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 Ok. So, we will continue our discussion in this lecture that is we are still in bending of  sheets 

and in the previous section what we discussed is basically summarized here.  So, we evaluated 

strain distribution for bending of sheet with both moment and tension and  then we evaluated 

𝜀1 .  So, which is nothing 𝜀𝑎 + 𝜀𝑏  and then 𝜀𝑏  can be approximated to  
1

𝜌
 which is actually 

𝑙𝑛 (1 +
1

𝜌
) and can be approximated to 

1

𝜌
.  So, this is what we have seen and then in that case 

bending without tension.  So, we have evaluated two important things one is stress 

distribution other one is moment  versus curvature diagram.  We got both of this which means 

given a strain distribution ok that is bending without tension  which means that is a specific 

case of what we derived for 𝜀1  and 𝜀1 . 

 

  So, in which basically 𝜀𝑎 would become 0 in this case bending without tension.  So, we have 

𝜀𝑏 only.  So, for that we got stress distribution to get stress distribution then we have to relate  

your flow stress to strain.  So, in that case we have discussed 3, 4 important models ok relating 

stress and strain and then  we evaluated a moment for each case and then we drew a diagram 

moment versus 
1

𝜌
 diagram. 

 

  So, in that we saw actually 3 cases one is elastic bending rigid perfectly plastic other  one is 

a strain hardening sheet.  These 3 were discussed in the previous section.  So, elastic bending 

means what would be the relationship between stress and strain then  what will be a stress 

distribution what will be moment 
1

𝜌
 diagram and rigid perfectly  plastic what will be the case 

and general one which is a strain hardening case what  would be these 2 ok.  This is what we 

discussed in the previous case there is one more case in this ok that  we will see, but before 

that ok let us quickly discuss what we discussed as a last section  which is nothing, but your 

strain hardening sheet ok.  Strain hardening sheet we know 𝜎 = 𝐾𝜀𝑛 in general and  with 

respect to bending we say 𝜎1 = 𝐾𝜀1
𝑛 and  𝜀1 =  

𝑦

𝜌
  this way we can get and of course, we can 

directly  draw this stress diagram across a section which is what is given here. 

 

  This is little different than what we gave in last class ok for the same situation there  is little 

non-linearity here ok you can see that and it will drop to the negative values  in the second 

bottom half of the sheet ok and this change has to be noted ok.  And moment 
1

𝜌
 diagram is also 



shown here for the strain hardening sheet this is  what we have discussed in the last part of 

previous section.  So now, we will work out one problem later on using this bending of strain 

hardening  sheet at that time you will again use this type of relationship ok.  So now, let us go 

to the fourth case ok that is elastic perfectly plastic bending ok.  So, whatever we have seen 

are basically elastic bending, rigid perfectly plastic bending and  the strain hardening sheet 

ok. 

 

  So, now there is another case where we are going to see EPP it is called elastic perfectly  

plastic bending ok.  This model we have already discussed ok we already discussed.  So, it 

basically this elastic perfectly plastic bending it basically uses elastic perfectly  plastic model 

which you already discussed ok and the model is actually shown in this  figure.  This is the 

same figure ok which is drawn between 𝜎1 versus 𝜀1 and you have  the elastic part and then 

a constant flow stress plastic part which is nothing but S.  So, when 𝜎 reaches S that is at this 

particular stage at this  particular transit you will see that there will be change in your stress 

strain relationship  which is nothing but 𝜎1 = 𝑆 less than that that particular stage you will 

see  that 𝜎1 = 𝐸′𝜀1  is what we have seen ok. 

 

  So, but this elastic perfectly plastic ok before that we have seen elastic bending ok.  So, in 

bending we have seen only actually 3 cases right now in that first case was elastic  bending in 

which we took only the first part of the curve.  Now as the heading here suggests it is elastic 

perfectly plastic bending ok which means that  it is suitable for curvatures beyond ( 
1

𝜌
)

𝑒
that 

is a limiting case of  
1

𝜌
  ok that is a limiting case of  

1

𝜌
  and ( 

1

𝜌
)

𝑒
 we have already evaluated in 

the  first case.  So, if you go back to your previous one you can say that ( 
1

𝜌
)

𝑒
is this much a 

2𝑆 𝐸′𝑡⁄  this is what we evaluated right.  So, let us come back to this for the curvatures more 

than ( 
1

𝜌
)

𝑒
 beyond ( 

1

𝜌
)

𝑒
, but  below where moment reaches 𝑀𝑝  then this model can be 

applicable whatever we are going to  discuss is applicable ok. 

 

  So, it is not fully 𝑀𝑝 it is not gone to that state, but then it is suitable for curvatures  beyond 

( 
1

𝜌
)

𝑒
.  So, if that is a situation ok then this type of you know elastic plastic bending can be  

seen ok.  So, for this a model is shown here which you already discussed.  So, if you want to 

get a stress distribution for this it is it would be like a combination  of your elastic bending 

and perfectly plastic rigid perfectly plastic bending right.  So, in the elastic bending in the 

previous section we have seen this as a stress strain  distribution right. 

 

  So, your this one this one is a your stress distribution right.  So, in rigid perfectly plastic you 

will see this S there will be a constant S ok and then  that we call it as rigid perfectly plastic.  

Now it is basically a combination of these two elastic perfectly plastic and you will  see this 

would be a stress distribution that means up to a particular this is anyway 𝑡/2, 𝑡/2 up to a 

particular you know distance Y from the mid surface ok.  So, you are going to have the elastic 

representation of elastic part and then it will become plastic  part where the flow stress would 



be equal to plane strain flow stress which is nothing  but S. So, when you see from upper part 

of the sheet when you start from here. 

 

  So, you will have of course this is the uppermost fiber will reach S first ok and then you will  

see that it will be a constant up to a particular you know you will have a flow stress of S  up 

to a particular thickness and then below that you will see that it will be in elastic  part it will 

reach 0 and on the bottom side will be just you know reflection of that and  opposite to that 

ok.  So, now what we are saying is this particular transition is what is called as 𝑌𝑒 , Y means  in 

general any distance from the mid surface.  So, we are calling it as 𝑌𝑒 here ok because this is a 

limit of your elastic part elastic  representation this part ok.  So, now for the case 𝑌 > 𝑌𝑒 the 

material is plastic with the flow stress equal  to S that is what we have written here ok.  For a 

case 𝑌 > 𝑌𝑒 ok so if you if you have a situation like this the material  will become plastic with 

a flow stress of S that is what is given in this stress distribution  ok. 

 

  So, similar distribution we got from in strain hardening sheet also only thing is it will  

become written non-linear ok in its variation that is the only difference.  So, stress 

distribution of elastic perfectly plastic bending is this.  So, now we can calculate this 𝑌𝑒 this 

because this transition is going to be important in  the previous two cases elastic and RPP 

rigid perfectly plastic there is no such transition  but here this transition happens 𝑌𝑒 ok.  This 

𝑌𝑒 can be calculated from simple equations which you already know ok.  So, we know that this  

𝜀𝑏 = 𝑙𝑛 (1 +
𝑦

𝜌
)  ok. 

 

  So, in this case only 𝜀𝑏 exists 1 +
𝑦

𝜌
≈

𝑦

𝜌
  ok so this 

𝑦

𝜌
=

𝑆

𝐸′ ok.  So, from this we can get this Y 

which is nothing but my 𝑌𝑒 if we put some condition to that  if you put some condition to it.  

So, your 
𝑦

𝜌
 you can see that this equation is already known to us is not it this equation  is 

already known to us on the right hand side I have your 
𝑦

𝜌
 suppose 

𝑦

𝜌
=

𝜎1

𝐸′. Ok 𝜎1 = 𝑆 actually 

𝑦

𝜌
=

𝑆

𝐸′ . 

 

  So, we can directly write this equation 
𝑦

𝜌
=

𝑆

𝐸′ which is going  to give you 𝑌𝑒 =
𝑆

𝐸′ .
1

(
1

𝜌
)
    So, 𝑌𝑒 

is nothing but I am going to take 𝜌 on the right hand side and I am going  to write 
1

(
1

𝜌
)
     because 

1

𝜌
 is what is generally we refer know so 

1

(
𝑦

𝜌
)
 ok.  So, this 

𝑆

𝐸′ =
𝑡

2
.

1

𝜌
 is not it.  So, 

𝑆

𝐸′
=

𝑡

2
.

1

𝜌
 ok.  So, 

into 
1

𝜌
.  So, which if I put it in this equation in place of 

𝑆

𝐸′.  So, you will see that it is going to be 

𝑡

2
.

1

𝜌
 ok.  Since I am going to put 𝑌𝑒 here I am going to say  

(
1

𝜌
)

𝑒
1

𝜌

  will come ok.  So, this part is 

actually 
𝑆

𝐸′
 how do we get  from this.  So, 

𝑡

2
.

1

𝜌
. 



 

  So, I am putting a limiting case here 𝑌𝑒 .  So, I am going to put a limiting case here (
1

𝜌
)

𝑒
 ok.  

So, this entire thing this particular ratio this one is I am going to call it as m.  So, I am going to 

say 𝑚
𝑡

2
.  So, 𝑌𝑒 = 𝑚

𝑡

2
  of course, t you know is nothing but the original thickness  of the sheet 

and m is this particular ratio 
(

1

𝜌
)

𝑒
1

𝜌

. 

 

  So, 
1

𝜌
 is actually reference for us (

1

𝜌
)

𝑒
 is nothing but a limiting case.  So, 

1

𝜌
 is nothing but the 

radius of curvature which should have been given to  the sheet and (
1

𝜌
)

𝑒
 is nothing but your 

limiting case (
1

𝜌
)

𝑒
 this ratio I  am going to call it as m this m has nothing to do with any other 

m which we have discussed  before or let us not get confused with this.  So, this m can vary 

between 0 ok.  So, in this way your 𝑌𝑒 here 𝑌𝑒 here can be calculated just nothing but 𝑚
𝑡

2
 and 

m is nothing but it is a ratio of basically 2 you know radius of curvature 
(

1

𝜌
)

𝑒
1

𝜌

 ok.  So, a simple 

question can be asked like this evaluate 𝑌𝑒 ok 𝑌𝑒 that means the transition  between this part 

and this part calculate 𝑌𝑒 for a material which follows elastic perfectly  plastic bending means 

so we can say like we can go back to this original equation and  from here basically we can 

get 𝑌𝑒  ok. 

 

  So now for this particular case you can also get moment so now the moment is basically  the 

general equation is 𝑀 = ∫ 𝜎1𝑦𝑑𝑦
𝑡

2

−
𝑡

2

 right.  So, now here what we are going to do is we are 

going to say that if you want to get moment  so we are going to divide that into 2 parts we are 

going to divide that into 2 parts one  is from the mid to the transition happens that is 𝑌𝑒 and 

from 𝑌𝑒 to the uppermost  layer that is your 𝑡/2 this is the way we are going to divide this.  So, 

this is one part for integration this is another part for integration so the limit  changes actually 

ok limit is going to change because situation is different so anyway I  am putting 2 times here 

because it is symmetric so 0 to 𝑌𝑒 is one part ok.  So, which is going to be my 𝜎1𝑦𝑑𝑦 so in this 

case 𝜎1  is nothing but this  fellow 𝑦𝑑𝑦 . 

 

  So, 𝐸′ 𝑦

𝜌
 is not it so 𝜎1 = 𝐸′𝜀𝑏 so  just nothing but my 𝐸′ 𝑦

𝜌
 so 𝑦𝑑𝑦 will remain as it is and in 

the second  part you will see that 𝜎1 = 𝑆 is nothing but S so I will  say ∫  
𝑡/2

𝑌𝑒
𝑆𝑦𝑑𝑦 .  So, you can 

integrate it appropriately and then put limits you will get 
𝑆𝑡2

12
(3 − 𝑚2) so this is what you get 

generally so you can look into it and  so like previous cases we can also have m versus 
1

𝜌
 

diagram so here you will see  that it is again a combination of your the elastic bending and 

perfectly plastic part  of rigid plastic bending you can see that so this is your straight line then 



a small  transition and then you are going to have the horizontal part ok.  So this is moment 
1

𝜌
 

diagram for EPP bending ok.  So and this is going to be your 𝑀𝑒 =
𝑆𝑡2

6
 we  already derived this 

𝑀𝑒 =
𝑆𝑡2

6
  if you go back to previous one  you can get it 𝑀𝑒 =

𝑆𝑡2

6
  ok.  Your limiting elastic 

moment ok is obtained 𝑀𝑒 =
𝑆𝑡2

6
  similarly we got 𝑀𝑝 =

𝑆𝑡2

4
  ok so these two can be 

combinedly used to draw this  particular moment versus 
1

𝜌
 diagram 

𝑆𝑡2

4
 ok and we also 

previously  derived that 
𝑀𝑝

𝑀𝑒
=

3

2
 so I can write this as 𝑀𝑝 =

3

2
 𝑀𝑒 , is nothing  but 

𝑆𝑡2

4
 right. 

 

 So in this way we can interpret it like it  is understood from the figure this particular figure 

for a non-stain-horning material ok  for a non-stain-horning material the moment still 

increases beyond 𝑀𝑒  and reaches 1.5 𝑀𝑒  and becomes constant after that right. So the 

moment still reaches beyond  𝑀𝑒 so 𝑀𝑒 is this particular value that is a small transition and 

then it becomes 1.5 𝑀𝑒 so this height it becomes 11.5 𝑀𝑒 ok and then it becomes constant ok. 

 

  So though there is no hardening there will be slight increase in your 𝑀 =
3

2
 𝑀𝑒 ,  if you want 

to push it to a constant a moment so that much is required  here so that is one interpretation 

one can get from this. So now let us go ahead in developing  a simple model for theoretical 

model for spring back I think we discussed in the previous section  itself that it is moment 

without tension again we are going to see so you are taking a bent  sheet first and then you 

are taking an unbent sheet so since there is no tension ok only  moment is given ok there will 

be a change in curvature and bend angle in this way 𝜃 will become 𝜃 + ∆𝜃 , 𝜌  would become 

𝜌 + ∆𝜌 ok and the length of the mid-surface  is given by 𝑙 = 𝜌𝜃 so this 𝑙 = 𝜌𝜃 ok this l length  

will remain same will be unchanged why because there is no tension given here this length  

will remain same ok and so it can be written as 𝜃 = 𝑙 (
1

𝜌
) ok and if  you differentiate it by 

keeping l as constant we can say 
Δ𝜃

𝜃
=

Δ(1/𝜌)

1/𝜌
. So this Δ𝜃  which is nothing but the angular 

change when  you bend a sheet the angular change due to spring back is given by Δ𝜃 =

𝜃.
Δ(1/𝜌)

1/𝜌
  so either you calculate this or you calculate this  we can calculate the spring back 

and calculate the spring back ok. So this we already discussed  I just refreshing it here so now 

let us go to the spring back in an elastic perfectly plastic  material let us go to this particular 

case ok we are going to see only one case and we see how a  simple you know model 

theoretical model for spring back can be evaluated in this.  So elastic perfectly plastic EPP we 

just now discussed it we just now discussed of you know  how would be your stress 

distribution how would be your you know moment curvature diagram we  just now discussed 

ok and for this you know spring back in elastic perfectly plastic material we are  going to use 

a similar model which we have already discussed and a similar stress strain diagram is  drawn 

for this particular case but with reverse loading ok both are shown here. 

 

 So you will see  that so you are starting from here and there you are moving like this ok so 



then you know once you  have a slope of 𝐸′ then you reach this particular point before it 

becomes the flow  stress becomes S that becomes a start of your plastic deformation and then 

it goes on but then  when you unload it it comes like this and then you will see that you can 

further deform it to reach  this particular stage to get S ok. So this can be drawn in this way 

the blue line and orange line  blue one represents the tensile part and your orange one 

represents a compression part ok I  mean the reverse loading part ok. So in this case you will 

see that this particular is you know  height is S or the value is S flow stress to reach plastic 

state and in the opposite case you  will get generally  −𝑆 let us keep it like that and these two 

are equal ok which means that  we are not considering Bauschinger effect we are not 

considering something called as Bauschinger  effect ok. So in the tensile part of deformation 

and in the negative part of deformation if this  stress flow stress or yield stress S remain same 

then we say that the Bauschinger effect is  not considered but if you consider some softening 

and the negative side suppose this is not S  this is not −𝑆 this is less than S let us say this is 

less than the first time flow stress  that is your S then Bauschinger effect is considered but we 

are not going to consider it  we take a simple case without considering Bauschinger effect we 

can say that the change  in stress the change in stress is given by −2𝑆 ok before it reaches the 

plastic state.  So which means that you need a change in stress of −2𝑆 to make that material 

to reach  plastic state which can have flow stress plane strain flow stress of S that is the 

meaning  of this particular diagram ok. 

 

 So now what we are going to do is we are going to use our previous  equation which we 

already know ok so we are taking a case that unloading part is elastic in nature  ok so this 

unloading part is basically elastic in nature that is why you we say that it is a  parallel to the 

elastic part ok unloading part is elastic in nature the elastic bending equations  which we 

wrote before can be written in this way also in this way also this equation is known to  us 
𝑀

I
=

𝜎1

y
=

𝐸′

𝜌
 which is known to us this can be  written as 

∆𝑀

I
=

∆𝜎1

y
= 𝐸′∆ (

1

𝜌
) .  We are 

somehow bringing in this ∆ (
1

𝜌
) which is what we are going to calculate it you  know to 

quantify spring back so this is the fellow which we need actually to be calculated ok. So,  this 

same equation is modified as
∆𝑀

I
=

∆𝜎1

y
= 𝐸′∆ (

1

𝜌
)  and what is 𝐸′ we know that it is plane  

strain Young's modulus. So, now if you want to get ∆ (
1

𝜌
) ok we need to know one more thing  

here now what we are going to do is unloading is an elastic process by considering that we 

are also  going to assume one more thing like a case in which assuming that the sheet is bent 

to fully  plastic moment ok it is already gone into fully plastic moment ok and unloading is 

done unloading  will be parallel to the elastic loading line as shown in this particular figure.  

This particular figure is moment 
1

𝜌
 diagram which we have just now seen ok so for EPP 

bending  plastic perfectly plastic bending you will see that the same diagram you have a I 

know elastic  and then transition and then a fully plastic part with the height of 𝑀𝑝  ok. 

 

 So, now you will see  that we are going to unload it from this particular you know point ok 

unloading is done here and you  will see that when you unload it actually we need to get this 



particular curvature (
1

𝜌
)

0
 is actually the reference that we we need  to convert the sheet to 

ok. But this ∆ (
1

𝜌
) has happened because you are unloading it and  which is what we are going 

to we just now encircled it ∆ (
1

𝜌
) this fellow know this fellow which  we just now discussed is 

actually represented in this diagram which is what is responsible for  our spring back ok. So, 

(
1

𝜌
)

0
 is a reference for us ok but it is not going to happen  that way so there is going to be 

some change that is ∆ (
1

𝜌
) which is what we need to quantify  and all other things are known 

to us this is 𝑀𝑒 =
𝑆𝑡2

6
  and you are removing moment from  fully plastic moment situation 

which is nothing but  𝑀𝑝 =
𝑆𝑡2

4
= 3

2
 𝑀𝑒 ok. So, now from this figure I can directly write this  

∆(
1
𝜌

)

(
1
𝜌

)
𝑒

 
=  

−𝑀𝑝

𝑀𝑒
 ok. So, similar triangle ok that particular concept we can use 

∆(
1
𝜌

)

(
1
𝜌

)
𝑒

 
=  

−𝑀𝑝

𝑀𝑒
 up to 

this particular stage up to this ok. 

 

  So, now because I am unloading the material from fully plastic state ok which is nothing but 

my  𝑀𝑝 is going to come I can simply say that this 𝑀𝑝 is nothing but my ∆𝑀 the change in 

moment is  nothing but my fully plastic moment only which is nothing but my 𝑀𝑝 ok. So, this 

−𝑀𝑝 = ∆𝑀 is  nothing but your ∆𝑀 directly we can write that because I am going to fully 

unload it unloading  material from a plastic moment from a fully plastic moment. So, that the 

change in moment  is nothing but my 𝑀𝑝 itself ok. So, this equation conveys this many points 

for us ok. 

 

  And this is already known to us ok. So, my 
𝑀𝑝

𝑀𝑒
=

3

2
 also given here 

𝑆𝑡2

4

𝑆𝑡2

6

=
6

4
=

3

2
. Now  it is very 

straight forward so I want this ∆ (
1

𝜌
). So, ∆ (

1

𝜌
) = (

1

𝜌
)

𝑒
×

−𝑀𝑝

𝑀𝑒
=

2𝑆

𝐸′𝑡
 . −

3

2
=

−3𝑆

𝐸′𝑡
   which is 

nothing but my ∆ (
1

𝜌
) . So,  ∆ (

1

𝜌
) =

−3𝑆

𝐸′𝑡
 which is a simple equation to calculate a change  

curvature because of spring back for a material which is following elastic perfectly plastic  

bending and unloading is done in fully plastic stage fully plastic moment. 

 

 So, that is why I  have written clearly here this is M- 
1

𝜌
 EPP bending showing unloading from 

fully plastic  moment ok and for that particular case you can use this particular equation. So, 

now it is all  about slightly simplifying this ok we can also write this because my ∆ (
1

𝜌
) is 

known to me. So, from the previous equation ∆ (
1

𝜌
) is nothing but  you take this way so your 

∆𝜃 

𝜃 
 would be there and 

1

𝜌
 will go to the left  hand side. So, I can directly write this as 

∆𝜃 

𝜃 
=



−3𝑆×𝜌0

𝐸′𝑡
  , 𝜌0  I am keeping instead of just 𝜌0  I am just keeping it as 𝜌0 . So,  this way I can 

calculate my change in 𝜃  ok or change in 
1

𝜌
 that is actually responsible  for spring back. 

 

 So, it is a very simple equation but not fully accurate one for simple reason that  does not 

include strain hardening ok does not include strain hardening and I was previously  telling 

you that though we are discussing spring back in terms of during bending but then spring  

back can happen during general sheet forming process also like for example cup deep 

drawing  where bending is there ok and in that type of processes if you want to predict spring 

back  then strain hardening consideration is going to be very important for us but here this 

particular  model is not that accurate but it will give you a pretty good idea about what would 

be the spring  back and we can understand certain things from this ok and the strain rate 

effect is also not  considered ok and one simple way is you can this plane strain flow stress 

can be made as a function  of strain ok. So, what we have done is basically we kept S as 

constant ok in the previous model  also the stress strain diagram also you see that S was made 

as constant and Bauschinger effect was  also not considered though so there is no softening 

because of bending ok reverse bending. So, in that  case basically in one way you can consider 

you know somehow strain hardening ok is by relating  this S to 𝜀 ok somehow if you relate S 

to 𝜀 then you can make it somehow a function  of a strain hardening effect also ok. And it is 

also mentioned that the equation is valid or good  only for small differences in angle or 

curvature and when the sheet has been bent to nearly fully  plastic state this is what I was 

telling you ok. So, this equation is valid or good only in such  situations. 

 

 So, now in this from this equation we can also say that a spring back is proportional  to few 

things one is ratio of flow stress to elastic modulus 
𝑆

𝐸′ correct where 
∆𝜃 

𝜃 
=

𝑆

𝐸′ I was telling you 

before that this ratio  is very important this is nothing but your 
𝜎𝑌𝑆

𝐸
 only ok yield   strength 

elastic modulus only but for plane strain bending we are writing this as 
𝑆

𝐸′ .  So, this ratio 

becomes important and this because this both are related to somehow related to  elastic 

deformation and this ratio is of the order 1/1000 that we should have some idea ok why  

because this S is generally said in MPa and 𝐸′ is generally said in GPa. So, you can say that it  

is about 1/1000 in that order you will have and bend ratio 
𝜌

𝑡
 we introduced only thing I am  

just changing the nomenclature it is 
𝜌′

𝑡
 and of course bend angle of course this bend  angle ok. 

So, from the simple equation one can understand that spring back is actually proportional to 
𝑆

𝐸′
 and 

𝜌

𝑡
 and the bend angle 𝜃 this many items can be understood from this.  So, now spring 

back has been evaluated ∆ (
1

𝜌
) has been obtained or ∆𝜃 also can be  obtained from the simple 

discussion ok. 

 

 So, now we are going to consider two cases one is what  would be residual stress in that 

section seat section after unloading the next one is if you  do reverse bending ok what are the 

details in case of reverse bending that you can evaluate  that is what we are going to see in 



next two small substructures. So, now here we say when EPP sheet  is unloaded elastic 

perfectly plastic sheet unloaded from fully plastic state ok the change  in moment is nothing 

but −𝑀𝑝 ok which you already discussed ok the change in moment would  be −𝑀𝑝. So, now 

this I am going to put it in this particular equation this equation is already known to you just 

now we introduced 
∆𝑀

I
=

∆𝜎1

y
= 𝐸′∆ (

1

𝜌
) is not it. So, just now we discussed about it this 

particular one 
∆𝑀

I
= 𝐸′∆ (

1

𝜌
)  the same equation what I am going to do is I am going to 

substitute 𝑀𝑝   here. So, 
∆𝑀

I
=

∆𝜎1

y
=>

−𝑀𝑝

(𝑡3 12⁄ )
=

∆𝜎1

(𝑡/2)
 , 𝑦  would become my 𝑦 = 𝑡/2  why 

because this when you enter into plastic moment which means that you are reaching the  

uppermost layer which is already reached a plastic deformation state and that uppermost  

layer is nothing but 𝑡/2   for me ok. 

 

 So, 
−𝑀𝑝

(𝑡3 12⁄ )
=

∆𝜎1

(𝑡/2)
 ok. So, my 𝑀𝑝 =

𝑆𝑡2

4
, So 

−𝑀𝑝

(𝑡3 12⁄ )
=

∆𝜎1

(𝑡/2)
=>

𝑆𝑡2 4⁄

𝑡3 12⁄
=

∆𝜎1

(𝑡/2)
=>  

−3𝑆

𝑡
=

2∆𝜎1

𝑡
. 

So, this ∆𝜎1 =
−3

2
 𝑆 when you unload it ok. What does it mean? This equation also  indicates 

one important thing which is given here this equation indicates that unloading  process is 

fully elastic why because it is 1.5 𝑆 which is less than my 2 𝑆 discussed  before this ∆𝜎1 < 2𝑆 

which we discussed before 2 𝑆 is the ∆𝜎1 that  is required this particular figure 2 𝑆 is the ∆𝜎1 

that is required before reaching the  plastic state that is a limit for. So, it is less than that. 

 

 So, it is 3/2 only. So, 1.5 times  S only. So, which means that it be in unloading is fully elastic 

ok. So, now what I am going to  do is I am going to add this part this ∆𝜎1 I am going to add 

with already existing  one that is nothing but my S which is already existing one this can be 

represented schematically  as adding an elastic stress distribution that is confirmed by now 

it is elastic stress distribution  that is confirmed which is 
−3

2
 𝑆 to a fully plastic moment as 

shown in this particular  figure. So, this is already known to us ok. So, this value is a plane 

strain flow stress S ok.  And we are going to add this 
−3

2
 𝑆  at the top is not it. 

 

 So, we are putting  t/2 now when you put 3/2 you are getting 
−3

2
 𝑆. So, which means that it 

will be  at the top which will be opposite to that at the bottom you are going to add these two 

ok which  means you are giving moment and you are giving a negative moment also here. So, 

what will be the  residual moment you have what will be the residual stress you have here. 

So, if you add these two you  will get a distribution like this which has got 
−𝑆

2
 at the top ok. So, 

it is 𝑆 −
3

2
 𝑆  ok which is nothing but half no −1/2 . 

 

 So, 
−3

2
 𝑆 would be there ok.  And then you will get you can also add this part with this part 

ok. So, you will get that value  here and it will be opposite at the bottom. So, this would be 

your residual stress distribution  after unloading from fully plastic moment for EPP elastic 



perfective plastic bending.  So, what interpretation you get from this? The stress distribution 

shows that after unloading  the tension side of the bend ok let us say this particular one 

tension side of the bend your T  I am saying would have a compressive residual stress at the 

surface 
−𝑆

2
 and in the  inner surface ok there would be residual tensile stress inner surface is 

this I. This is outer  surface where you have tensile in the inner surface you will see that there 

will be a  residual stress which will be tensile in nature ok. 

 

 The tension side of the bend would have  compressive residual stress and the inner surface 

or the bottom surface or the compression surface  would have a residual tensile stress. This 

is how the distribution would be for EPP material ok  which is unloaded from fully plastic 

moment. So, now this is one. So, now let us go to reverse  bending ok. So, reverse bending 

means you are bending the material and then you are unloading  it and reverse bend it ok. 

 

 So, this particular situation so your moment 
1

𝜌
 is like this.  So, you are taking this part here 

and then it becomes a constant flow stress you unload it  and then follow this part and then 

again you bend it and then you take it to the negative side. So,  the question is we have seen 

that the change in stress required to have yielding in the outer  layer of the sheet is of course 

∆𝜎1 = −2𝑆 ok. So, now what we are going to do  is ok now this ∆𝜎1 = −2𝑆 if you put it in 

this equation this equation we  know already. So, we need to see this ∆𝑀 =
I.∆𝜎1

y
. 

 

 So, 𝐼 = 𝑡3 12⁄  ok. So, 𝑦 = 𝑡/2 why because  again the outermost layer ok you know will reach 

yielding ok when ∆𝜎1 = −2𝑆 happens ok and ∆𝜎1 = −2𝑆 I am substituting here. So, if you 

do that ∆𝑀 =
−S𝑡2

3
. So, when you have ∆𝜎1 = −2𝑆 then  ∆𝑀 =

−S𝑡2

3
 ok and the moment for 

reverse yielding suppose you want to  reverse bend and then you have to give some moment 

which will cause first yielding in the reverse side  ok like we have a 𝑀𝑒 here ok once you reach 

𝑀𝑒 ok. So, you are going to enter into the  the plastic part similarly the bottom side what 

would be that value that can be obtained in this  way. So, I am writing reverse bending 𝑀𝑟𝑒𝑣 =

S𝑡2

4

−S𝑡2

3
=

−S𝑡2

12
= −

𝑀𝑒

2
. 

 

 So, which is what is represented here so this 𝑀𝑒 =
𝑆𝑡2

6
, this 𝑀𝑒 =

𝑆𝑡2

12
,  which is just half  of 

𝑀𝑒  ok . So, this figure shows that yielding at reverse  bending occurs at half the value of initial 

yield moment ok that is your 
𝑆𝑡2

6
  half the value of means 

−𝑆𝑡2

6

2
=

−𝑆𝑡2

12
= −

𝑀𝑒

2
  . So, you need 

to in the reverse bending side you need to give 𝑀𝑒 ok or  𝑀𝑟𝑒𝑣 bending which will be nothing 

but 
𝑀𝑒

2
 only half of the first 𝑀𝑒 that you gave for  the first bend. Even if you do not consider 

Bauschinger effect you need to give only this  much ok. So, actual softening if you see would 

be greater than this if you consider Bauschinger  effect also. 

 



 So, even without Bauschinger effect ok your 𝑀𝑟𝑒𝑣 = −
𝑀𝑒

2
 only ok which  is not actually 𝑀𝑒 

which is half of that only but if you consider Bauschinger effect then with  further softening 

there would be a greater you know softening of the material so the estimated  value would 

be different than this ok. So, these are the two important sub topics  that we discussed for 

EPP material. So, what we have done is actually three parts considering  EPP material and 

unloading from fully plastic moment we derived a simple equation for expression  for ∆ (
1

𝜌
) 

or ∆𝜃  ok. So, which depends on  
𝑆

𝐸′  and 
𝜌

𝑡
 and the bend angle 𝜃 .  So, now if you want to 

calculate residual stress then we are going to add 
−3

2
 𝑆 which is  nothing but the elastic stress 

only ok. 

 

 This part will be added to your fully you know plastic state  that is your S, S is nothing but 

your fully plastic that the plane strain flow stress right fully plastic  state. So, if you add it 

finally you get a resistance stress distribution like this and then  we also calculated the M 

required for reverse bending which will be just half of the 𝑀𝑒 that  is required in the first 

bending ok that is what we derived here even if you do not consider  Bauschinger effect ok.  

So, let us do this small problem ok a strip of sheet metal which is 2 mm  thick and 200 mm 

wide ok. So, width of the sheet is given here we can see ok is to be bent in a  die under 

conditions of zero friction ok and zero axial tension fine. So, that means there is no  tension 

only moment is given, but you can see that here unit width is not considered. So,  you have to 

be careful 200 mm wide is given and thickness is given. So, the radius of curvature  of the die 

is 80 mm ok. The stress strain relationship is provided by this you know  𝜎̅ is equal to sorry 

M P a is here 𝜎̅ = 600𝜀̅0.22 M P a ok.  And the properties are basically E is equal to 200 G P a 

and Poisson's ratio is 0.3. So,  this all are given what is actually wanted is radius after spring 

back. So, you need to get  the radius of curvature after spring back ok. So, basically what we 

need to do is we need to get  ∆ (
1

𝜌
) ok . So, ∆ (

1

𝜌
) =

∆𝑀

I𝐸′ we know this we know this already. 

 

 So, what is 𝐸′, one by one we will calculate it here. So,  𝐸′ =
𝐸

1−𝜐2 right E is given 𝜐 is given 

you can get 𝐸′  you can check calculation. So, now if we want to get ∆𝑀 which is nothing, but 

our M only ,is given by this equation 
𝑀

𝐼𝑛
=

𝜎1

𝑦𝑛 = 𝐾′ (
1

𝜌
)

𝑛

 why this you are taking because the 

material is given  𝜎̅ = 600𝜀̅0.22 which is a strain handling material ok. So, that is why we  are 

using this equation and 𝐼𝑛 is given like this ok. So, if you want to use this equation  you will 

see that 𝐼𝑛 has to be calculated to get ∆𝑀 you want ∆𝑀 ok you want to you  need to calculate 

𝐼𝑛 and then 𝐾′ should be known ok and then you have to calculate 
1

𝜌
 is already given for us 

ok. 

 

 So, 𝐼𝑛 has to be  calculated and 𝐾′ have to be calculated right. So, 𝐾′ how do you calculate is 

by using this  relationship you will see that this is already derived 𝜎 =
2

√3
𝜎 for plane strain 



bending already derived it 
2

√3
𝜀  also we derived  (

2

√3
𝜀)

0.22
 , 600 is same 0.22 is same  instead 

of 𝜀  ̅you are putting 
2

√3
𝜀 this also we derived for  plane strain bending if you calculate it it will 

be 715𝜀0.22  please check this is  going to be your 𝐾′ this 715 MPa is going to be your 𝐾′. In a 

normal sense 𝜎 = 𝐾𝜀𝑛 we use so now what we have done is we have converted that 𝜎̅ = 𝐾𝜀̅𝑛 

this has been converted to plane strain bending plane strain  bending situation as shown here 

by using this particular strain horning law so which means  that this is not K this is actually 

𝐾′ . 

 

 So, 𝐾′  has been found out not a problem  so now what we need to get it is 𝐼𝑛  so 𝐼𝑛 =
𝑡𝑛+2

(𝑛+2)2𝑛+1
 only thing is in this it is considered as unit width but width is given as  200 mm so 

you need to have w also here which should be considered somehow and that is why I  put a 

circle here you can see by substituting all the known values in this equation you will get  this 

particular value so 0.2 which is nothing but my 𝐼𝑛 =
0.2×(2×103)

2.22

21.22×2.22
= 3.94 × 10−8 . 

 M = 𝐼𝑛𝐾′ (
1

𝜌
)

𝑛

=
3.94×10−8×715×106

0.080.22 = 49.1 𝑚𝑚, 𝐾′we keep unit consistent then (
1

𝜌
)

𝑛

=

0.080.22 if we check it will be 49.1 mm we will get  so that you can substitute in this equation 

so ∆ (
1

𝜌
) =

∆𝑀

𝐸′I
 so all are known to us now 𝐸′ = 219.8 GPa  I we can calculate which is  

nothing but 
𝑤𝑡3

12
 here you have to be careful it is 

𝑡3

12
 for unit width but  it will be 

𝑤𝑡3

12
 in this 

particular case because w is given ∆𝑀 is nothing but your M  which you already know we can 

substitute all these things so you can see that 
−49.1

219.8×109 ×
12

0.2×(2×103)
3 = 1.675 𝑚−1. 

So this is only ∆ (
1

𝜌
) so now final curvature how do you get it you can get it by 

1

0.8
 which is  

again the original radius of curvature this is what actually references okay we need to bend a  

sheet to this much of radius of curvature so but then it is not going to happen we are going to  

remove this particular part from this which already calculated which is about 10.8 𝑚−1 and 

if you want to get radius of curvature okay so you can take 
1

10.8
= 0.093 𝑚 just check the units 

consistently okay so you can also convert into millimeter if  you want so just check the units 

consistently finally radius of curvature is obtained in this  which is what has been asked from 

us okay. So this is a question number 3 because we worked  out two problems before okay 

question number 1 and 2 we solved in between also okay we have done it  so this way you 

can calculate spring back using simple equations so ∆ (
1

𝜌
) is what we need  to get so all other 

things are calculations responsible for your ∆𝑀 , 𝐸′ and I  okay. 

 

  So instead of this test strain behavior I can give a different test strain behavior okay maybe  

I can include a temperature also in this and spring back the bending is done at a different  

temperature we can say okay and then the equation can change all the values can change and 



one can  compare also okay. So now let us go to the last section in bending so we are going to 

now  demonstrate if you include stretching also what will happen which is what we are going 

to call  bending with stretching okay bending with stretching or bending with tension okay.  

But in this what we are actually going to do is we are going to consider a case similar to a  

stamping operation stamping operation means a forming operation okay suppose you are 

making  a large curvature okay you want to make a large shed you know something like that 

okay. So similar  to stamping operation where the sheet is first curved elastically to the shape 

of the die and  then tension is applied okay so what you do is you actually wrap the sheet on 

the die okay by giving  some elastic deformation and then you apply tension that is the way 

we are actually going  to do so bending first and then stretching over a die with a larger or 

not the larger curvature  and that situation is given here you can see this is your die let us say 

and this is your sheet so  on that die you are actually clamping it and you are you know giving 

a curvature to that sheet okay.  But you are first bending it without providing tension so that 

the shape is attained and then  you are going to stretch the sheet to get a full shape and it is a 

frictionless case okay. 

 

  So, a moment is given and tension is given. So, in this situation your stress distribution  can 

be drawn in five different stages okay from a, b, c, d, e you will see and in these cases a  is 

actually without tension that is your initial stage b to e is basically the second stage but  at 

different levels if you provide with tension because we first said that you are going to give  

only bending that means only moment is given okay then you are going to pull it to create a 

full  shape okay. So, if you quickly observe what is going to happen here this is a stress 

distribution  all are 𝜎1  only okay. So, the first a case is known to you because there is no 

tension only  moment is given so it will be 0 at the center okay this we already discussed and 

then we  evaluated this stress distribution it is done. So, now when you provide some tension 

little bit  small tension is applied you will see that it is going to go down your neutral axis to 

go down  this also we evaluated this contains 𝜀𝑎  𝑎𝑛𝑑 𝜀𝑏 right. So, now c, d, e are further stages 

of providing tension okay c is little  specific why because you are providing tension such that 

your plane strain yield stress is reached  at the upper surface okay at the upper surface and 

if you further progress it the plastic  deformation region will propagate throughout the 

section. 

 

 So, you see that S is here now  S is up to this particular thickness now in the last case you will 

see the section is fully  plastic so that your S flow stress is reached fully in the throughout the 

section this is t  this is your sheet thickness this is your sheet thickness okay. So, only tension 

sorry only moment  is a you just provide some tension b increase the tension so that the upper 

surface reaches  S flow stress nothing but the yield stress then with further progress you will 

see that the S  will propagate in the section this is a elastic to plastic transition and then here 

you will have  fully plastic section these are the differences between a to a, b, c and d and e 

okay.  So, which is what is we are going to provide details to each one of this you quickly do 

one  after another initially when the moment is applied without any tension okay the stress 

distribution  will be shown in a okay. So, now here the strain at any distance let us say y from 

the middle  surface is given by 𝜀1 =
𝑦

𝜌
 actually 𝑙𝑛 (1 +

𝑦

𝜌
) which is written  as 

𝑦

𝜌
 okay since the 



radius of curvature is 𝜌0 I am going to write 𝜌0 here 𝜀1 =
𝑦

𝜌0
 . So, for this stress distribution 

we can get stress  distribution is nothing but 𝐸′𝜀1. So in this case okay it  is 𝐸′ 𝑦

𝜌0

  okay and if 

you want to get slope  of this particular stress distribution we can get 
𝜎1

𝑑𝑦
 which is nothing but 

our 𝐸′ 𝑦

𝜌0

. 

 

 The stress distribution is given by  𝜎1 = 𝐸′ 𝑦

𝜌0

 okay material is in elastic state only which has 

got  a slope of 
𝑑𝜎1

𝑑𝑦
=

𝐸′

𝜌0
  that is done. So, let us go to next stage  figure b to e show stages when 

tension is applied and it decreased further and it increased further.  So, we apply tension and 

then slowly increase it that is what is shown in figure b to e b to  e this is what is shown. Now 

let us go to specific stages b and c b and c stages shows stages in  which slope remains constant 

and tension increases correct. So, this slope will remain constant only  thing is your tension 

will keep on increasing so that you are going to reach S. 

 

 So, we are going  to say that the initial moment when 𝑇 = 0 is given by 𝑀 =
𝐸′𝑡3

12

1

𝜌0
= 𝑀0 this 

we already know we  derived it okay. So, if you want to know that you can go back and check 

initial moment that  is 𝑇 = 0. So, only moment this you already calculated okay. So, you can 

go back  and check which will be nothing but my I am just denoting it as 𝑀0this moment will 

be  constant until stage c okay is reached or material starts to yield okay. This moment will 

be constant  until stage c is reached or material starts to yield because at c only the material 

will starts  yield why because at upper surface you will see it is going to reach S plane strain 

flow stress. 

 

  So, now we will use this equation later now you will see that at stage c the sheet will start  

deforming plastically when stress at the outer layer reaches the yield stress S. At stage c the  

sheet will start deforming plastically at the outermost fiber when your 𝜎1 reaches S that  we 

already know. At stages d and e with further tension plastic deformation zone increases like  

you have shown here and then shown here also at e the whole section is fully plastic with S 

as flow  stress okay which is what is represented here. Now at this stage okay you want to get 

a tension  𝑇𝑦 = 𝑆𝑡 . So, the tension applied okay to enter  into the situation seen in c okay you 

want to cause some yielding for that so one tension has  to be applied that is nothing but 𝑇𝑦 =

𝑆𝑡  the original definition. 

 

 Actually  it is 𝜎1𝑡 but then in this case it is S only 𝑆𝑡 plane strain flow stress into t.  So, now 

what we are going to do is let us get some details into the stress distribution okay. So,  

between b and c the stress distribution at any location okay that is my 𝜎1 okay will have  two 

parts one is 𝜎1𝑎 and 𝜎1𝑏 this is something new which you are not introduced before  we have 

introduced only two parts in strain distribution. Now we are saying that the  principal stress 

𝜎1 has got two parts one is 𝜎1𝑎 and 𝜎1𝑏 similar one to like  previously we discussed the 𝜎1𝑎 is 

nothing but uniform stress at the mid surface and then  there will be an addition of 𝜎1𝑏 which 



is meant for bending stress as in the case of  section a okay that we stage a. 

 

 So, 𝜎1𝑏 = 𝐸′ 𝑦

𝜌0
. So, this we already discussed now this one 𝜎1 = 𝐸′ 𝑦

𝜌0

  only thing I am writing 

it as 𝜎1𝑏 here it is specifically 𝜎1𝑏 okay. So, in this case  you will see that of course in the a part 

the a part of course 𝜎1𝑎 will not be there  𝜎1𝑏 will be there so that is why it is actually at 0 at 

the center okay. So, now let  us go to a limiting case now these two are known to us okay let 

us go to limiting case for a  limiting case c why c is limiting case because it is going to reach S 

at the upper surface the  outer layer stress is S okay if that is the case you want to get stress 

at the middle surface here  you want to get stress at the middle surface what would be the 

one okay. So, I am going to say that  so your (𝜎1)𝑦=0 = 𝑆 − 𝐸′ 1

𝜌0
 

𝑡

2
 is not it. 

 

 So, my this S is already there I am going to remove this 𝐸′ 1

𝜌0

 
𝑡

2
. So, 𝐸′ 1

𝜌0

 
𝑡

2
 I am going to put 

𝑦 = 𝑡/2 here okay. So, I am going to remove that part from that okay so that I will  get (𝜎1)𝑦=0. 

So, at the same time I can get tension on that section okay (𝑇)𝑦=0 = 𝑇𝑦 (1 −
𝜌𝑒

𝜌0
). So, what is 

this T  is for the same thing see 𝑇 = 𝑆𝑡 , 𝑆𝑡 means this into t. So, (𝑇)𝑦=0 = 𝑆𝑡 − 𝐸′ 1

𝜌0
 
𝑡2

2
 this  is 

what I should get okay. 

 

 So, and of course you can simplify it in this fashion okay and you will  get 𝑇𝑦 (1 −
𝜌𝑒

𝜌0
) where 

your 𝜌𝑒 =
𝐸′𝑡

2𝑆
 , 𝑇𝑦 = 𝑆𝑡 okay. So, you will see that the stress at the  middle surface can be 

obtained by this and the tension on the section can be obtained by 𝑇𝑦 (1 −
𝜌𝑒

𝜌0
) where 𝜌𝑒 =

𝐸′𝑡

2𝑆
 

, and 𝜌0 is actually the original one and in this 𝑇𝑦 = 𝑆𝑡 okay. So, what does this  equation tell 

some interpretation we will get let us go to this tension in the section.  This equation says that 

if 𝜌0 > 𝜌𝑒  so 𝜌0  is actually the original  value which we need to reach and 𝜌𝑒  is a limiting 

elastic case okay if this is larger  than this then the applied tension will reach yield tension 𝑇𝑦. 

So, the applied tension is  this and yield tension is 𝑇𝑦 okay it will be almost the same if your 

𝜌0 is going to  be very large as compared to 𝜌𝑒 if that is the case this will automatically reach 

that okay. 

 

  So, now what will happen is if your applied tension reaches 𝑇𝑦  then there is no need for  

moment the moment will actually get lower you do not need to give that much of moment 

which you gave  before it will be actually lesser than that that is a you know main point the 

moment tension is  given then moment is actually not required it will be lowered 

automatically okay. So,  but now let us go to one important one that is in the d stage let us 

increase the plastic  deformation okay and then you will get a interface elastic to plastic 

interface what is that that is  this one this diagram is shown in this particular figure. At some 

instance okay an elastic plastic  interface EP interface can be identified at a distance 
𝑞𝑡

2
 from 

the mid-surface I am  referring to this particular distance 
𝑞𝑡

2
. So, what is this? This is a  stress 



distribution and this is a strain distribution in an EPP sheet bend to a larger  gentle curvature 

and then stretched. 

 

 So, 𝜌0 is large and then you are actually stretching it.  So, this is already known to us this 

particular stress distribution is already known to us from  the middle surface you see that 

there will be a little bit of elastic part above that and then  it becomes plastic and below 

thickness it is going to be fully elastic only because it has  not reached plastic deformation so 

that is a situation. So, this line is actually EP interface.  This line is actually EP interface. The 

corresponding strain distribution is shown here  okay so of course this plastic portion this 

shader region and this shader region are same. So, here  you will see that at the mid location 

there will be some 𝜀𝑎 and there will be an additional  component of 𝜀𝑏 which is nothing but 
𝑦

𝜌
 

from you move from middle surface to upper  surface when you from move from middle 

surface to upper surface along y there will be 𝜀𝑎 plus  some part of 𝜀𝑏 when you reach the 

upper surface and once you cross a particular value let  us say 
𝑞𝑡

2
 you are in plastic part that 

is this part which is what is shown here okay. 

 

  So, now this EP interface is going to be very important for us because at this particular  stage 

S is known to us it is 𝜎1 = 𝑆  okay. So, now what will  happen if you provide more details into 

𝜀1  when you have elastic to plastic transit this  is your EP interface in terms of strain 

distribution. So, now what details can we  provide in that so at some instance and EP interface 

can be identified at a distance  
𝑞𝑡

2
 from the mid surface right. So, now in general strain can be 

written as 𝜀1 = 𝜀𝑎 + 𝜀𝑏  ,  𝜀𝑏 = 𝑙𝑛 (1 +
𝑦

𝜌
) =

𝑦

𝜌
  which we discussed before itself so which is 

one of the 𝜀1 = 𝜀𝑎 +
𝑦

𝜌0
 I am just keeping okay. So, now what I am going to do is at 𝑦 =

𝑞𝑡

2
 

distance that means at the EP interface 𝜀1  is nothing but the yield  strain 
𝑆

𝐸′ . 

 

 So, I am going to this particular interface beyond that I am going  to have plastic deformation 

means at this interface okay 𝜀1 =
𝑆

𝐸′ okay basically 𝑆 = 𝜀1𝐸′. So,  my yield strain is nothing 

but now 
𝑆

𝐸′ okay. So, what I am going to do now is I am going  to equate this 𝜀1 =
𝑆

𝐸′ and then 

I am going to get 𝜀𝑎 and then I am going  to get 𝜀𝑎 which is at the middle surface. So, what is 

the value 𝜀𝑎 =
𝑆

𝐸′ −
1

𝜌0
𝑦 and this y is a specific case of 

𝑞𝑡

2
 which is what I have  given here okay. 

So, I am going to say that the we are saying 𝜀𝑎 =
𝑆

𝐸′ −
1

𝜌0

𝑞𝑡

2
 okay that would be my 

𝑆

𝐸′ that will 

be my yield  strain. 

 

 So, −
1

𝜌0

 in place of what is it my y I am writing 
𝑞𝑡

2
 here.  So, I am going to get 𝜀𝑎  this 𝜀𝑎  is 

actually plotted at the mid surface here.  So, now what I am going to do I am going to substitute 

this 𝜀𝑎 into this equation  and I am going to get in general 𝜀1 the strain at y distance from the 

mid surface okay  in this situation that is your d this is d part d stage know this is d stage d 



stage the strain  at y distance is given by 𝜀1 = 𝜀𝑎 + 𝜀𝑏 , 𝜀𝑎 =
𝑆

𝐸′ −
1

𝜌0

𝑞𝑡

2
,  𝜀𝑏 =

𝑦

𝑐
 this would be 

your 𝜀1  distribution for d stage okay. So, the stress distribution for this stage is actually very  

easy for us so 𝜀1 = (𝜀𝑎 + 𝜀𝑏)𝐸′ = 𝑆 −
𝐸′

𝜌0
(

𝑞𝑡

2
− 𝑦) which  I can get directly okay. So, this 𝜀𝑎 and 

𝜀𝑏 are already known to you from  the previous slide you can substitute it and you can find 

out okay which is nothing but  𝑆 −
𝐸′

𝜌0

(
𝑞𝑡

2
− 𝑦)will come.  So, in this way the elastic state can 

be applied so the elastic part after this it is S that  is known but how is it going to vary okay 

we can get. 

 

 So, now what we are going to do  is basically moment and then tension these two we are 

going to evaluate how we will going  to evaluate is not 𝑀 = ∫ 𝜎1𝑦𝑑𝑦 is right so only thing  is 

limit we have to be careful because something is changing.  So, what I am going to do is this 

moment is integral so there are two locations this would  be 
−𝑡

2
 to 

𝑞𝑡

2
 this will be 1 okay and 

𝑞𝑡

2
 𝑡𝑜 

𝑡

2
 would be my  another one that is what I have given here. So, 

−𝑡

2
 to 

𝑞𝑡

2
 is a limit  within 

that 𝜎1𝑦𝑑𝑦 will come that 𝜎1 is nothing but this one so this entire thing  is nothing but my 𝜎1,  

∫ [𝑆 −
𝐸′

𝜌0
(

𝑞𝑡

2
− 𝑦)] 𝑦𝑑𝑦

𝑞𝑡

2
−𝑡

2

  okay after that okay my 
𝑞𝑡

2
 𝑡𝑜 

𝑡

2
 is nothing but S only 𝜎1 is nothing  

but S so this is nothing but my S so ∫ 𝑆𝑦𝑑𝑦
𝑡

2
𝑞𝑡

2

 this limits have to  be careful so you can simplify 

this and finally you will see that your M is nothing but 𝑀0 we already evaluated itwhere is 

that this one 𝑀0 =
𝐸′𝑡3

12

1

𝜌0
,  𝑀 = 𝑀0 (

2+3𝑞+𝑞2

4
) so then what do you get as a applied tension that 

is same  thing 
−𝑡

2
 to 

𝑞𝑡

2
 only thing y will not come here okay 𝑆 −

𝐸′

𝜌0

(
𝑞𝑡

2
− 𝑦) = 𝜎1 and here it is 

S only  that is also 𝜎1 okay so which reduces to the simple equation 𝑇 = 𝑇𝑦 [1 −
1

4

𝜌𝑒

𝜌0
(𝑞 + 1)2] 

that is why it is  going to come you can check it what is 𝑇𝑦 we already derived it 𝑇𝑦 is nothing 

but your  tension at yield which is nothing but 𝑇𝑦 = 𝑆𝑡 you can check it okay.  And in this case 

if you want to relate M and T okay because we are applying both right  first actually moment 

is applied okay so when tension is 0 X axis is 0 only moment is applied  how much 𝑀0 okay 

how much that is your 𝑀0 we already calculated that  much amount of moment is applied 

okay just to give some shape to it and after that the  full shape is given by providing tension 

and if you increase tension from 0 to 𝑇𝑦 to  𝑇𝑦 okay you will see that after the elastic part 

moment is not required at all moment  will come down and will decay to 0 when T reaches 

𝑇𝑦.  So when T reaches tension reaches 𝑇𝑦 you will see that moment is going to be 0 only and  

between this elastic to plastic this particular region is very important for us okay particular  

region is very important for us and in this actually is going to tell you something which  is 

responsible for spring back control okay. 

 

 So we know that spring back is actually proportional  to change in moment that we already 

discussed okay your spring back we already related to  change in moment okay to your ∆ (
1

𝜌
) 



which we already discussed which means that  spring back is proportional to change in 

moment actually.  If the moment in loaded condition is reduced to 0 moment in loaded 

condition is reduced  to 0 by applying yield tension let us say 𝑇𝑦 this is your ty the spring back 

on unloading  would be 0 the spring back on unloading would be 0 because the change in 

moment is not there  at all so spring back proportionally will come down okay. It also means 

that applying  yield tension will set the shape in the sheet to the top of the die.  So if you 

provide some yield tension it will actually provide nice shape to the sheet as  per what you 

have in the die okay. So in actual stamping what you can do is by providing small  plastic 

strain throughout okay will ensure negligible spring back okay. 

 

 So you provide  small plastic strain okay let us say it can be created by 𝑇𝑦 okay you provide 

you convert  tension into yield tension you push it forward in that way then small amount of 

plastic strain  can be provided okay throughout the section and hence you will have negligible 

spring  back. So this interpretation can be obtained from  this. This is one way to control 

spring back how in actual stamping you need to provide  small plastic strain okay with the 

help of tension okay so that you will have negligible  spring back. So with this we stop here 

we look into next module later.  Thank you. 


