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So, this particular module that is going to be module number 6 ok, we are going to  discuss 

about Bending of Sheets.  So, bending of sheets if you take it is there in almost all sheet 

components that we see  in day to day life ok.  So, it could be as simple as you know a plate 

type of shape or it could be a complex shape  that we use in automotive industries, 

components, aerospace industries ok or in any other you  know sectors ok, bending is a 

inevitable ok.  So, analysis of bending of sheets ok which we are going to you know discuss in 

this module  is going to be maybe about 2 classes we are going to see ok and some of the 

assumptions  that we made earlier are valid for bending of sheets also or we are going to 

introduce  one more assumption then we go ahead with our discussion.  So, bending along a 

straight line is a very common form of sheet forming operations that  we see in day to day life 

and that is a simpler you know process to understand ok. 

 

  So, of course in for making components it is not going to be a straight line bending  it is going 

to be in any other any form ok.  So, it is going to be any form ok.  Suppose if you take a cup a 

deep drawn cup suppose we are making ok you will see that  it is bent in this locations, but 

you will see that the bending is not actually circular  in nature bending is going to be circular 

in nature ok.  So, nevertheless we are going to study mainly the bending of bending along a 

straight line  which is easy for us to understand the theoretical part of the bending process. 

 

  And bending along a straight line we know it is can be done in several ways we can just  bend 

it with the help of you know die part set up ok it could be done in the form of  you know 

folding operation or flanging operation in a special purpose machines ok.  Like in workshops 

we used to we have bending machines available ok.  So, we can also bend the sheets just 

holding it in a bench vice and then giving some displacement  one of the edges it can bend ok.  

So, there are several ways we can do bending operation, but of course the complexity of  the 

machine depends on what kind of component you want to make.  So, first of all what we are 

going to discuss we are going to introduce mainly the variables  in bending a sheet ok. 

 

  Suppose if you take a sheet aluminum sheet or steel sheet what are the variables in bending  

that we discuss for that the schematic would be useful ok.  So, this is a bend sheet ok.  So, 

initially it could be as flat as like this ok and now it is bent like this is not  it.  So, it is bent 

through an angle of 𝜃 that is given here 𝜃 is called as bent angle  and you need a tool set up 

for that let us say and it has to be bent with respect to  one particular radius of curvature let 

us say 𝜌 in the bend region.  And then the right side diagram will tell you that this bending is 



possible in two ways  one is only moment the other one is moment and tension both. 

 

  So, bending with stretching, bending with stretching would be moment and tension both  are 

applied in the other case only moment can be applied ok both are possible ways of  bending 

a sheet along a straight line ok.  So, you will see that this T is called as a tension per unit width 

we are saying.  So, we are picking up a unit width which is applied at the mid surface of the 

sheet generally  ok you apply T at the mid surface of the sheet.  Theoretically, so practically 

how do you give this tension is by grabbing the sheet ok you  have to grab the sheet at this let 

us say locations at this locations ok.  So, and then you are trying to push you know the sheet 

through a die cavity ok something  like that you can imagine you are going to push the sheet 

through this die cavity you  can imagine. 

 

  So, you have a flat sheet ok and the flat sheet is grabbed at this end and you are going  to pull 

it with a punch let us say a V punch or something like that.  So, that it becomes this kind of 

shape ok.  So, this is actually clamped here and you are going to give displacement in this 

direction.  So, something like that is possible practically ok, but theoretically you apply T at 

the mid  thickness or mid surface of the sheet and then moment is given in this fashion.  So, 

this is a tension per unit width and then we get moment per unit width M and T can be  related 

ok. 

 

  So, these are the variables.  So, you have a bend angle 𝜃 then 𝜌 radius of curvature then 

tension and moment applied  in the sheet.  So, now as usual what we are going to evaluate 

first thing is strain like in the previous  chapters modules also ok we first evaluated strain 

from the new dimension with respect  to the original dimension and then we went ahead in 

calculating the other you know quantities  when you deform a sheet.  Similarly, here also we 

are going to first evaluate strain in bending.  So, again I am going to take a simple case for 

example, this is your sheet this is your  sheet you are taking with the thickness let us say t ok 

t or 
𝑡

𝑡0
 either way  is fine. 

 

  So, it is going to be only thickness ok.  So, this is a total thickness is t ok.  So, let us say for 

example, you consider a middle fiber let us say 𝐶0, 𝐷0  ok a line which coincides with the mid 

thickness and you can pick up any other line or a fiber  which is y distance you know away 

from the mid thickness or 𝐶0, 𝐷0 that is  𝐴0, 𝐵0.  So, we are finding we are picking up two 

locations one is 𝐶0, 𝐷0 which is at the center  middle ok and 𝐴0, 𝐵0 which is at y distance from 

the middle and you are picking  up a section ok in the sheet with a length original length of 𝑙0 

which I mentioned  here as 𝑙0 ok.  So, you can imagine that this is t which means that this is 

let us say 𝑡/2  and there is  let us say this is a 𝑡/2  you can say. 

 

  So, now this sheet is bent here ok.  So, the bend sheet is drawn like this and as usual you have 

a bend angle of 𝜃 and  the radius of curvature is 𝜌 and you will see that the 𝐶0, 𝐷0becomes C 

D  and you will see that 𝐴0, 𝐵0 is going to become 𝐴0, 𝐵0 become is going  to become A,B.  So, 

how do you calculate strain in a simpler fashion ok.  Of course, here we cannot put circle grid 



and evaluate strain ok unlike in other deformation  process where we put circle grids on the 

surface ok.  Here we are discussing about sheet bending and we are looking at a section that 

is why  thickness is given here that is why thickness is given here ok. 

 

  So, why we are showing a section when we have a you know bend ok, bending is done with 

respect  to this axis is not it.  So, why you are we showing section we will see in the next slide, 

but before that anyway  we cannot put circle grids and evaluate because the sheet thickness 

would be about maybe 1 , 1.5, 2 mm.  So, naturally we have to get it in a different way.  So, 

now we will say that while bending this particular sheet to this particular form. 

 

  So, 𝐶0, 𝐷0 becomes 𝐶, 𝐷 at the mid surface that is number 1.  So, now this 𝑙0 ok is going to 

become let us say 𝑙𝑠 when the sheet is bent with  stretching ok.  So, we are going to consider 

a case ok where the sheet is bent ok not only with moment,  but also with tension both the 

tension and moment are available for us.  So, basically you are going to bend the sheet with 

stretching ok.  So, that means, assuming the sheet is stretched during bending the original 

length 𝑙0   is going to become let us say 𝑙𝑠  which is given by 𝑙𝑠 = 𝜌𝜃 . 

 

  So, I am going to have this 𝑙𝑠 ok 𝑙0 is going to become let us say 𝑙𝑠 and that  will be given by 

𝜌𝜃 ok.  This is with respect to the mid location 𝐶0, 𝐷0.  Now, let us pick up a case which is a 

line or a fiber which is y distance away from 𝐶0, 𝐷0hat is 𝐴0, 𝐵0.  Let us consider 𝐴0, 𝐵0 at a 

distance y from the mid thickness and what will happen  to l for that that I am going to call it 

as l which is nothing, but I am going to add  this is 𝜌.  So, this point from here to here is 𝜌 and 

from 𝜌 I am going to add this y part to  it assuming that this y remains same everywhere here 

also y here also y here also y here also  y this is not going to change which is same as that of 

the earlier y which you have taken  before bending ok. 

 

  So, I am just going to add (𝜌 + 𝑦)𝜃 ok.  So, 𝜃(𝜌 + 𝑦) will give me my l which is basically A, B 

ok which is nothing,  but you’re A, B.  So, this can be simplified as 𝜌𝜃 (1 +
𝑦

𝜌
) and why I am 

doing it is because  I can replace this 𝜌𝜃 by 𝑙𝑠 , 𝑙𝑠 (1 +
𝑦

𝜌
).  So, this will give 

𝑙

𝑙𝑠
= 1 +

𝑦

𝜌
  it will 

be  useful for us now.  So, you will see that now we need to find axial strain of the fiber AB ok 

axial strain  of the fiber AB. 

 

  So, this AB is like any fiber ok you know with respect to your mid thickness mid fiber  CD 

right.  So, now we need to find strain at the fiber AB ok.  So, which I am going to call it as 𝜀1 =

𝑙𝑛 (
𝑙

𝑙0
).  So, AB is connected to l and original distance you know length is anyway 𝑙0 for us.  So, 

I am going to give I am going to write 𝑙𝑛 (
𝑙

𝑙0
) as per our original definition  and this 𝑙𝑛 (

𝑙

𝑙0
) =

𝑙𝑛 (
𝑙𝑠

𝑙0
) + 𝑙𝑛 (1 +

𝑦

𝜌
)  ok. 

 

 So, my axial strain of a fiber AB at any distance let us say y ok.  So, this AB could be not 

necessarily in this location it could be slightly above also does  not matter. 



 

  So, which will be given by 𝜀1 = 𝑙𝑛 (
𝑙𝑠

𝑙0
) what is 𝑙𝑠 = 𝜌𝜃, 𝑙𝑛 (

𝜌𝜃

𝑙0
) = 1 + 𝑙𝑛 (1 +

𝑦

𝜌
) which I am 

going to  call it as 𝜀𝑎 + 𝜀𝑏 and 𝜀𝑎 is nothing, but the strain in the mid surface  whatever strain 

I have in the mid surface that is 𝜀𝑎 I am going to call and I  am going to add a component to 

that that is called 𝜀𝑎  which is nothing, but bending  strain.  The bending strain is given 

𝑙𝑛 (1 +
𝑦

𝜌
) ok.  So, this is 𝜀𝑎 and this fellow is 𝜀𝑏 .  So, this 𝑙𝑛 (1 +

𝑦

𝜌
) can be approximated to 

𝑦

𝜌
 

ok why because this y you see  that it is going to be pretty small ok.  So, we say this is t this is 

𝑡/2  this 𝑦 < 𝑡/2  ok. 

 

  Suppose if the thickness is let us say 2 mm ok then this y could be about 0.3 mm y could  be 

about only 0.3 mm let us say ok.  So, this 0.3 mm divided by this 𝜌 could be about 50 mm this 

𝜌 could be the radius  of curvature on which you are bending the sheet could be about 50 mm. 

 

  So, you can imagine that let us say this is 0.3 mm and this is 50 mm and then calculate  

𝑙𝑛 (1 +
𝑦

𝜌
) it will be almost same as it of your 

𝑦

𝜌
 ok or you can expand  this it is a series 

expansion 𝑙𝑛 (1 +
𝑦

𝜌
) you can expand it maybe you can take  the first term only which can be 

approximated to  
𝑦

𝜌
.  So, you can say axial strain 𝜀1 = 𝜀𝑎 + 𝜀𝑏  as  where 𝜀𝑎 = 𝑙𝑛 (

𝑙𝑠

𝑙0
)  which 

will give you strain in the mid surface and you know 𝜀𝑏 which is nothing, but 
𝑦

𝜌
 directly you 

can write as 
𝑦

𝜌
 right.  So, now if we plot this 𝜀1 ok in this thickness direction ok in the thickness 

direction  if you want to plot this y this 𝜀1 it will look like this ok.  So, you will see that your 

𝜀1 = 𝜀𝑎 + 𝜀𝑏  the 𝜀𝑎  is nothing, but what is 𝜀𝑎 = 𝑙𝑛 (
𝑙𝑠

𝑙0
) + 𝑙𝑛 (1 +

𝑦

𝜌
) . 

 

 So, I am just  keeping it as  
𝑦

𝜌
 or 𝑙𝑛 (1 +

𝑦

𝜌
) also you can write. So, you will see that  this how 

the distribution distribution is shown in the blue colour ok.  So, this basically a section in the 

sheet 𝑡/2, 𝑡/2 this is a mid surface let us  say ok your middle surface mid thickness ok and 

this is a strain distribution I have given  here ok and then your this blue colour line will tell 

you the distribution along its thickness  and you will see that this blue colour line is actually 

crossing 0 at a distance little  below the neutral axis little below the neutral axis.  So, this also 

we need to know neutral axis is nothing, but this one the axis at the centre  you can say ok. 

So, to start with ok it is at the centre now you will see that this neutral  axis is shifted towards 

the bottom side where you generally expect some sort of compression  ok. 

 

 And you will see that here it is going to be your 0 strain ok.  So, which means in this equation 

if you put 𝑦 = 0 you will see at the mid location ok there will be some strain available in the 

material  that is what you are going to call it as a 𝜀𝑎 and along with 𝜀𝑎 you are  going to add 

𝜀𝑏 to get further strains above or below the section of the sheet. So,  that is a meaning of 

𝜀𝑎  and 𝜀𝑏  with respect to this particular strain distribution.  So, if you have moment and 

tension this is how the strain distribution looks like ok  with moment and tension is generally 



little bit complex to understand we will see that  ok, but this is how strain distribution and 

bending can be calculated with respect to  𝜀1. So, 𝜀1 distribution in the thickness  direction is 

given here there are two components 𝜀𝑎 which is which is nothing, but the  middle surface 

where your strain and 𝜀𝑏 is going to be your bending strain which  is additional with respect 

to 𝜀𝑎 and in this case at the mid location there is  some strain 𝜀𝑎 provided here and 𝑦 = 0 if 

you put this is what you  will get as 𝜀𝑎 . 

 

 So, now this straight line bending can be  taken as a plane strain bending process can be taken 

as a plane strain bending process  plane stress it is still available with us along with that we 

are going to include something  called as a plane strain bending. So, we are going to say that 

if there is no constraint  on either side of the bend and hence no deformation the material in 

the bend deforms in plane  strain ok. So, that means, the strain parallel to the bend will be 0 

parallel to the bend  would be 0. Suppose with respect to this if you take parallel to the bend 

means in this  direction if you pick up 𝜀  it will not be there will not be any strain in this 

direction  when compared to your thickness and across the bend when you compare 

thickness and across  the bend bending along the strain along the parallel to the bend would 

be 0.  So, for an isotropic sheet that is what we are discussing until now we can take it as  𝜀1 

which is going to be available 𝜀2 = 0 , but 𝜀3 = −𝜀1  because 𝜀1 + 𝜀2 + 𝜀3 = 0 . 

 

 So, this also means that  your 𝛽 = 0 because it is plane strain bending now 𝜀2 = 0. So, 𝛽 =
𝜀2

𝜀1
= 0 for plane strain bending ok.  So, if 𝛽 = 0  , 𝛼 = 1/2 which we already derived using Levi 

Mises  flow rule relationship between 𝛽 and 𝛼 we have already seen. So, 𝛽 = 0 we already 

seen plane strain deformation process for which 𝛼 = 1/2 which means 𝜎1 will be available as 

usual and 𝜎2 = 𝛼𝜎1 = 𝜎1/2 and 𝜎0 = 0 because we are going  to take it as a plane stress 

process ok. 

 

 So, now for this particular situation say  𝛽 = 0  , 𝛼 = 1/2  we can relate 𝜎1 to flow stress or 

effective  stress and 𝜀1 to effective strain using our Von Mises effective stress and effective  

strain equations. So, I hope we know this �̅� = 𝜎1√(1 − 𝛼 + 𝛼2). So, 𝜎1 =
�̅�

√(1−𝛼+𝛼2)
. So, in 

that if you put  𝛼 = 1/2 then you will get 𝜎1 =
2

√3
𝜎𝑓 which is nothing, but my plane strain 

flow stress which I am going to call it as S ok.  So, my plane strain flow stress that means 

suppose if I am deforming a material in plane  strain instead of uniaxial then that can be 

related to my uniaxial flow stress 
2

√3
𝜎𝑓  which is nothing, but my plane strain flow stress. 

 

 Similarly,  I can also get 𝜀1 as a function of 𝜀  ̅ok using my effective strain equation  which is 

nothing, but my you know if  𝜀̅ = √
4

3
(1 + 𝛽 + 𝛽2)𝜀1 So, that equation 1 can refer and  from 

there you can get 𝜀1 =
√3

2
𝜀  ̅  by putting 𝛽 = 0 in that equation. So, this is how you relate you 

evaluate 𝜎1 ok and your 𝜀1 in the plane strain bending process and we are going to use S  here 

onwards rather than you know your you know 𝜎1 directly ok. So, where S is nothing,  but your 



plane strain flow stress. So, we are going to say y your straight line bend  can be assumed as 

a plane strain bending process and while assuming that we are going  to put 𝜀2 = 0,  is going 

to be there this  𝜀1  is nothing, but this 𝜀1  only ok. 

 

 We have got 𝜀1  here the same 𝜀1  and 𝜀3  which is basically  along the thickness direction 

would be about  −𝜀1  ok.  So, now we know how to calculate strain. So, now, we need to 

develop a general equation  for evaluating tension and moment during bending for which I 

am going to use a simple equilibrium  equation in this direction. This schematic will explain 

you that. 

 

 So, is the same schematic.  So, I am going to have a bend sheet I am going to have a bend sheet 

with 𝜌 as radius of  curvature and you can see 𝑡/2, 𝑡/2 half thickness and you can see that I 

am going  to take an element which is at y distance from the mid thickness the element is dy 

ok  dimension ok. So, it is got a thickness of dy in the thickness direction ok and you will  see 

that the force acting on that element is given by 𝜎1 × 𝑑𝑦 × 1 ok. So,  this is basically for the 

unit section. So, force acting on a strip of thickness dy across  a unit section is given by 𝜎1 ×

𝑑𝑦 × 1 which is going to  act in this particular section. So, in general I have given how tension 

is going to act in  the sheet and moment is going to act in the sheet. 

 

  Now, this tension in the section is given by T is nothing but you have to integrate  this 

particular fellow ok ∫ 𝜎1𝑑𝑦
𝑡

2

−
𝑡

2

 ok.  So, 𝜎1  that is the now next thing what we are going to 

discuss what will be 𝜎1  ok. So, for this tension we can get moment the same way 𝑀 =

∫ 𝜎1𝑑𝑦. 1 × 𝑦
𝑡

2

−
𝑡

2

 basically. So, we are going to multiply that with this distance  from the center 

that is what is given here. So, in general you can write ∫ 𝜎1𝑦𝑑𝑦
𝑡

2

−
𝑡

2

. 

 

 So, if you know 𝜎1 then we can find out tension  and moment at this particular section when 

you bend a sheet. So, now how do you get 𝜎  it depends on actually the material models that 

we are going to choose that is what the  next one is ok.  So, we are going to assume some 

material model which relates 𝜎 to 𝜀 one thing which  you have already seen is power law that 

will be part of it other than that there are few  other models one can assume ok. So, by 

knowing the stress strain law by knowing the stress  strain law and by evaluating 𝜀1 ok. So, 

or 𝜀 you can say ok one can get  the 𝜎1 and 𝜎1 can also be plotted like your 𝜀1 in the thickness 

direction  ok and when we do that we have to define something called as 𝜌/𝑡  that is called 

bend ratio. 

 

  This 𝜌/𝑡 is going to be useful for us it is called bend ratio where 𝜌 is your  radius of curvature 

same thing which you define and t is the sheet thickness this ratio is  called 𝜌/𝑡. So, now there 

are few choices we have the first one is elastic perfectly  plastic model ok. So, in this elastic 

perfectly plastic model the stress strain behavior  is given in this diagram it will be like this. 



So, elastic means you will have elastic part  here and then perfectly plastic means there is no 

hardening ok. So, your flow stress is  going to vary in horizontal way like this ok with respect 

to strain ok. 

 

 So, you have  a linear first variation and then horizontal variation with respect to 𝜎 and 𝜀  ok.  

So, the initial part is defined by slope which is nothing but your 𝐸’ the slope is actually  𝐸’ we 

are saying and this height that are or otherwise this value is nothing but  my plane strain flow 

stress my plane strain forces is nothing but probably this point  is nothing but your yield 

strength you can say but in plane strain deformation process  like bending which is what we 

are calling it as 𝑆.  So, now with respect to this diagram there are two parts in this one is up 

to this strain  corresponding to the end of elastic part and beyond that. So, there are two parts 

in this  there are two parts in this. So, the stress is less than plane strain yield stress yes  then 

ok this equation can be defined as 𝜎1 = 𝐸’𝜀1  which is well  known to us ok 𝜎1 in the initial 

part that is in the initial part in this particular  part we can say 𝜎1 = 𝐸’𝜀1 . 

 

  So, in the second part for the strains greater than yield strain if you go beyond this we  can 

simply say 𝜎1 is nothing but yes we will simply say 𝜎1 is nothing but  yes. So, in this part it is 

nothing but 𝜎1 = 𝐸’𝜀1 whereas  in this part it is nothing but 𝜎1 is equal to yes we can say there 

are two parts  here which will be useful for us ok. And what is this 𝐸’ generally we say 𝐸  but 

here we call it as 𝐸’, 𝐸  is nothing but your you know modulus of elasticity but  𝐸’ here is 

nothing but modulus of elasticity in plane strain ok not in uniaxial but in  plane strain mode 

of deformation ok. And this 𝐸’ can be found out from this particular  equation 𝐸’ =
𝐸

1−𝜐2 here 

E is nothing but uniaxial Young’s modulus and 𝜐 is your Poisson's ratio. So, both are given we 

can get 𝐸’, 𝐸’  can be substituted here and 𝜀1 can be evaluated from the previous distribution  

at any distance you know let us say y from the mid surface you can get 𝜎1 there  you can get 

𝜎1  in that location. 

 

 So, E is known and new Poisson's ratio is known  you can get 𝐸’ put it in this equation 𝜀1 can 

be found out from the previous  distribution that we already shown and you will get the 𝜎1 at 

any distance from  the mid surface for example at y distance you can get 𝜎1 ok.  So, now how 

is that going to look like we will see in due course but since these are  some material models 

we are going to see another model which is called as rigid perfectly plastic  model, rigid 

perfectly plastic model. So, in rigid perfectly plastic model as the name  suggests since it we 

say it is rigid we do not bother about elastic part which means  it is neglected ok and strain 

hardening is also neglected in this and strain hardening  is also neglected in this. So, you get 

a stress strain graph in this fashion. So, this S is  nothing but your plane strain flow stress and 

this is how you define your stress strain  behaviour for a rigid perfectly plastic model. 

 

 Strain hardening model is a conventional one  that we know we have already known about 

this, this strain hardening model is a perfect  one that we look into it which will take care of 

the hardening that you have in the bending  process and this is given by 𝜎1  versus 𝜀1  is 

nothing but like this.  It is going to have a very small elastic part and then a large strain 



hardening part which  is modelled by 𝜎1 = 𝐾′𝜀1
𝑛 this 𝐾′ is also actually  like K only ok only 

thing is we are writing 𝐾′ because it is a plane strain you know  forming process ok. So, 𝜎1 =

𝐾′𝜀1
𝑛 and n has a usual definition nothing but the strain hardening exponent.  So, we can have 

several other models we already seen like you know you can have with pre strain  ok you can 

also have 𝜎0 into the equation ok. So, all are possible, but then  we will restrict to only these 

three equations. 

 

 So, now we are going to pick up a one important  case called bending without tension and we 

are going to do some analysis that is the  first thing. So, whatever we are going to discuss is 

basically bending without tension.  So, only moment ok. So, only moment is available for us. 

So, we can say that sheet is bent  without tension, but with moment only ok. 

 

 So, what will happen the neutral axis will  be at the mid thickness the neutral axis will be at 

the mid thickness. So, when we say there  is no tension and only moment ok what will happen 

to 𝜀1 in this case 𝜀1 = 𝜀𝑎 + 𝜀𝑏  is not it. So, we say that in this case since  the now the neutral 

axis will be at the mid thickness ok this fellow will go off 𝜀𝑎 = 0 this fellow will go off. So, 𝜀1 

will be approximated to 𝜀𝑏 directly 𝜀1 will be approximated to 𝜀𝑏 directly. So, that when you 

put  a 𝜀𝑏 =
𝑦

𝜌
 if you put 𝑦 = 0  ,then  𝜀1 = 0  which means. 

 

 So, you are strain at the mid location is nothing  but 0. So, that is what we are going to have 

for this strain distribution now what will  be the stress distribution for that how we are going 

to assume some material model and  we get that that is the whole objective of this particular 

section.  So, we are going to take the first case is nothing but elastic bending and for this case.  

So, the stress strain behavior will look like this ok. So, you will see that Y axis is 𝜎1, X axis 𝜀1 

and the initial part is 𝐸’ and then we are going to have a non  strain hardening region with a 

yield strength of let us say plane strain yield strength  of ok S. And for this case it is very 

straight forward you get a strain distribution in this  fashion ok. 

 

 So, 𝑡/2 = 0 at the  mid location why because a neutral axis will stay at the mid thickness ok 

and that is because  𝜀𝑎 = 0 and that is because 𝜀𝑎 = 0. So, for this you have to get stress  

distribution that is what our aim here is. So, here very simple is basically 𝜎1 = 𝐸’𝜀1 because 

bending is only elastic. So, you are going  to use equation relevant to the first part we already 

discussed just now that 𝜎1 = 𝐸’𝜀1 where 𝐸’ nothing but your plane strain elastic  modulus ok. 

And since 𝜀1 distribution is known to  you you can get 𝜎1 distribution as this particular figure. 

 

 The strain distribution  the corresponding stress distribution is given in these two figures if 

you assume this particular  model to describe the bending process 𝜎1 = 𝐸’𝜀1 ok.  So, now if 

you want to get a stress at any distance let us say y any distance let us  say y from the neutral 

axis let us say then what is that then 𝜎1 = 𝐸’𝜀1 this 𝜀1 has got two parts 𝜀𝑎 + 𝜀𝑏   we said this 

fellow will  go off ok then 𝜎1 = 𝐸’𝜀𝑏, 𝐸’
𝑦

𝜌
 I can  write 

𝐸’

𝜌
=

𝜎1

𝑦
 . This is an important  equation 

for us 
𝐸’

𝜌
=

𝜎1

𝑦
.  We will use this you know relationship in due course. So, now if this is the case 



how  do we get moment in the section ok because we need to have moment no this moment 

is what  is responsible for bending. 

 

 So, we need to get that moment and general equation we already  discussed 𝑀 = ∫ 𝜎1𝑦𝑑𝑦
𝑡

2

−
𝑡

2

 

will remain I was hinting  you that what will happen to the 𝜎1  in this particular case 

∫ 𝐸’
𝑦
𝜌

𝑦𝑑𝑦
𝑡

2

−
𝑡

2

 which we just now discussed ok and you will see that 
𝐸’

𝜌
 will  come out because 

they are constants ok and −
𝑡

2
,

𝑡

2
 you can call it you can  take it as 0 to 

𝑡

2
× 2 because it is 

symmetric in nature ok.  So, 2 ×
𝐸’
𝜌 ∫ 𝑦2𝑑𝑦

𝑡

2

0
 so you can integrate it ok put  the limits finally 

you will see that you will get  
𝐸’

𝜌
.

𝑡3

12
  which  can be written as this 

𝑡3

12
 is nothing but my I ok 

with unit width considering unit  width that is the thing ok. So, I can write 
𝑀

𝐼
=

𝜎1

𝑦
=

𝐸′

𝜌
 which 

is obtained from this equation where 𝐼 =
𝑡3

12
 for unit width  it is second moment of area for 

unit width ok and 
1

𝜌
  we call it as a radius of  curvature. So, we need to note down this 

1

𝜌
 is the 

curvature here. So, 
𝑀

𝐼
=

𝜎1

𝑦
=

𝐸′

𝜌
 is the equation that we get and moment for this particular 

case is given  by 
𝐸’

𝜌
.

𝑡3

12
. 

 

 So, 𝐸’ can be evaluated from E and 𝜐 and 𝜌  is given t can t is given or sheet thickness is given 

then you can get a moment for that  particular bending operation. So, we can also evaluate 

this limit of elastic  bending we can also evaluate this limit of elastic bending by putting some 

conditions  what we see during bending. So, the limit of elastic bending that means, limit of 

elastic  bending means how long are you going to be there within this zone how long are you 

going  to be there within this zone ok can be obtained by this particular discussion.  The limit 

of elastic bending is when the outer fiber at 𝑦 = 𝑡/2 is this particular one y is equal to this is 

number our y no this is our y,  𝑦 = 𝑡/2  means this particular surface this particular surface 

ok 𝑦 = 𝑡/2  if you put that 𝑦 = 𝑡/2  you will reach this particular surface  the upper surface. 

The upper surface is generally undergoing tension as compared to the lower  surface that we 

understand while we bend ok. 

 

 So, reaches a plane strain yield stress correct.  So, whenever you are bending it ok the upper 

most fiber which is at 𝑦 = 𝑡/2  will reach a plane strain yield stress right if that is a limiting 

case. So, it should  be as long as it is within this region no problem the moment it reaches yes 

where at  𝑦 = 𝑡/2  ok at the upper surface we call it as a limit of elastic bending.  So, what do 

we do now this moment equation is 
𝜎1

𝑦
.

𝑡3

12
 which already  derived 

𝑀

𝐼
=

𝜎1

𝑦
 , I which is nothing, 

but 
𝑡3

12
 right.  So, moment  𝑀 = 𝐼.

𝜎1

𝑦
. 



 

 So, 
𝑡3

12
 .

𝜎1

𝑦
 correct which  is what I have given here. So, what I am going to do is I am going to 

substitute 𝜎1   when it becomes S, 𝑦 = 𝑡/2  that means, when 𝑦 = 𝑡/2  , 𝜎1  becomes  S for 

limiting case. So, I am going to say that substitute this. So, 2 will come in the  numerator. So, 

2𝑆

𝑡
.

𝑡3

12
= 𝑆𝑡2

6
. Since it is a  limiting elastic moment I am going to call this as 𝑀𝑒 this will be 

called as 𝑀𝑒 . 

 

 So,  𝑀𝑒 =
𝑆𝑡2

6
 . So, the limiting elastic moment ok. So, given  a sheet thickness given a yield 

strength of the material you can get plane strain yield  stress or flow stress you will get 𝑀𝑒 

limiting elastic moment. When you reach this particular  moment what will be the radius of 

what will be the curvature 
1

𝜌
 that will be given  by this equation. So, 

1

𝜌
 is nothing, but again the 

same thing 
1

𝜌
=

𝜎1

𝐸′𝑦
 . So, this 𝑦 = 𝑡/2   this fellow will become S. 

 

 So, it is nothing, but 
2𝑆

𝐸′𝑡
. So, when M becomes 𝑀𝑒 , 

1

𝜌
=

2𝑆

𝐸′𝑡
  ok which can be represented  in a 

moment curvature diagram. Like we have a stress strain diagram we can also have moment  
1

𝜌
. If you plot it you will get a straight line and you will see that this particular  height this 

particular height is nothing, but your elastic moment height 𝑀𝑒 =
𝑆𝑡2

6
  which you already 

evaluated and this 
2𝑆

𝐸′𝑡
=

1

𝜌
 ok when you reach 𝑀𝑒  that is 

2𝑆

𝐸′𝑡
 both are represented in  this 

particular diagram. So, this is moment curvature diagram for this particular case.  So, this 

results will be useful for us in the analysis that will discuss in the next  section. 

 

 Now we will go to rigid perfectly plastic bending. So, where we the model is  very simple your 

𝜎1 = 𝑆  ok. So, there is no elastic part there is  no hardening also and it is pretty straight 

forward the 𝜎1 = 𝑆 will give  you a stress distribution like this ok. So, you will have like step 

type of thing ok.  So, this would be your S value ok and there will be a transit at the middle 

and you will  have a another variation on the on this side of the bend region ok. So, now the 

point here  is since there is no elastic part here the moment itself is actually fully plastic 

moment  like in the previous case we say 𝑀𝑒  here we are going to call it as 𝑀𝑝  which is 

nothing,  but fully plastic moment because there is only one case that is your plastic moment  

only because there is only because it is rigid perfectly plastic know. 

 

 So, there is no elastic  part. So, directly we will write 𝑀𝑝,  𝑀𝑝 = 2 ∫  
𝑡

2
0

𝑆𝑦𝑑𝑦 = 2𝑆 [
𝑦2

2
]

0

𝑡

2
=

2𝑆 [
𝑡2

8
] =

𝑆𝑡2

4
.  This 

𝑆𝑡2

4
 can be drawn in a moment curvature diagram as this way it is going  to 

be horizontal line similar to what you see in stress strain graph and this height  is 
𝑆𝑡2

4
 ok. So, 



Me the previous one is nothing, but 
𝑆𝑡2

6
 and Mp here what we are going to discuss nothing, but 

𝑆𝑡2

4
 these 2 are important  ones we need to remember. The next case is a general case which 

is what  is important for us you are bending a strain hardening sheet ok which means 

somehow you  have to bring in your strain hardening you know part of you know into the 

equation. 

 

 So,  that is why we are saying it is 𝜎1 = 𝐾𝜀1
𝑛 same power law  only thing is 𝜎1 = 𝐾′𝜀1

𝑛 we are 

keeping ok. And this is approximated  to ok 𝜎1 = 𝐾′𝜀1
𝑛 is approximated to 𝐾’ will remain as it 

is  your 𝜀1  there is no 𝜀𝑎   . So, it is 𝜀𝑏  only. So, 𝜀𝑏 =
𝑦

𝜌
 , 𝜎1 = 𝐾′ (

𝑦

𝜌
)

𝑛
 would be your stress 

distribution that you are going  to get and the stress distribution to some extent schematically 

it can be drawn in this  fashion. 

 

 So, 𝑡/2, 𝑡/2 this will not come ok. So, you are going to say that it is going  to vary in this fashion 

and it is going to come down like this. This would be your 𝜎1 distribution for a general you 

know material model like 𝜎1 = 𝐾𝜀1
𝑛 ok. So, now if you want to evaluate a moment for  this ok. 

So, it is the same thing ok. So, you are you will see that your moment is nothing,  but I am 

going to write 𝑀 = 2 ∫ 𝜎1𝑦𝑑𝑦
𝑡/2

0
 right where 𝜎1 = 𝐾′ (

𝑦

𝜌
)

𝑛
 ok. 

 

 This is 𝐾′ (
𝑦

𝜌
)

𝑛
 you can keep ok.  So, what will happen now? So, 2𝐾′ (

𝑦

𝜌
)

𝑛
 will be there outside. 

So, 0 to t/2 will remain and then there will be a component of 𝑦𝑛. So, 𝑦 is already there.  So, 

𝑦1+𝑛𝑑𝑦. So, you can integrate it apply your limits finally, you will see  that it will be equation 

is going to be  
𝑀

𝐼𝑛
=

𝜎1

𝑦𝑛 = 𝐾′ (
1

𝜌
)

𝑛

 ok. 

 

 Where 𝐼𝑛 is same as that of your 𝐼 =
𝑡3

12
 that we  have seen, but the here it is very general in 

nature 𝐼𝑛 =
𝑡𝑛+2

(𝑛+2)2𝑛+1  ok.  And if you want to draw graph between M and 
1

𝜌
 ok it will be 

something like this  it will be a smooth curve it will be something like this M as 
1

𝜌
 would be 

similar to  what you see in a stress strain graph ok. And this is a general equation taking strain  

hardening into consideration. And all our own values moment is moment, moment per unit  

with 𝜎1 is the is the principle stress and y means it is any distance ok from the  neutral axis 

𝐾’ is nothing, but an equivalent of strength coefficient 
1

𝜌
 is a curvature  and n is the strain 

hardening exponent that you get. 

 

  So, if you put two cases here ok for example, if you put 𝑛 = 1. So, you will see that this  

𝜎 = 𝐾𝜀𝑛 is not it. So, 𝑛 = 1 it is like a 𝐾’ will become E’  ok like  𝑛 = 1 if you put here. So, it is 

nothing, but 𝜎1 = 𝐾′𝜀1
𝑛 , but  which is nothing, but 𝐾’ nothing, but 𝐾’ only which you have 

defined before  which you have defined before. So, that is what I have said here 𝐾’ = 𝐸’ then 



we can directly write from this equation 
𝑀

I
=

𝜎1

y
= 𝐸′ (

1

𝜌
) from this you can directly write 

this  when 𝑛 = 1  if you put you get this. 

 

 So, you can also put 𝑛 = 1. So,  you can put 𝑛 = 0 it will go to the other case the other extreme 

case when  you put 𝑛 = 0 here you will get 𝑛 = 0 you can put. So, 𝑛 = 0 here means it is 
𝑡2

4
 

you will get ok.  And so your 𝑛 = 0 means yeah. So, your 𝐾′ will be straight away it will  be 

nothing, but S ok and then you can which means that you will have only 𝑀𝑝 which means  that 

you have only 𝑀𝑝 ok. So, it is 𝐾𝜀𝑛,  𝑛 = 0 means straight away you can  say your 𝜎1 is nothing, 

but 𝐾′  here in this case S only S is nothing, but 𝐾′   ok. 

 

 And it is going to be 𝑀𝑝 only because it is a fully plastic moment and if you see  that 𝑀𝑝 can 

be calculated from the previous equation ok from the from this equation if  you put 𝑀𝑝 ok it 

is going to be 𝑀 = 𝐼𝑛.
𝜎1

𝑦𝑛  .  So, 𝐼𝑛 =
𝑡2

4
. So, 𝜎1 = 𝑆  in this  case ok. 

 

 So, then 𝑦0 it will vanish. So, 𝑆.
𝑡2

4
 will come ok. These two are two extreme cases when when 

you have n. So, this one will  actually lead to the case which we already discussed. This one 

will when you put 𝑛 = 0 this one will lead to a case which we already discussed this will also 

lead to  the previous case what we already discussed. So, this way one can get in a bending 

without  tension ok one can get if you know the strain distribution the simpler case why 

because  this fellow goes off ok. That is why we are picking up this particular case in this case  

if you know 𝜀1  you can get a 𝜎1  by assuming different material loss ok. 

 

  One is this first one next one is 𝜎1 = 𝑆 next one is with strain hardening  and in each case 

you are going to have moment curvature diagram that is going to be different  here ok. Stress 

distribution is also different ok and you will see that your moment curvature  diagram is also 

going to be different. So, now before we go ahead and discuss another  small section in this 

particular module let us do one small problem with whatever we discussed  until now. The 

question is given here a 2 mm thick aluminum sheet ok as a constant flow  stress of 120 MPa 

ok. So, which means that it says constant flow stress which means  that you have to take it as 

a in axial flow stress ok as 120 MPa it is not going  to change with strain ok it is a constant 

one. 

 

 Now the question is determine the moment  per unit width to bend the sheet to a limiting 

elastic state ok. That means, first question  is you need to get 𝑀𝑒 first one you need to get a 

moment per unit width to bend the  sheet to limiting elastic state that is 𝑀𝑒 . What is the radius 

of curvature 
1

𝜌
  at this particular stage? So, when M becomes 𝑀𝑒 what will be the radius of 

curvature 
1

𝜌
. Determine the fully plastic moment the sheet is bent further ok. So, you are  not 

stopping with the limiting case you are bending further ok what will be the your fully  plastic 

moment that is 𝑀𝑝 ok. Two cases two values are given one is Young's modulus  other one is 



Poisson's ratio these are known to us aluminum sheet has got Young's modulus  of about 70 

GPa and Poisson's ratio is about 0.3.  So, we need to know 𝑀𝑒 so it is understood it is 𝑀𝑒 =

𝑆𝑡2

6
 we put a condition now.  So, when 𝑦 = 𝑡/2  your 𝜎1 = 𝑆 is not it. So, if you substitute  in 

that this particular situation you will get 𝑀𝑒 =
𝑆𝑡2

6
. Now thickness  is given as 2 mm only thing 

is you have to get S, S is nothing but plane strain forces  which you already got a relationship 

𝑆 =
2

√3
𝜎𝑓  the second section we have seen this particular one 𝜎1 =

2

√3
𝜎𝑓  right. The 𝜎𝑓  is 

actually given when you say  simply flow stress we can take it as 𝜎𝑓  so 
2

√3
× 120 if you  

calculate it, it will give you about 138.6 MPa ok. So, S has been found out so  what you can do 

is like you can substitute this S in this equation so 138.6 ok. So, you  want to keep consistent 

units that you have to be careful ok. So, 𝑀𝑒 =
𝑆𝑡2

6
=

138.6×106(2×10−3)
2

6
= 92.3Nm/m is a value 

that is given.  So, this has been found out now.  

So, now next one is we need to get 
1

𝜌
 at this particular  stage that is so you want to get this 

then we already derived this equation 
𝐸′𝑡

2𝑆
 it is radius of curvature so this  radius of curvature 

so it is 𝜌 ok 𝜌𝑒  because it is a limiting case know it is 𝜌𝑒 . So, 𝜌𝑒 =
𝐸′𝑡

2𝑆
 know so where is it yeah 

so 𝜌𝑒 =
𝐸′𝑡

2𝑆
 this also we derived already ok.  So, t is given S has been found out already 𝐸′ 

have to be found out so 𝐸′ =
𝐸

1−𝜐2, E is 70, 1 − 0.3 keep consistent units here so you will  get 

𝐸′ = 76.9 GPa  it is slightly larger than what you see in your uniaxial Young’s modulus  76.9 

here you can see 70. So, that 76.9 you can substitute appropriate unit conversion  you have 

to follow into thickness is 𝜌𝑒 =
𝐸′𝑡

2𝑠
=

76.9×109×2×10−3

2×138.6×106 = 0.56m  you can convert that into  

millimeter also if you want ok. So, second one is also found out ok.  Next one is basically if you 

further deform it to fully plastic moment what will be the  value so that is also found out 𝑀𝑝 =

𝑆𝑡2

4
  which we already know  So, either you substitute this 𝑆 𝑡 and then get it otherwise what 

you can do is you can  relate that to 𝑀𝑒  ok. 

 

 So, we can also see 
𝑀𝑝

𝑀𝑒
 is how much so 𝑀𝑝 =

𝑆𝑡2

4
  divided by 𝑀𝑒 =

𝑆𝑡2

6
  you will see that this  

is 
𝑀𝑝

𝑀𝑒
=

3

2
 this fellow will go this fellow will go 

6

4
 which is nothing  but 

3

2
. So, 𝑀𝑝 =

3

2
 𝑀𝑒 that 

way I can get so 𝑀𝑒 is already known to 𝑀𝑒 = 92.3 you can substitute  it here you will get 

𝑀𝑝 = 138.5 ok or you can directly get the 𝑀𝑝 =
𝑆𝑡2

4
  you can substitute all the values here you 

will get the same value. 

 

  So, S is given here t is already given as 2 mm use consistent units finally you will get 𝑀𝑝  

either way it is fine. So, in this way we can find out moment per unit width for the limiting  

case or the radius of curvature at this stage and the plastic moment with whatever we have  



discussed until now these derivations are already done. So, now let us go to one important 

section  we will not discuss this fully today but then rather we will discuss certain things 

conceptually.  Elastic loading and spring back, this is spring back is going to be very important 

for us in  sheet metal forming this is actually a defect is actually a defect ok. So, suppose if you 

consider  thin sheet like this and you want to create a hat type of structure I want to create a 

channel like  this hat type of structure you can imagine ok. So, once I unload the material it 

may so happen  that my this fellow hat will become something like this I am just drawing 

schematic it can become  something like this. 

 

 This is a your initial one ok this is a formed one ok and after unloading  your sheet can become 

like this. This dimensional change which you are looking at know here, here,  here and here 

this is actually called as a spring back. This dimensional change this angular change  is called 

as a spring back. So, you need to have a flat punch but here you can see some angle is  created 

this wall also can have some angular displacement which is what you are calling it  as a spring 

back. Basically dimensional change in the sheet once you unload the material is what we  refer 

as a spring back. 

 

 So, why this spring back happens can be understood from these three  schematics ok. So, you 

will see the first one sheet is bent and you will see that this is your  neutral axis of the mid 

region that is your pink color line and above that you will see that if  you take any point or 

any element it will be pulled that is it will be in tensile mode of  deformation and at the inside 

location you will see the elements will be compressed.  Suppose this will be compressed this 

will be fully tensile mode of deformation ok and since  we are discussing anyway bending 

without tension you will have a stress and stress distribution,  strain and stress distribution 

to be 0 at the mid surface. And you are going to pick up let us  say a point A ok point A here 

ok and the point A has got a tensile stress like this which can be  represented in this stress 

strain diagram like this. Suppose a corresponding stress strain  diagram of the material is 

given here you can see usual things like you have yield strength  then you have UTS then you 

have F and this a point this a situation is measured here.  This a situation is measured here 

that means you are bending a sheet at one particular location  above the neutral axis you can 

see a tensile stress let us say A the A is in between yield  strength and UTS which is mentioned 

here ok. 

 

 And that means when you say strain as unstressed  as 0 at the mid surface it means you are 

starting from here it means you are starting from here and  you are moving towards A and 

you are moving towards A let us say in this direction which  means you are going to cross 

yield strength and you are going to reach A ok and then you are going  to go further that is the 

meaning ok. So, moving from this point to A is nothing but you are going  along this direction 

reach the yield strength and then cross that and go to A that is the meaning.  What does it 

mean? That means that there is a small region above and below the neutral axis  which is 

actually in the elastic part and above that and below that band there will be a  plastically 

deforming zone which is described by the strain hardening part that is what I  represented in 

this particular diagram. So, you will see that with respect to neutral axis there  is one small 



red color hatched region this region is called as elastic zone which describes this  particular 

part with respect to stress strain curve it describes the elastic part of the stress  strain 

diagram and above that you will have a zone deforming plastically because of tension  and 

below that this lower boundary you can have a region which is deformed plastically because 

of  compression because of compression ok. That means above neutral axis below neutral axis 

there is a  small band of elastic deformation and beyond that you will see that you will have 

plastic deformation  because of tension and compression. 

 

 So, now this is the situation we have so we say spring back  occurs because of variation in the 

bending stresses across the thickness from inner to  neutral axis to now outer surface ok. 

From inner to neutral axis to outer surface ok there will  be variation in bending stresses 

which you already calculated 𝜎1 and we are saying that is a  reason for spring back and we 

are saying that the zone above neutral axis deform plastically  because of tension and zone 

below neutral axis deform due to compression that also we know the  stress at any point A in 

the tensile stress stone should be less than UTS. We are saying that this  A point should be 

less than UTS otherwise what will happen if A reaches UTS means a crack can  develop at this 

location at the upper surface a crack otherwise the outer surface will crack.  So, now what we 

are saying is this particular one the metal region near the neutral axis is  stressed below the 

elastic limit ok. 

 

 So, still it is elastic deformation ok that is near the  neutral axis that is this particular zone 

this particular zone ok. This elastic deformation  is a narrow band on both sides of the neutral 

axis that is what I have mentioned here. So,  now what will happen ok so you will see that 

during stamping and after stamping. So,  you want the sheet to be bent like this but after 

stamping after removing load it can become like  this. So, this is what we said as a spring back 

this is what we said as a spring back.  Upon load removal the elastic band ok which is just 

above and below the neutral axis tries to  return to the original flat sheet correct that is the 

purpose of elastic deformation will try to  recover right ok. 

 

 It will try to return to the original flat sheet but it cannot do that due  to restriction given by 

the plastic deforming zone. So, what we are saying is this red color  portion which is 

representing elastic part will try to recover ok which is equivalent to change  in dimensions 

but the plastic part which is outside and below this neutral axis below this  region elastic 

region will not allow it to come back fully ok. But there will be some small change  in the 

dimension which is what we are going to represent as a spring back. But some return  occurs 

as elastic and plastic zones reach an equilibrium condition this return is termed as  a spring 

back. So, full recovery full dimension change is not possible because you already given  some 

partial plastic deformation to it ok and that actually suppresses the release of elastic  part ok. 

 

 But still ok some dimensional changes occur which is what we are called as spring back.  And 

if you want to represent it using a stress strain diagram this we already discussed. So,  this is 

a typical stress strain diagram of any material. So, you have yield strength then you  have a 

strain hardening portion then after that you have a decrease in stress strain curve.  Now, so 



in the loading part the loading part means your 𝜎 will keep on increasing let us say when  you 

are trying to unload the material we know that the unloading curve is going to be this one 

which  is going to be parallel to the elastic part and will reach this particular point ok. And 

from  this to this if you measure this would be a cause of permanent deformation the 

remaining one is  actually responsible for spring back this is a this part is actually responsible 

you are for  spring back. 

 

 So, schematically this way we can explain what is spring back with respect to stress  strain 

graph. So, there is a loading part in the stress strain graph there is a unloading part the  

remaining one which is what is responsible for spring back. So, now with respect to this 

diagram  one can tell some important properties which can affect the spring back.  For 

example strength ok strength of the material ok. So, for that I have given some simple example  

here suppose this is your 𝜎 versus 𝜀 graph ok. So, you will see that this black color  portion is 

nothing but your high strength material and the red color one is nothing but your low  

strength material you will see that at the same strain you deform it and then try to unload it  

the red color one low strength will try to unload it in this path whereas, the blue one will be 

in  this path and you will see this a change in the spring back. 

 

 So, high strength actually has more  change in strain which is responsible for more spring 

back. So, larger the strength spring back  would be larger. But at the same time if you change 

the elastic modulus here these two materials have  called same elastic modulus suppose 

elastic modulus is like this ok and then you are deforming it to  the same strain and then you 

are unloading it your unloading curve your unloading curve would  be something like this 

which will be parallel to this. Now you will see that this change is  going to be much much 

larger as compared to these two which means that if you change if you increase  the elastic 

modulus there are chances that spring back will reduce. If you increase there that means  if 

you decrease the slope ok you are you will see that your spring back is more that means larger  

elastic modulus will lead to lesser spring back. Often this 
𝜎𝑌𝑆

𝐸
 this ratio becomes  very 

important because the 𝜎𝑌𝑆  can be controlled individually in this fashion and  E can be 

controlled in this fashion to control spring back. 

 

 But both these values are in a way  related to your elastic part of deformation which is what 

is responsible for spring back.  Often this ratio is used we will also derive one equation in that 

you will see instead of of course  we say 
𝜎𝑌𝑆

𝐸
actually it is actually going to be 

𝑆

𝐸′. Now the  

corresponding one in plane strain bending know that is nothing but 
𝑆

𝐸′ this ratio becomes  

important for us. So one can control spring back by controlling the strength and young  

modulus of the material and moreover you can also control spring back by this particular 

ratio  called as 
𝑅

𝑡
 where R is your you know the radius of the tool at which you bend the sheet  

and t is a sheet thickness. Basically R determines whether it is sharp bend or you know blunt 

one or  a blunt one. 



 

 So suppose if you take a sharp bend what will happen it will concentrate stress more  in the 

gradual bend ok. So resulting in more plastic strain so smaller 
𝑅

𝑡
 ratios will  result in less 

spring back. So what we are saying is if the radius is small you put lot of plastic  deformation 

to it plastic strain to it which can suppress the elastic part so there are chances  that you will 

have lesser spring back. And if you increase you know your radius to a larger value  then it is 

going to be opposite to that. 

 

 So other than this you know spring back can be controlled  by tool design also. General you 

know rule is you over bend it ok. Suppose like in this particular  case this particular case what 

we do is suppose this is a flat sheet and you want to bend it to  this one actually so instead of 

that what you do is you little bit bend inwards so that when  you release it can become 

straight. In that way one can this is basically called as over bending.  That is one way to control 

it. There are a few other ways also people control. 

 

 So one can deform  material at higher working temperatures ok in that way also one can see 

how spring back can  be controlled ok. Die design can be modified to take care of spring back. 

There are several  you know lots of work people have done to take care of your spring back. 

How to control spring  back. So now if you want to evaluate some theoretical model ok let us 

say you want to  develop some theoretical model for spring back ok. 

 

 So a simpler way to evaluate theoretical model  for to estimate to derive a theoretical model 

for spring back will be discussed here. And then of  course we are going to first take a case of 

moment without tension ok. So moment without tension we  are not going to derive it now 

we will just introduce this here now. So you have a sheet  as usual you can see I have just 

shown a thin line which is a sheet this is your let us say  sheet no tension ok. So only moment 

is applied as shown in this figure and there is a 𝜃  bend angle ok and radius of curvature is 𝜌 

is known and this l is actually the length of  the mid surface which is already known to us. So 

now this is a bend sheet ok there is a flat  sheet and you are bending it this is a situation now 

you are releasing the load which is a unbend  sheet this will be a situation ok. 

 

 This 𝜃 will become 𝜃 + ∆𝜃 ok and 𝜌  would become 𝜌 + ∆𝜌.  So since there is no tension only 

moment is given we can say that this length  will remain same the length of the mid location 

the mid surface ok or the neutral axis will remain  same ok it is not going to change. When the 

sheet is bend and released by removing moment there will  be a change in curvature and bend 

angle 𝜃 will become 𝜃 + ∆𝜃 ok and 𝜌  would become 𝜌 + ∆𝜌. The length of the mid surface 

𝑙 = 𝜌𝜃  this we already discussed in the first slide. This length we are saying will remain 

unchanged  during unloading as a stress and strain at the mid surface is 0 why because it is 

moment without  tension ok. 

 

 So because of that the length will remain same and then from this equation we can  directly 

write this 𝜃 = 𝑙 (
1

𝜌
)  if you differentiate the equation you  will get 

Δ𝜃

𝜃
=

Δ(1/𝜌)

1/𝜌
 ok. So where 



Δ𝜃  is a change in angle due to this dimensional change called spring back ok there will be a  

corresponding Δ(1/𝜌) ok and if you can normalize it with respect to original 𝜃  and original 
1

𝜌
 you can this equation is valid ok. So it is like either you calculate  Δ𝜃 or Δ(1/𝜌)  to quantify 

spring back either you calculate Δ𝜃 or Δ(1/𝜌)  in a way to quantify spring back or to estimate 

spring back when you have moment without  tension when you have moment without tension 

ok. So we stop here we will continue this. 


