And after that if we see the entire process is all  about converting the flange region into cup 

wall. 

 

 So, this is your cup wall region that also we know  already and this is your flange region of 

the cup. So, once a cup bottom is formed that can  form just when a punch touches the sheet 

a little movement maybe one of a movement itself is  sufficient to create the cup bottom and 

after that your cup wall will form and that is going  to happen due to the inward movement 

of this flange. So, it is all about converting a flange  into your cup wall in this way. So, it is 

going to move like that and the schematic shown here  is a partially drawn cup that is why 

you have a cup wall and a flange region ok. If you make  the punch to move down further then 

the entire flange region will become a cup wall ok. 

 

  So, and previously we have already discussed what is the mode of deformation or maybe 

state  of stress in the cup wall and in the flange region we have discussed these two cases ok.  

I am going to divide this deep drawing of circular cup ok, deep drawing of circular cup can be 

viewed  as two different process of course, these two happen continuously, but you can view 

this as  a two different operations or process. One is stretching sheet over a circular punch 

that is  what I was telling you initially that the cup bottom is getting just get stretched below 



the  punch and drawing an annulus inwards. So, drawing an annulus inwards is basically like  

converting this flange region into cup wall. So, you are pushing the you are drawing the  this 

annulus region annulus region means this entire this diametrical region in the inward  

direction ok and the cup wall is going to transmit force between these two regions,  cup wall 

is going to transmit a force between these two regions ok. 

 

  So, this is schematic from the schematic and from this you know view we can in fact,  say 

that the deep drawing is nothing, but drawing an annulus inwards and if you see a top view 

of  this ok, if you see a top view of this that is what is given in the right side diagram is a  

drawing of an annular flange I have said ok. So, you will see that so, this is your outer  radius 

of your that is 𝑅0 this is you can say this is o this is 𝑅0. So, 𝑅0 is  basically your initial radius 

of the sheet you can say ok and 𝑟𝑖 is basically the inner radius ok or  you can also say this 

equivalent to punch radius you can also say this as a punch radius or punch  dimension you 

can say or you can also convert that into diameter and say punch diameter and  outside 

diameter you can say sheet diameter. So, you can see that the punch is actually  perpendicular 

to the plane of this diagram and it is moving downwards let us say ok the  sheet is actually 

getting a inward movement. So, this part is actually going to move inwards ok,  so that it forms 

a cup. 

 

 So, there has to be an appropriate diameter or radius of the sheet  because of which you can 

form a successful cup ok. So, larger the blank or smaller the bank may  not be sufficient ok to 

make the actual cup which we want actually ok. So, we have to keep that in  mind actually. So, 

if you see that we can define this you know flange into maybe like three  different locations I 

mentioned A, B and C, A at the edge of the flange, B somewhere in the middle  and C in the die 

corner  you can see here. So, this is your C this is your  C and this is your C you can say ok. 

 

 So, I have located it here A, B, C locations these  three locations are there in the entire flange 

region you can imagine ok. And the state of stress  in the A region B region are mentioned 

here this you have already discussed in other chapters.  So, a region there is no 𝜎𝑟 here. So, 𝜎𝑟 

is basically radial stress along the radial  direction along r direction along r direction ok. By 

the way r is basically any radius ok in  between your  𝑟𝑖  and 𝑅0  ok. 

 

 So, you pick up an element let us say here this element blue  color element which I mentioned 

it is at r radius from the axis ok. So, r can vary between  𝑟𝑖 and  𝑅0 you can imagine like that. 

And let us go to this A. So, you will see that along the radial  direction you will have 𝜎𝑟 that 𝜎𝑟 

is missing here because it is at the edge of the  flange 𝜎𝑟 will not be there at the edge of the 

flange. If you move inward direction somewhere  in the middle region you will see that you 

will have both 𝜎𝑟  acting in this direction and  𝜎𝜃  is in the compression direction ok. 

 

 So, 𝜎𝜃 is inward arrow mark I put which  is basically compressing type and 𝜎𝑟 is going to be 

pulling type. And C would be at the your  die corner region ok. So, these three locations are 

important for us and what I am going to do  now is I am going to consider an element in the 

flange region and we are going to apply force  equilibrium. So, let us pick up an element in the 



flange region ok and I have already plotted all  the you know stresses available in this 

particular element. You can imagine that this element is  basically this in this location in this 

location you have this element let us say. 

 

  So, now you will see that so this element has radius of 𝑑𝑟 which is at r distance from the  

from the mid and this element subtends an angle of 𝑑𝜃 ok with respect to the the axis and  

you will see that there is one 𝜎𝑟 radial stress and there is one 𝜎𝜃 which is  circumferential 

stress. And we know that at at a gap of 𝑑𝑟 distance let us say from this to this  there will be 

some change in 𝜎𝑟 which you are going to call it as 𝜎𝑟 plus d 𝜎𝑟.  And if you see from thickness 

direction ok, so the thickness direction though we say 𝑡0  as a initial thickness ok during deep 

drawing you will see that in the flange region ok there  will be slight thinning in the die corner 

somewhere here and there will be slight  thickening in the edge of the flange 𝑡 + 𝑑𝑡 ok that is 

why I mentioned it 𝑡 + 𝑑𝑡.  So, and here it is t. So, these are the stresses on an element at 

radius r ok. 

 

 So,  this r is nothing, but this r only ok. So, now what I am going to do is I am  going to apply 

equilibrium for this element and if you do that you will get this particular  equation you can 

look into it is  (𝑟 +  𝑑𝜎𝑟)(𝑡 + 𝑑𝑡 )(𝑟 + 𝑑𝑟)𝑑𝜃 = 𝜎𝑟 . 𝑡. 𝑟. 𝑑𝜃 + 𝜎𝜃. 𝑡. 𝑑𝑟. 𝑑𝜃 and there will be one 

component of  𝜎𝜃 along r direction. So, that is going to be 2𝜎𝜃. 𝑡. 𝑑𝑟. 𝑠𝑖𝑛 𝑑𝜃
2⁄   which can  be 

written as 𝜎𝜃. 𝑡. 𝑑𝑟. 𝑑𝜃 you can in a simplified way you can write this. So, basically  𝑠𝑖𝑛 𝑑𝜃
2⁄  

can be written as 𝑑𝜃
2⁄  and you can write it in this way 𝜎𝜃. 𝑡. 𝑑𝑟. 𝑑𝜃 ok. And of course, you can 

simplify this further. 

 

 So, I have not done it. So,  you can one can do this if you do this it will reduce to one simple 

equation 
𝑑𝜎𝑟

𝑑𝑟
+

𝜎𝑟

𝑡
⋅

𝑑𝑡

𝑑𝑟
−

𝜎𝜃−𝜎𝑟

𝑟
= 0 ok.  So, and this is for a non-strain hardening material ok 

you do not consider strain  hardening in this equation and it is a frictionless case. So, no effect 

of a friction ok these two are  not available in this equation. So, the first part basically tells it 

with radius how 𝜎𝑟 changes the next part is going to tell you how t changes with r you will 

come back to this ok. 

 

  And then your 
𝜎𝜃−𝜎𝑟

𝑟
= 0. So, we will come back to this  equation now how to solve this how 

to get basically our idea here is to get a 𝜎𝑟 ok.  So, our idea is basically to get a 𝜎𝑟 which is 

nothing but your radial stress that is the  whole idea here ok. Because if you get 𝜎𝑟  by 

assuming any yield criterion we can get a 𝜎𝜃 also ok because these two are principle stresses 

we can get 𝜎𝜃 also. So,  now before we come to this equation ok let us get into some details of 

this ABC. 

 

  This ABC point which we have shown here A is at the edge B is at the mid and C is at the  die 

corner ok covers the entire blank you know flange region and these three points are actually  

shown in the yield locus in this way ok. So, A point which is at the outermost edge of the  

flange ok we have said that 𝜎𝑟 = 0 only 𝜎𝜃 would be there 𝜎𝑟  radial stress will end there ok 



it will not be there at all it is going to be 0 ok.  So, that is why you will see that 𝜎𝑟 = 0  means 

it will fall in the X axis ok and it will be on  the second quadrant it is going to coincide with X 

axis this point A ok. And we have already seen  that at this location sheet will thicken at this 

point sheet will thicken at this point ok. So,  we have already seen this as an example ok and 

we also I think worked out your you know why  sheet has thicken in fact, the problem also 

one problem numerical problem we solved in the  previous chapter also tells that ok if you 

follow this particular mode of deformation the sheet  will have thickened would have 

thickened when compared to the previous its original thickness. 

 

  So, you have to you should know that at the edge location at the outer edge that is why we 

have  said 𝑡 + 𝑑𝑡 ok. So, you can write the state of stress as 𝜎𝜃 is nothing, but minus −𝜎𝑓 ok 

which is known as uniaxial compression ok and the 𝜎𝑓 is nothing, but our current flow  stress 

our current flow stress before reaching current flow stress it would be your initial flow  stress 

or the yield stress. So, now when you go to point B ok. So, we have to pick up a point B  in such 

a way that basically we are picking up a point B in such a way that the radial stress is  equal 

to opposite to hoop stress ok. So, the radial stress your 𝜎𝑟 = −𝜎𝜃 that is what we have said in 

this point B. 

 

 So, they are equal and opposite and this will  give your 𝛼 = −1, if 𝛼 = −1 then you will see 

that you can get  a 𝛽 and at this particular mode of deformation you will see that there is no 

change in thickness  at this point ok. If 𝛼 = −1 you can get a 𝛽 from Levi Mises flow rule  and 

you will find out that there is no change in thickness at this particular point. So,  now when 

you go to point C radial stress would be maximum at that location because that is  basically a 

die corner region ok and it is also expected that sheath thinning is going to happen  in this 

location ok. So, I mentioned the C point somewhere here ok. So, this ABC points in the  flange 

region is going to fall on the second quadrant A which is going to be 𝜎𝜃 = −𝜎𝑓  it is going to 

coincide with the X axis and you have opposites and minus,  B we are choosing in such a way 

that 𝜎𝑟  is equal and opposite to your 𝜎𝜃  and at C  location you will see that 𝜎𝑟  would be 

maximum, radius would be maximum and here sheath  thinning will happen. 

 

 So, the edge you will have thickening and the somewhere in the mid location  you will have 

no change in thickness. So, so that means thickness strain is going to be 0 and in the  die 

corner region you will have sheet thinning. So, that is the way this ABC points are actually  

characterized and you will also see that we already mentioned this particular one in the  in 

the previous chapter that ok. So, anything below this particular location, below this mode  of 

deformation you will have thickening which is what is characterized here and beyond this in 

all  other 𝛽 values you can see that it is going to thin down. So, which is basically at C location  

there is chances of thinning. 

 

 So, at B basically is we are picking up B in such a way that these  two are actually equal and 

opposite. So, there will be no change in thickness ok.  So, this can be compared this particular 

characterization this thickening and thinning  which is mentioned here can be compared with 

the previous discussion we had similar diagram  we already discussed ok. So, all the stress 



states like this can be represented in terms of let us  say for example, a Von Mises you know 

yield locus like this. So, now let us go back to this equation  ok. 

 

 So, now just for a change in this analysis we are going to use a Tresca yield function which is  

you have not used until now we have used only Von Mises yield function until now. If you use  

Tresca yield function this yield function is already derived in the previous chapter.  So, 𝜎𝜃 −

𝜎𝑟 = −(𝜎𝑓) 0 , −𝜎𝑓0 is nothing  but the initial flow stress nothing but the initial flow stress ok. 

So, why we are saying  that is because we are going to now replace this fellow by 𝜎𝑓0 to get 

into some details.  So, now what I am going to do is I am going to make one important 

assumption that by considering  𝑡 = 𝑡0  ok. 

 

 So, what will happen now  by considering 𝑡 = 𝑡0 ok. So, we will say that in this equation this 

part will  vanish this part will go away ok. Why because we are saying there will be some 

change in thickness  with respect to r value ok which is not the case here we are saying that 

𝑡 = 𝑡0 ok which means change in thickness is actually neglected in this equation. So,  you have 

differential equation is nothing but this first term and this second term first term  and this 

second term ok. So, now what we are going to do is so there is a small change in  this equation 

this equation is not valid here we are going to say that this equation , 
𝑑𝜎𝑟

𝑟
. 

 

 So, 
𝑑𝜎𝑟

𝑟
−

𝜎𝜃−𝜎𝑟

𝑟
= 0  ok.  So, if you want to integrate this equation ok so and by following this 

boundary condition what is  the boundary condition we know that at 𝑅0 that means at the 

edge of this flange region we  say 𝜎𝑟 = 0 right. So, and another limit is basically this inner 

radius ok at 𝑟 = 𝑟𝑖 we are going to say that there is some radius stress that is  𝜎𝑟 = 𝜎𝑟𝑖  ok. So, 

if you see 𝜎𝑟 how is it going to vary it will be 𝜎𝑟𝑖 here and it will be 0 here it is going to vary 

between these two and let us integrate this  particular equation ok by taking 𝑡 = 𝑡0 and by 

applying this boundary condition  you will see that you will get a simple equation 𝜎𝑟𝑖 =

−𝜎𝑓0ln 
𝑟𝑖

𝑅0
 ok.  So, of course this can be written as 𝜎𝑓0ln 

𝑟𝑖

𝑅0
  ok and because  this equation is 

known to as 𝜎𝜃 − 𝜎𝑟𝑖 = −𝜎𝑓0 . 

 

 So,  now I am going to substitute this 𝜎𝑟𝑖  in this equation and get a 𝜎𝜃 = −[𝜎𝑓0 − 𝜎𝑟𝑖]ok. So, 

you have to integrate this equation and not this let us  forget this equation ok this is not 

correct here. So, this equation we have to integrate by  considering 𝑡 = 𝑡0 . So, there is a 

second term which goes off ok and you will get  𝜎𝜃 = −[𝜎𝑓0 − 𝜎𝑟𝑖] ok. So, in this way for a 

non-stain  hardening material for a non-stain hardening material of course without friction 

ok the  radius stress is given by 𝜎𝑟𝑖  equation derived here ok and radius stress will give  you 

𝜎𝜃 by assuming one yield function here we are picking up Tresca yield function and  we are 

getting it ok. 

 

 So, now in this equation you will see there is one important point which  is what we are going 

to discuss in the next slide. We have already discussed briefly about  drawing ratio, drawing 

ratio means basically its initial diameter of the sheet divided by  diameter of punch ok. So, 



drawing ratio is nothing, but this called as DR we call ok.  So, drawing ratio is nothing, but 

initial diameter of the sheet divided by diameter  of the punch and this draw ratio will give 

limiting draw ratio which we call LDR,  limiting drawing ratio which we call LDR considering 

this diameter of punch as a  constant then what diameter initial diameter of the sheet you can 

keep ok to have a successful  cup that will be decided by this LDR that will be decided by this 

LDR. So, which means in a way you  see that it is 
𝑅0

𝑟𝑖
,  𝑅0 is nothing, but your radius of the sheet 

which is nothing,  but diameter of the sheet divided by 𝑟𝑖  which is a inner radius which is 

nothing,  but a punch diameter is going to give you some way it is going to define your LDR,  

is going to define your LDR. 

 

 So, we are going to put a condition now,  we are going to put a condition now ok which will 

give us some value of this LDR, what is that? We  are going to say that the greatest stress in 

the cup wall that it can sustain for a material  being Tresca is actually 𝜎𝑓0. So, in the cup wall 

if you see ok the greatest  stress the material can withstand if you follow Tresca yield function 

is actually 𝜎𝑓0  itself. So, what we are going to say is in this equation if 𝜎𝑟𝑖 = 𝜎𝑓0  ok what will 

happen? Now, if 𝜎𝑟𝑖 = 𝜎𝑓0  we get the largest blank  that can be drawn which is also given by. 

So, this equation I am picking up which is  was introduced to you before 𝜎𝑟𝑖 = −𝜎𝑓0ln 
𝑟𝑖

𝑅0
 in  

this if I put 𝜎𝑓0 you will see that my 
𝑅0

𝑟𝑖
 is going to be equal to 2.72  which is nothing, but LDR 

is actually 𝑒𝑥𝑝 1  ok. 

 

 So, I am going to put a 𝜎𝑓0  here and of course, this minus can be taken care automatically. 

So, you will get  
𝑅0

𝑟𝑖
.  So, 

𝑅0

𝑟𝑖
= 𝑒𝑥𝑝 1 = 2.72. So,  

𝑅0

𝑟𝑖
 which is nothing, but in a way to describe 

define LDR is nothing,  but 2.72 if you pick up an extreme case of this particular one ok. The 

greatest stress the cup  wall can withstand for a material it should not actually go to that level, 

but it is the greatest  stress ok. If it goes to extreme then the LDR can be 2.72 that means, that 

means what if 𝑟𝑖   is fixed suppose your punch radius or diameter of the punch is fixed you 

have to multiply it by 2.72  to get the initial diameter of the or initial radius of the sheet and 

only if you pick up that  particular diameter you will get a successful cup ok. 

 

 But as I said this particular value  𝜎𝑟𝑖 = 𝜎𝑓0   is a too high and because of that what I am going 

to see  is the instead of this 1, I may slightly reduce it depending on my you know requirement 

I am going  to say let us say 𝐿𝐷𝑅 = 𝑒𝑥𝑝 (𝜂) ok. And if you take 𝜂 = 0.7 let  us say or 0.6 to 0.7 

0.62 let us say 0.7 I get LDR of 2 that means, exponential let us say instead  of 1 you take 

exponential 0.69 or 0.7 or 0.6 you can take it will give you a value lesser than 2.72,  2.72 why 

because 2.72 is an extreme case. So, if you pick up an 𝜂 value of 0.69 you will get  LDR of 2 

which means that your 𝑅0 by your 
𝑅0

𝑟𝑖
= 2. That means,  if you take 𝑟𝑖  let us say radius of the 

punch or diameter of the punch let us say you take  the diameter of the punch as 50 mm ok. 

So, then you multiply that with 2 the initial  diameter of the sheet has to be about 100 mm or 

closer to that. 



 

 Generally 0.6 to 0.7 you can pick  up which will give you a range of LDR which is going to give 

you a successful drawn cup.  Through this derivation simple derivation though it is for non-

strain hardening material and  frictionless case we derived expressions for 𝜎𝑟 radial stress 

and 𝜎𝜃 ok by  assuming Tresca yield function this is the first time we are doing it in this in this 

course ok.  And if you put a condition for 𝜎𝑟 ok which is nothing but if it is equal to 𝜎𝑓0  then 

you will get a limiting raw ratio as a particular value that is 2.72 and is an extreme  case 

anything less than that would be better. 

 

 So, if you take 𝜂 of 0.7 or 0.6 in between  value so you may get a LDR of the order of 2 which 

is what is you can refer to. This is the  simplest way to calculate your limit drawing ratio. So, 

now what we are going to do is so  this equation has been obtained and from this equation 

we got 𝜎𝜃 also. So,  what we are going to do is we are going to modify the 𝜎𝑟 by considering a 

strain hardening  effect and friction effect ok. So, modification of radial stress with the effect 

of strain hardening  that is a next one. 

 

 So, now what is going to happen is because of strain hardening we know  that the flow stress 

will increase right the flow stress will increase and if you pick up this  flange region if you 

pick up this we will go to the diagram if you pick up this particular  flange region ok. So, you 

will see that at different locations you may get different  levels of flow stress ok and it will be 

non uniform it will be non uniform. So, you can imagine that  you know like previously we 

discussed you know. So, you can maybe like you can put a lot of circle  grids on the surface 

and or maybe you can get strains at you know different grids and from  there you can get a 𝜎̅ 

from there you can get 𝜎1, 𝜎2,𝜎3. So, all those things you can  do in this flange also finally, you 

will see that the flow stress is going to be get distributed in  a non uniform way in the flange 

region. 

 

 So, how are you going to quantify it is by taking  an average flow stress in the entire flange 

region. So, which means you can imagine that  from the strain evolution you can get maybe 

like 𝜀  ̅and from there by using some flow  stress model you can get some 𝜎̅ and you can just 

take an average value you will get some  average value of your flow stress in the whole flange. 

Now, what I am going to do is this is  my original equation I am going to just modify the 𝜎𝑓0 

by (𝜎𝑓0)
𝑎𝑣𝑔

 I am just saying  average ok. So, which is what going to give 𝜎𝑟𝑖
= (𝜎𝑓)

avg
ln (

𝑅

𝑟𝑖
) 

ok.  Of course, this is inversed actually 
𝑟𝑖

𝑅0
 becomes 

𝑅0

𝑟𝑖
  and since I am going to update my 𝜎𝑓 

ok by using this (𝜎𝑓0)
𝑎𝑣𝑔

 I am going to use R  instead of 𝑅0 where 𝑅0 is my initial you know 

outer radius right. 

 

 So, that will get  updated depending on what average flow stress I am going to take. So, I am 

going to put R ok.  So, that diagram is shown here you can see this is just a simple schematic 

this is one section of  you know flange which is showing the movement flange movement in 

the drawing you will see that  initially the flange region is up to this black part. So, which is 



actually 𝑅0 ok and after  some height let us say height h ok after some flange let us say cup 

height your so your cup  wall height as let us say h ok the new radius is R. So, this radius I am 

going to update it here  that is one small change we are having. 

 

 So, a simpler way to take strain hardening is to  take an average flow stress value ok in the 

entire flange region and that is going to change my  equation to 𝜎𝑟𝑖
= (𝜎𝑓)

avg
ln (

𝑅

𝑟𝑖
) instead 

of 𝑅0 I am going to put  
𝑅

𝑟𝑖
  ok. So, now there are two things one is a strain hardening ok we 

expect that you know  once a deep drawing happens once it started happening. So, flow stress 

will increase and  hence you need a larger drawing force let us say or radial stress at the same 

time R is reducing at  the same time you will see that the material required for drawing is also 

reducing because  more and more you push punch down more flange region is getting 

converted into your cup wall  region right your cup wall this is your cup wall region ok more 

flange region gets converted into  cup wall region. So, naturally R becomes smaller. So, these 

two together is going to create one  particular pattern of your evolution of 𝜎𝑟 which is what 

is given in this particular figure. 

 

  So, for a strain hardening sheet you will see that 𝜎𝑟  is of course plotted with height  the 

height of cup you know it is plotted with 𝜎𝑟 you will see that initially there is an  increment in 

the 𝜎𝑟 value in this way and it reaches a peak value here I represent it as a  star and then in 

further punch movement will actually increment in height will actually  reduce the radial 

stress. This is how a typical plot would be for a strain hardening material,  for a strain 

hardening. Suppose the material is not strain hardening at all then this your  radius your 

radius would be larger at the starting itself because the flow stress will not get updated  after 

that so naturally it will be higher at the starting itself that is how it will be but for  strain 

hardening material this is a typical you know nature of your radial stress it will increase  for 

some time and once you reach a peak value it is going to come down. And these two factors  

your strain hardening and R becoming smaller together is going to determine this evolution.  

So, this equation 𝜎𝑟𝑖 = −𝜎𝑓0ln 
𝑟𝑖

𝑅0
 becomes this  equation by considering an average flow 

stress in a way taking care of your strain hardening effect. 

 

  So, now how are we going to modify this equation by including friction that is the next part. 

So,  when you speak about friction so we are going to divide this further into two parts,  one 

is effect on die radius you can see that effect on die radius I have mentioned this  particular 

schematic which I showed you just before and this particular location we are going  to 

concentrate and that is actually zoomed in here. So, you will say that in this the  material is 

actually material is flowing this direction it is already given and your 𝜎𝑟𝑖  is acting in this 

direction which we just now seen and the 𝜎𝑟𝑖 can be converted into 𝜎∅ which is actually stress 

in the cup wall ok. So, stress in the cup wall is this, this is going  to be your 𝜎∅ . So, 𝜎𝜃 

circumferential 𝜎𝑟  is radial and 𝜎∅ is  nothing but a cup wall radius stress in the cup wall 

stress in the cup wall ok. 

 

 So, somehow this  𝜎𝑟𝑖  and 𝜎𝜃  can be connected and that can be done by this particular 



equation which we  have already discussed. This was discussed in one of the previous 

chapters we have derived this 
𝑑𝑇1

𝑇1
= 𝜇𝑑𝜃 and in fact if you integrate it between two different 

points in  between if you know the angular value then you can integrate it and you can get 

attention in the new  location with respect to the original location ok. We derived an equation 

for this we worked  out a problem also in this ok. So, now the same thing can be rewritten in 

this way 
𝑑𝜎∅ 

𝜎∅ 
= 𝜇𝑑∅ and of course you can integrate it finally you will see that  𝜎∅ would be 

equal to your sorry this is ∅  actually this is ∅ .  So 𝜎∅ = 𝜎𝑟𝑖𝑒𝑥𝑝 (𝜇𝜋 2⁄ )  ok. 

 

 So,  the angle subtended angle is actually 𝜋 2⁄  here so you will see that the coefficient of  

friction coulombs coefficient of friction will come into the brackets so it will be same thing  

only 𝜇 is going to coming here and 𝜋 2⁄ . So, we will see that your 𝜎∅ = 𝜎𝑟𝑖𝑒𝑥𝑝 (𝜇𝜋 2⁄ ) ok. So, 

which can be obtained from the simple  equation. So, this equation can be directly written ok 

without doing all these calculations  also you can directly come out this equation based on 

your attention also which you already  derived. So, if 𝜎𝑟𝑖 is known from the previous equation 

so we can get 𝜎∅   also using this particular equation ok. 

 

 So, 𝜎𝑟 can be found out and from this  you can get a 𝜎𝜃 which already done so from this you 

can also get a 𝜎∅ radial  stress circumferential stress now this is a cup wall stress, stress in 

the cup wall. So,  that is this part ok. So, now we are going to this particular location between 

the blank  holder and the die there is a flange region and that situation is shown here friction 

between the  blank holder and the flange ok that is actually zoomed in in this particular 

schematic.  So, this schematic basically tells you that so this is your part of the flange region 

you  can imagine this part of your flange region if you see this location it is somewhere here 

this  location this location is what is actually zoomed in here ok. So, now what we are going 

to say is  though in this analysis we have taken 𝑡 = 𝑡0 so that there is no change in thickness,  

but originally in the schematic we have also shown that there is some change in the thickness  

at the edge ok at the edge of the flange you will see that at the edge of the flange here or at 

the  edge of the flange here you will see that there is some thickening that is going to happen 

which  is that is why we said  𝑡 + 𝑑𝑡  right. 

 

 So, because of that what we are going to say is we  are going to tell that this blank holding 

force we are going to call it as B is distributed around  the edge of the flange as a line force. 

So, we are going to say that practically your blank holder  is going to come down and hold the 

entire flange region. So, blank holder will have perfect surface  contact with the flange region 

and flange region will have full surface contact with the die  surface that is how practically it 

works, but for modelling point of view we are saying that  there is a blank holding force B that 

is going to act as a line force on the edge of the sheet,  why because basically it is there is an 

inclined surface here as I shown here.  So, this thickness here is larger than this thickness let 

us say this thickness is t,  this thickness would be 𝑡 + 𝑑𝑡 here ok and because of that it is quite 

acceptable to consider  this blank holding force as a line force, but of value 
𝐵

2𝜋𝑅0
  per unit 

length. So,  B is a blank holding force ok, so I am going to put a line force that is 
𝐵

2𝜋𝑅0
  per unit 



length  I am going to put that here. 

 

 So, that is why I  plotted a downward arrow and then an upward arrow at both the surfaces 

ok.  So, the material flow is going to happen like this, so naturally your friction force is going  

to be opposing nature, so I am going to write friction force as 
𝜇𝐵

2𝜋𝑅0
  here and 

𝜇𝐵

2𝜋𝑅0
 here, so 

combinedly we can write 
2𝜇𝐵

2𝜋𝑅0
 is a friction force, the friction force on the flange per unit length 

around the edge  again is given by 
2𝜇𝐵

2𝜋𝑅0
 ok. The same situation can also be represented by  this 

𝜎 ok which is acting at the edge of the flange which is nothing but this 𝜎 =
2𝜇𝐵

2𝜋𝑅0𝑡
 ok. So, the 

same thing the friction force can be termed  can be written as stress acting on the edge of the 

flange that is nothing but your 𝜎 as this  2 2 will be cancelled anyway 
𝜇𝐵

𝜋𝑡𝑅0
 ok. So, I am going 

to write where t  is my actually it is 𝑡 + 𝑑𝑡 ok, but is understood that it is actually thickness at 

the edge of the  flange that is all. 

 

 So, basically you have to use thickness at the edge of the flange here.  So, I am just telling you 

that 𝑡 + 𝑑𝑡  for our explanation and t here that does not mean  that you have to use that 

thickness. So, you can use thickness here. So, thickness at the edge of  the flange. So, the edge 

of the flange ok can be used here. 

 

 So, 
𝜇𝐵

𝜋𝑡𝑅0
.  So, I am going to say there is stress acting on the edge of the flange that means, my 

(𝜎𝑟𝑖)𝑟=𝑅0
=

𝜇𝐵

𝜋𝑅0𝑡
 where t is a blank  thickness. So, now what I am going to do is my initial 𝜎𝑟𝑖 

is actually modified to 𝜎𝑟𝑖 ok by considering an average flow stress by considering an average 

flow stress right.  So, this is 𝜎𝑟𝑖. So, again this is also 𝜎𝑟. So, I can add this part to this part  to 

get the effect of friction into that equation. 

 

 So, what I have done is here is we derived s𝜎𝑟𝑖
= (𝜎𝑓)

avg
ln (

𝑅

𝑟𝑖
) right. So, the above equation 

this equation  I am going to modify like this. So, I am just going to add this part to this part. 

So, 𝜎𝑟𝑖
= (𝜎𝑓)

avg
ln (

𝑅

𝑟𝑖
) +

𝜇𝐵

𝜋𝑅𝑡
 where R is actually  a changing radius 𝜋𝑅𝑡  ok. So, now you will 

see that finally the 𝜎𝑟 ok which is nothing  but the radial stress has got some effect because of 

strain hardening and then you are also bringing  up your coefficient of friction in a way 

lubrication effect friction effect into this equation ok. 

 

  So, this is the first level of 𝜎𝑟𝑖   and this is the second level of 𝜎𝑟 from this  I am going to get 

next 𝜎𝑟𝑖 by considering effect of 𝜇 that is a third one sorry 𝜇 plus  (𝜎𝑓)
avg

 both both this is the 

third one. So, three different ways we have done actually.  So, now this equation this equation 

you say is radial stress for a strain hardening material  with effect of friction that way you can 

tell and since 𝜎𝑟𝑖 is known to you you can get 𝜎∅ also how do you get you can just substitute 

it in this equation 𝜎𝑟𝑖  you substitute here  that means the entire 𝜎𝑟  is multiplied by 



𝑒𝑥𝑝 (𝜇𝜋 2⁄ )  to get the 𝜎∅   which is what I have given as 𝜎∅ =
1

𝜂
[(𝜎𝑓)

avg
ln (

𝑅

𝑟𝑖
) +

𝜇𝐵

𝜋𝑅𝑡
] 𝑒𝑥𝑝 (𝜇𝜋 2⁄ ) ok in that way you can modify this equation ok.  So, what are the things we 

got? We got 𝜎𝑟  then we got of course 𝜎𝜃  the same  𝜎𝑟  can be used to get 𝜎𝜃  also right you 

assume a Tesca yield function. 

 

 So,  you substitute here. So, 𝜎𝑟 can be used this equation instead of this equation you use the  

later equation into this to get 𝜎𝜃. So, what do we have found out is 𝜎𝑟 we found out  𝜎𝜃 we 

found out and then 𝜎∅ also we found out from all these equations.  With the effect of strain 

hardening and friction. So, these are expressions for radial stress and  cup wall stress 

including strain hardening effect and friction effect ok. So, now there is one  coefficient 
1

𝜂
 I 

have included ok multiply it 
1

𝜂
 just to take care of it is like an  amplification factor. 

 

 So, some you know it is like an efficiency factor you can say to take  care of any other 

approximation ok. Like for example, the sheet gets bent and un-bent right  the sheet gets bent 

and un-bent now. So, that is not considered here for example,  because of this bending ok. So, 

initially it is a flat then it is bent then it is again un-bent.  So, it becomes straight right say for 

example, this is flat it is bent here then it is un-bent  to become straight isn't it. 

 

 So, this type of effects will also lead to some change in  your stress value. So, just to get you 

know some efficiency factor you can multiply it 
1

𝜂
  to take care of that changes ok. So, this value 

can be you know can be it is in our hand we can  decide it to improve the accuracy of this cup 

wall prediction ok. So, now in this last subtraction  but in this discussion there is going to be 

some relationship between this LDR we are say LDR we  said right what is LDR we have said 

that it has 
𝑅0

𝑟𝑖
. So, there is some relationship between  this LDR and the materials anisotropy 

that is sheet anisotropy. So, what is the connection?  So, that is what we are going to see more 

in a very conceptual way we are not going to derive  much rather what we are going to do is 

we are going to just discuss that in conceptual way. 

 

  So, from the previous formula equation we derived this LDR actually depends on the average 

flow  stress we know that and the current thickness B and then maximum permissible value 

of wall  stress which is nothing but my 𝜎∅ ok. Average flow stress we said (𝜎𝑓)
avg

 we  brought 

it together current thickness is t this is your B ok and maximum permissible value of  wall 

stress is 𝜎∅ ok. So, there is a particular level of wall stress that is allowed  when you do cup 

deep drawing that is your 𝜎∅.  𝜎∅ is a stress in the cup wall,  but there has to be permissible 

limit ok. So, now let us discuss these points if we  neglect strain hardening during drawing 

the maximum drawing stress will happen at the start  of the drawing this is what I was 

discussing with you before if you do not consider strain  hardening then the simplest choice 

we have is drawing stress being maximum can be maximum at  the start itself because your 

flow stress is not going to increase beyond that ok. 

 



  It could be the effect of R becoming smaller only ok. Two opposing factors we discussed  

strain hardening and R becoming smaller now strain hardening is not there means the effect  

of R radius becoming smaller the material you know material required for drawing is 

reducing  so R becoming smaller is the only thing which is going to determine so maximum 

drawing stress will  be reached at the start itself. Now we are going to put a condition wall 

stress to initiate that  drawing suppose if you want to initiate the wall stress ok what will you 

do the simplest choice we  have is 𝜎𝑓 = 𝑌  which is becoming a constant where Y is our initial 

flow stress or  yield strength you can say so wall stress to initiate drawing or at the start of 

drawing ok  the wall stress can be obtained by putting 𝜎𝑓 = 𝑌 which is a constant in the 

previous  equation. So from the previous equation for wall stress we can write now wall stress 

now wall stress  becoming we are going to concentrate on cup wall now rather than flange. 

Now flange is being  converted into a cup wall so now what is happening in the cup wall is the 

main thing now.  So 𝜎∅ =
1

𝜂
[(𝜎𝑓)

avg
ln (

𝑅

𝑟𝑖
) +

𝜇𝐵

𝜋𝑅𝑡
] 𝑒𝑥𝑝 (𝜇𝜋 2⁄ ) right so what I am going to do is 

I am going to put this condition  into this equation into this equation so this I am going to 

convert that into Y so I am going to  say that general flow stress is going to become my yield 

stress and I am going to say that my  𝜎∅ =
1

𝜂
[𝑌ln 

𝑅0

𝑟𝑖
+

𝜇𝐵

𝜋𝑅0𝑡0
] exp 

𝜇𝜋

2
 only thing is like I am going 

back to my original dimensions  𝑅0  and  𝑡0  here or because you know it is a start of the 

drawing no so we  are saying that the wall stress to initiate drawing so which means that I 

am going to  modify this equation into this is 𝑅0  and this is 𝑡0  ok. 

 

  So this 𝜎∅ so in this equation these are the modifications  I am going to put so this becomes 

Y my 𝜎∅ = 𝑌 everything else remains  same and this related to original dimension ok. So now 

this wall stress has to be less than the  load carrying capacity of the wall so wall has got a 

particular load carrying capacity you know  you can imagine like that and this 𝜎∅ has to be 

less than that. And we have also seen before  the cup wall actually follows plane strain mode 

of deformation we have seen this example before  in the when we discuss about stress 

contour strain contour like we have discussed OA,  OB, OC, OD, OE mode of deformation ok. 

So like this diagram you can see that we  saw OB, OA, OB there are 5 different you know we 

have seen 5 different you know stress paths  we have seen. So in that we have mentioned this 

as an example that for plane strain mode of  deformation the cup wall is a best example. 

 

 So we have earlier seen that the deformation  in the cup wall follows in the cup wall follows 

plane strain mode ok and the stress at it would  deform depends on the choice of yield criteria 

ok and the stress at which it would deform depends  on the choice of yield criteria ok. So we 

know that this cup wall stress should be less than  the load carrying capacity of the wall ok if 

that is the case ok if that is the situation then your  cup wall should deform in plane strain 

mode of deformation ok and it has to reach that particular  value of stress and that depends 

on what choice of yield function you have ok whether you choose  Tresca or Von Mises or any 

anisotropic yield function yield locus so it depends on that yield  locus which is going to tell 

you when that critical you know point is reached ok for this 𝜎∅  ok. So in that case we have 

shown here three different choices for this what are the three  different choices you can see 

that this is for representation of Tresca yield locus this is your  Von Mises yield locus and this 



is some anisotropic yield locus ok. So in Tresca yield  locus you pick up OP so plane strain 

mode of deformation is actually OP ok plane strain mode  of deformation in the cup this is the 

loading path in the cup wall for various yield locus ok.  This is the loading path so you are 

going in the flange region this is the way your stress  is going to evolve so it will start from O 

it will reach P when yielding is going to start at Y and  you will see that 𝜎∅ would be of this 

value. 

 

 So same thing if you see from Von Mises  yield function you start with O you will reach P ok 

and you will see that Y it is going to reach  Y like this ok and your 𝜎∅ would be this much value 

ok. And if you pick up an anisotropic  yield locus for which we are taking one particular case 

𝑅 > 1.  So true width strain divided by true thickness strain is nothing but your 𝑅 > 1. 𝑅 > 1 

means what? So 𝑅 > 1  means suppose like this ratio is 2 which means that your the material 

is stronger in the  thickness direction than in the plane direction in the plane surface right so 

that is the meaning.  So if you pick up 𝑅 = 1 generally you will see that the yield locus gets 

elongated in  the right hand diagonal ok you can see the elongation in the right hand diagonal 

in this  way and other things are same you have OP which will reach it in this particular 

location your Y  is here this much would be your 𝜎∅  this much will be your 𝜎∅  ok. 

 

 So this is what  we were telling that the stress at which it would deform depends on the 

choice of yield criterion.  So when it is going to reach this particular point this particular point 

this particular  point actually is decided by the choice of yield function you choose. So now let 

us pick  up all these three cases we will discuss something which will tell us how this sheet 

anisotropy or  the choice of yield locus changes the LDR calculation. So Tresca yield locus it 

is pretty  simple ok for Tresca yield locus the cup wall stress would be equal to Y so 𝜎∅ = 𝑌 

we have seen this here 𝜎∅ = 𝑌 ok. So now this particular equation which you have just now 

we have shown this equation ok we  said that you know to initiate your drawing ok just to 

initiate drawing ok then you have to put  𝜎𝑓 = 𝑌  then we have got Y here is not it. 

 

 So now what we are going to do is as per  your Tresca yield function we are going to say that 

𝜎∅ = 𝑌. So this equation  is modified to this form ok so you can say that this 𝜎∅ = 𝑌 ok so then 

𝜂  can be taken here Y can come here Y can be taken inside so this Y vanishes and this Y will 

come in  the denominator of the second part ok. So I am going to get 𝜂 = [ln 
𝑅0

𝑟𝑖
+

𝜇𝐵

𝜋𝑅0𝑡0𝑌
] exp 

𝜇𝜋

2
. So this is the condition for maximum sheet size this is the condition for your 

maximum  sheet size. So suppose if you use Von Mises yield locus ok then we already know 

this particular  equation 𝜎∅ =
2

√3
𝑌  ok this is plane strain in bending also we derive  this 

equation in bending also assuming it as a plane strain process we derive this equation  𝜎∅ =
2

√3
𝑌 . 

 

 So now in the same way like what we  have done in the Tresca yield function you can 

substitute 𝜎∅ =
2

√3
𝑌 ok. So here you can see 

2

√3
𝑌 if you put and then you calculate  it you will 

find out some 𝜂 value and you will get you will see that we obtain a greater LDR as  compared 



to Tresca ok. So I have not worked out here but you can just check it we obtain a greater  LDR 

ok LDR would be slightly larger when you use Von Mises yield function for the same material 

as  compared to Tresca. Now when it comes to anisotropic yield function ok that means 𝑅 >

1  case which is the best case we have 𝑅 = 1 indicates stronger in through thickness  direction 

and the main effect would be to strengthen the cup wall ok. So if the cup  wall ok you are going 

like this now this is your axis this is your sheet so cup wall you  are speaking about is this ok 

this is a cup wall region and the wall region is actually stronger,  wall region is actually 

stronger why because the thickness through thickness direction strength is  going to be larger 

than the plane if you take 𝑅 > 1 which means that LDR would be  greater in this case as 

highest stresses are required to cause yielding in the sheet. 

 

  So LDR would be much larger if you use an anisotropic yield function for 𝑅 > 1 material. So 

in these two cases does not matter actually R is equal to you know 𝑅 > 1 in  both the cases 

Tresca and Von Mises is for isotropic material you know. So if R greater  than 1 in this case is 

picked then LDR would be larger why because there will be the material  will be stronger in 

the thickness direction. So along with that we should also note that  along with strain 

hardening cup wall strengthening is also important influencing LDR ok.  So though we say 

that your strain hardening is an important thing ok when we discuss about  flange getting 

converted into a cup wall during deep drawing in that analysis we  consider strain hardening 

separately that is why we made 𝜎𝑓 converted into (𝜎𝑓)
avg

 right but the point is along with 

that cup wall strengthening is also this strengthening,  this strengthening is also important in 

determining the LDR ok. So the effect of anisotropy,  sheet anisotropy if you want to study 

then we have to depend on the choice of yield function ok. 

 

  Tresca or Von Mises or any anisotropic yield locus for 𝑅 > 1 indicates that if  you have 

anisotropic sheet and if 𝑅 > 1 then somehow if you bring that anisotropy  into the model then 

LDR prediction would be accurate, LDR would be greater we say as compared  to the other 

two ok when compared to Von Mises and Tresca and Von Mises if you compare with  Tresca 

it is we obtain a greater LDR as compared to Tresca that is the way it is.  So if you want to 

study the change in thickness of the sheet ok that is also possible. So this  is just a brief note 

here when the sheet is bent and unbent under tension ok when the sheet is  bent and unbent 

under tension which is what is going to happen in your cup drawing ok which is  what is 

happening in the cup drawing right. So in bending we have seen two cases one is  only 

moment and other one is stretching with you know with moment, moment with stretching 

right.  So bending with stretching we have seen but in this case actually there is no other 

choice  there is only under tension only because the sheet is gripped ok. 

 

 So because of this bending  and unbending there will be reduction in thickness and that is 

given by this particular equation  which we have not derived this is for our understanding 

only 
∆𝑡

𝑡
= −

1

2(
𝜌

𝑡
)

𝑇

𝑇𝑌
 where ∆𝑡 is nothing but your change in thickness and all  other you know 

terms are known to us 
𝜌

𝑡
 is nothing but your bend ratio which you already  introduced T is 

your tension and 𝑇𝑌 is the yield tension which we introduced in the bending chapter.  You will 



see that in from this equation a small bend ratio 
𝜌

𝑡
 will increase the thickness  reduction and 

that is going to reduce the load carrying capacity of the die wall and it is going  to reduce the 

LDR ok. From this relationship we can find one important relationship on this  equation we 

can find one important relationship between bend ratio and ∆𝑡. ∆𝑡 is connected  to LDR that 

is the way we are connecting. How is the relationship? For a small bend ratio ok that  is in the 

denominator let us say it will increase thickness reduction because in the numerator by  

reducing the load carrying capacity ok of the die wall and it reduces the LDR further. 

 

 So,  if load carrying capacity of the die wall is reduced which you have seen in this particular  

diagram your LDR will reduce ok. So, it is appropriate in a way to tell the largest blank  that 

can be drawn is 2.72 that is a case ok it is an extreme case but it will be less than  2.72 

generally it is between 2 to 2.2 which is what I told you take 𝜂 value of 0.2 to  0.7 in that 

equation to get LDR that is the best option we have 𝜂 value we discussed now is 𝜂.  Ok just to 

summarize to have a better LDR we need to follow this particular you know thumb  rule ok. 

So, if you want to have an improvement in LDR then 𝑅 > 1  is preferred ok that  means 

anisotropy of the sheet is existing means you have to consider that anisotropy ok. If we  have 

𝑅 > 1 then LDR would be better and 
𝜌

𝑡
 has to be larger flow by T is larger  ∆𝑡 would be less ∆𝑡 

would be less means you will have a better LDR ok and 𝜇  has to come  down and your 

coefficient of friction has to come down that means you have to put appropriate  lubrication 

you know to improve the LDR. So, these are some of the important thumb  rules we can get 

ok. So, we stop here we will discuss it further.  Thank you. 


