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So, we will continue our discussion in this module instability and tearing of sheets and  we 

have completed the theory part of this particular module and we will now enter into  you 

know the problem solving part.  So, today we are going to solve 4 problems in this particular 

module, question number  1, question number 2, question number 3 and question number 

4.  These are the 4 problems relevant to this particular chapter module we are going to  

solve 4 problems ok.   

So, the first question is the following figure this particular one shows a 100 mm length  of a 

tensile test piece ok total is 100 mm, 90+10 in which 10 mm that is this 10mm  has a width 

of 12.4 mm ok width is reduced and the remaining is 12.5 mm ok.  So, we have a 100 mm 

gauge length let us say 90 and 10 it is split into 2 parts 90 mm 10  mm the difference is in 90 

mm you have the original width of 12.5 mm, but in 10 mm length  that particular part you 

have 12.4 mm 0.1 mm is reduced actually.  So, all dimensions are in mm you can say, but the 

entire sheet has got uniform thickness  of 1.2 mm.  So, 𝑡0  =  1.2 𝑚𝑚 . 

 

 So, this material obeys a stress strain law it is given here σ̅ = 700(ε̅)0.22 MPa and so let us 

assume that these 2 regions deforming in the axial tension.  Now the question is determine 

the maximum load the final length of 20 mm gauge length  in the wider section.  So, there 

will be one maximum load 𝑃𝑚𝑎𝑥  of the entire strip that we have to find out  and then in this 

wider length that is your 12.5 mm this particular part you pick up a  gauge length of 20 mm 

let us say at the center you have gauge length of 20 mm you are picking  up ok. 

 

  So, what is the final length of that particular gauge length ok and the maximum strain in  

this section.  So, in this 20 mm gauge length what is the strain that is going to be 

encountered ok  during this tensile test that is a question here ok.  So, this is like equivalent 

to what we have studied you know like we are defining a thickness  heterogeneity right 
𝑡𝐴

𝑡𝐵
.  

So, where 𝑡𝐵 is your neck thickness or a groove thickness and 𝑡𝐴 is outside region right.  

Similarly here also instead of a thickness heterogeneity you are having a reduction in  width 

a similar situation we have solved one problem in the in the first lecture of this  module if 

you remember it ok. 

 

  So, now when we are loading it in tensile test we have to find these 3 values 𝑃𝑚𝑎𝑥   the 

strain in the in this particular section 20 mm gauge length and what is the final length  if 



that is the strain.  So, directly we are going to write this particular one in a tensile strip ok.  

So, the load is given by 𝑃 = 𝜎1𝐴1 we know that and this already we  know we already 

derived it 𝜎1 = 𝐾𝜀1
𝑛  and 𝐴1 = 𝐴0

𝐿0

𝐿1
.  So, 𝐴1𝐿1 = 𝐴0𝐿0.  So, 𝐴1 is nothing but so 𝐴0𝐿0 =

𝐴1𝐿1 .So, we want 𝐴1 = 𝐴0
𝐿0

𝐿1
 ok that is what I have written  here and  

 𝐾𝜀1
𝑛, and 𝐴0 = 𝑡0𝑤0 , 

𝐿0

𝐿1
= exp(−𝜀) ok.  So, now what we are going to do is when you are 

going to do tensile test of this we know  that this 12.4 mm width this particular region is 

actually the weaker region and hence in  the narrow section I am going to call this as narrow 

section we can directly write the  maximum load ok will be given by 𝜀 = 𝑛.  So, I am going 

to write I am going to modify this particular equation for maximum load  in narrow cross 

section in the narrow section.  So, 𝑃𝑚𝑎𝑥 = 𝐾𝜀1
𝑛 𝑡0𝑤0 exp(−𝑛)  ok. 

 

  So, directly I am going to write this and I am going to just substitute all the values  K  is 

known which is 750 MPa ok and so here also you are going to have n so 𝜀1 = 𝑛 so 𝑛𝑛 will be 

there ok.  So, this is 𝑛𝑛 now 𝜀1 = 𝑛 ok so either 𝜀 𝑜𝑟 𝜀1 either  way you can call.  So,  
𝑃𝑚𝑎𝑥 = 750 × 106 × 1.2 × 12.4 × 106(0.22)−0.22 exp(−0.22) = 6.42(𝑘𝑁)  ok.  So, this 

equation we are simply modifying it for situation in maximum load 𝜀 is  equal to n in narrow 

section we are picking a narrow section we are putting this condition  ok.  So, that you can 

convert this 𝜀1 into 𝑛 and this also as n let us say so that you  can write directly as 𝑃𝑚𝑎𝑥 =

750 × 106 × 1.2 × 12.4 × 106(0.22)−0.22 exp(−0.22) = 6.42 𝑘𝑁.  Now let us come to wider 

section, wider section we will have the same equation 𝑃 = 𝐾𝜀1𝐴
𝑛 𝑡0𝑤0 exp(−𝜀1𝐴) only 

thing is instead of 𝜀1 I am putting 𝜀1𝐴 because we do not  know that is what we need to find 

out ok. So, 𝑃 = 𝐾𝜀1𝐴
𝑛 𝑡0𝑤0 exp(−𝜀1𝐴) ok.  So, but whether it is this region wider region or 

a narrow region ok there will be only one  𝑃𝑚𝑎𝑥 so what I can do is I can directly equate this 

to 𝑃𝑚𝑎𝑥.  So, at maximum load what I am going to do is I am going to directly equate this 

particular  equation to 6.42 which I got from the previous narrow region. 

 

  To this narrow region what are I am getting here this I am going to equate it to the 

situation  in this particular wide section because there is going to be only one 𝑃𝑚𝑎𝑥for the 

entire  strip so I am going to say that  750 × 106 × 1.2 × 12.4 × 106(ε1A)−0.22 exp(−ε1A) =

6.42(kN), and what we can do  is we can combine all the numerical values on one side and 

then keeping this you know  the fact the terms having (ε1A)−0.22 exp(−ε1A) I am  going to 

keep it as it is and I am going to combine all the numerical values it is going  to be equal to 

0.571.  So, what I am going to do is I am going to iteratively change this ε1A value  ok and see 

for which value is ε1A I am going to get 0.571 ok.  So that I have just quickly took four 

different values and then plotted it here ε1A versus this entire thing function of ε1A this I 

need to get this. 

 

  So, if I use 0.2 ok here if I use 0.2 or 0.2 here so that I will get 0.5746, 0.18 I get  0.5728, 

0.16, 0.5694 and 0.17 if I put you will see that I am getting 0.571 ok.  So from this table I can 

directly say we get ε1A = 0.17 so that is my  maximum strain in this section ok.  In the wider 

section I am taking a maximum strain of 0.17 that is the next question that  is the answer for 



next question.  So 𝑃𝑚𝑎𝑥 has been found out already 6.42 and then in the wider you know 

section I am going  to have 𝜀1𝐴 as 0.17 ok and for this particular strain in that section what 

will  be the value of 20 mm length or 20 mm length 20 mm gauge length in the wider section 

should  become some value what is that value that you will get this particular strain.  So it is 

very simple so we know the original definition of 𝜀1𝐴 so I can directly  write the new length 

would be equal to the original length 20 𝑒𝑥𝑝 𝜀1𝐴.  So this comes from the original definition 

of 𝜀1𝐴 = 𝑙𝑛
𝑙

𝑙0
 original definition is not it.  So from that I can write this particular equation 

and you will see that for this particular  value of 𝜀1𝐴 I am going to get 𝑙 = 23.17 mm.  So that 

means when you are doing tensile test of this particular type of sample and 𝑃𝑚𝑎𝑥  will 

happen at 6.42 kilo Newton and during that particular situation you will see that  this the 

strain attained in the wider region would be equal to 𝜀1𝐴 that is along  one direction would 

be equal to 0.17 and this when you have 0.17 strain the gauge length  20 mm would become 

23.17 mm.   

So at that particular stage you are going to have these three different values ok.  So it is just 

a simple problem only thing is like we had two important points here one  is for narrow 

section you are going to put this particular condition and get maximum  load that maximum 

load you are going to equate it to the same situation similar situation  in the wider region 

that is in the A region let us say ok.  So and then finally we are going to get the strain and the 

corresponding gauge length  new gauge length right ok.   

So let us go to the next one, next one is also a similar you know geometry.  So what is the 

question?  The test piece geometry is used that it has got two parallel reduced lengths one is 

10  mm width the other one is 9.8 mm width ok.  So that is how the sample dimensions are.  

So width is 10 mm ok in another section you are going to have 9.8 mm width.  So in the 

wider section a gauge length of 50 mm is marked ok.  So let us mark it ok the strip is pulled 

to failure ok so you are deforming the material  and it goes to failure and the gauge length 

measured to determine the true strain ok. 

 

  So this particular gauge in 50 mm is used to measure the strain now ok.  So now the 

question is when you do that suppose if you say that ok you need to get that particular  

strain in the range of 0.05 to 0.2 what will be the change in strain hardening index or  

exponent strain hardening exponent that is the question ok.  The strip is pulled to failure 

and the gauge length measured to determine the true strain  ε𝑎 obtain a diagram relating 

true strain 𝜀𝑎 in the range 0.05 to 0.2 to the  strain hardening index ok.  So that means how 

n value is going to change depending on the strain that you get in the  gauge region.  So that 

is the question but the condition is the strip is not having uniform width it  is going to have a 

slight change in width one is 10 mm width the broader region the  other narrow region has 

got 9.8 mm width.  So since you are going to speak about n then 𝜀𝑎 ok and then you are 

going to have  some sort of area reduction between 10 mm width and 9.8 mm width ok 

directly we can  relate all this you know parameters by this particular equation which you 

already (𝑛 − 𝜀𝑢) ≈ √−𝑛
𝑑𝐴0

𝐴0
.  With this we already worked out one problem in this module 

so this equation can be used  to direct.  So now basically you need to get relationship 



between n and 𝜀𝑢  and that 𝜀𝑢  you vary between 0.05 to 0.02 we need to see how n is going 

to change that is all ok. 

 

  But for that you need to know this imperfection severity of imperfection so which is 

nothing  but 
𝑑𝐴0

𝐴0
.  So you can see that it is 10 mm width 9.8 mm width so the difference is 

you can take  thickness, thickness is not given maybe you can take thickness of 1 mm let us 

say so if  that is the case then it will  
𝑑𝐴0

𝐴0
=

−0.2

10
= −0.02 .  and as per this equation  

(𝑛 − 𝜀𝑢) ≈ √−𝑛
𝑑𝐴0

𝐴0
= √0.02 𝑛   so minus minus will become plus 0.02 × 𝑛 .  So  

(𝑛 − 𝜀𝑢)2 = 0.02𝑛 ok.  So now you can expand this 𝑛2 − 2𝑛𝜀𝑢 + 𝜀𝑢
2 = 0.02𝑛 so and you will 

see that this will be a in the form of a quadratic equation.  So you can see that  
𝑛2 − (2𝑛𝜀𝑢) + 𝜀𝑢

2 = 0.02  this is nothing but  
𝑛2 − (2𝜀𝑢 + 0.02)𝑛 + 𝜀𝑢

2 = 0.  So 𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 0 it is of that form so you can find root of  

this equation as so this way so  

𝑛 =
(2𝜀𝑢+0.02)±√(2𝜀𝑢+0.02)2−4𝜀𝑢

2

2
 ok. 

 

  So you can simplify this to get in a such a simpler format where n is going to vary  with 

respect to 𝜀𝑢 in this way ok and it is said that if you change 𝜀𝑎 or in this case 𝜀𝑢 ok because 

you are saying that this pull due to fracture  no so there is nothing wrong in you know 

keeping this 𝜀𝑎 as 𝜀𝑢 in this equation  both are going to be same.  So now if you change 𝜀𝑎 let 

us say 4 different values you take between 0.05 and  0.05 let us say 0.1, 0.15 and 0.2 if you 

substitute here what is the value of n so  you may get 2 you know you may get a range 

because there is a plus minus ok so you may  get a range which is what I plotted here.  So if 

you change 𝜀 here 0.05 you may get one limit for you know 0.0 next limit  for 0.1 then 0.05 

you get another limit and 0.2 you get another limit.  So obtain a diagram so this is the 

diagram we are going to get which basically tells  you how n changes with respect to this 𝜀𝑎 

ok.  So depending on 𝜀𝑎, n is not going to be a constant n is going to vary in this fashion  ok 

so this is your next problem.   

 

So your third problem is also relevant to your imperfection related ok so this problem  is 

also very important for us to understand what we studied before.  So this diagram you can 

refer this diagram is known to us ok this was used before for  some theoretical explanation.  

So you have a sheet which is pulled in both the directions let us say 𝜎1 and 𝜎2 principle  

stresses in one direction two direction and let us consider A region and B region, A region  is 

actually is uniform region, B region is like a groove you can say or a neck region  so where 

thickness is going to be 𝑡𝐵 and outside is going to be t.  So this is where we defined 𝑓 =
𝑡𝐵

𝑡𝐴
 if 

you remember this right.  So this is the situation we have so what is it said in the question 

an element of material  has an imperfection characterized by 𝑓0 = 0.995 it is same as that of 

f  but we know that the f is not going to remain same so we say 𝑓0 as shown in this figure  

here this particular figure ok. 

 



  So that particular material has got this imperfection defined by 0.995 so small imperfection 

value  ok so it is deformed in equi-biaxial tension that is given here ok.  So 𝜎1𝐴 = 𝜎1𝐵 means 

that means  with respect to A location with respect to A region ok with respect to a region 

your  𝛼 is known for biaxial tension 𝛼 is nothing but one you can keep.  So and the entire 

material is going to follow this particular stress strain law  σ ̅ = 600(0.004 + ε ̅)0.2 MPa and 

you know the fact that this  is nothing but your pre-strain value such a small value 0.004 

MPa ok so pre-strain value.  So now what is the question?  Determine the principal stresses, 

principal stresses means you have 𝜎1 and 𝜎2  and the stress ratio that is nothing but 𝛼 in the 

groove region when the uniform region  starts to deform, when the uniform region just 

starts to deform.  So this A region is just going to deform start to deform at that particular 

situation you  need to get principal stresses and stress ratio in the groove that is B.  So I am 

going to say 𝜀𝐵, 𝜀1𝐵, 𝜀2𝐵  these three values you have to evaluate. 

 

  So which means that one should understand the fact that the 𝜎1𝐴, 𝜎2𝐴, 𝛼𝐴 are  not going to 

be same as that of this that is why this question is actually asked right.  So first of all we 

need to evaluate these three values in the B region that is in the  groove region.  This B is 

nothing but your groove region because your thickness is less a is a uniform region.  So now 

when the uniform region starts to deform so that is a key point okay.  We can say that for 

both the elements if this is the situation the material has zero plastic  strain. 

 

  It is just going to deform okay.  So if the plastic strain value is given you can directly use it.  

If it is not given then we can simply say material has zero plastic strain because we  do not 

have any other reference of what is the strain when the uniform region starts  to deform 

okay.  It may have small value but then we do not have it in the question.  So we can simply 

say that this 𝜀  ̅which is nothing but plastic strain let us  say this is going to be zero. 

 

  So that refractive stress 𝜎̅ = 600(0.004)0.2 = 198.9 𝑀𝑃𝑎 okay.  So this 𝜎 has been obtained 

now okay.  So when the uniform region starts to deform suppose if plastic strain 𝜀  ̅is some  

value is given then we have to use that value to get  𝜎 . 

 

  So which is not going to be this it could be slightly some other value okay.  So now given 

the situation we are saying that this fellow is going to be equal to 0 okay.  So now let us 

come to A region which is a easy region for us to evaluate certain things.  So in the A region 

now because I know 𝜎 because I know 𝜎 I have to relate  this 𝜎 to one of the principle 

stresses.  So directly we are going to use some yield function and well known in function 

right  now for us is nothing but your Von Mises yield function. 

 

  So as per Von Mises yield function we can directly write 
𝜎̅ 

√(1−𝛼+𝛼2)
= 𝜎1 we say since it is 

A region I am  writing 𝜎1𝐴.  So suppose if you put 𝛼 = 1 because we say that it is the A 

region or  the uniform region we say that it is balanced or equi, equi-biaxial tension.  So 𝛼 =

1 okay.  So this also is 1.  So 1 minus 1 plus 1 square root goes off so, 𝜎 = 𝜎1𝐴. 

 



 So what does it mean?  That means we can directly write 𝜎1𝐴 = 198.9 𝑀𝑃𝑎.  So we need to 

find 𝜎1𝐵 and 𝜎2𝐵 . So now what we have done is we have found  out 𝜎1𝐴. 𝜎1𝐴 has been found 

out okay.  Then if you know 𝜎1𝐴, 𝜎2𝐴 can be found out but that may not be useful for  us 

because we know 𝛼 okay.  So it may not be useful for us it will be same so but it will not be 

useful for us.  So directly we are going to B region.  So in B region okay if you want to go to B 

region then we have to use some already known  value that is 𝜎1𝐴 okay. 

 

  So if you want to find 𝜎1𝐵, my aim is to find 𝜎1𝐵. So 𝜎1𝐵 has to be  found out with a known 

value let us say 𝜎1𝐴  then the best relationship that I can  find out is nothing but my f value, 

my f value is not it.  So we have already derived that 𝑓 =
𝑡𝐵

𝑡𝐴
  from here we have derived the  

stress ratio also okay in connection with f okay and that is what is given here.  So 𝜎1𝐵if you 

want that will be obtained by 
𝜎1𝐴

𝑓0
.  This we already derived.  𝜎1𝐵 if you want you can have 

𝜎1𝐴

𝑓0
, 𝜎1𝐴 = 198.9 and 𝑓0 = 0.995 and that will give you 𝜎1𝐵 = 199.9 𝑀𝑃𝑎 right.  So it is okay 

like for example 𝜎1𝐵 = 199.9 𝑀𝑃𝑎 would be larger than 𝜎1𝐴 that  is what is given to us. 

 

  So now what I am going to do is I am going to now 𝜎1𝐵 is found out.  So my this value is 

now ready okay.  So now this value is ready.  So now I need to find out let us say 𝜎2𝐵 or 𝛼𝐵 

okay.  If I know 𝛼𝐵 I can find 𝜎2𝐵 or if I know 𝜎2𝐵 I can find 𝛼𝐵 but  now what I am going to 

do is to find out 𝛼  now. 

e 

  So now the same thing.  So if I know 𝜎1𝐵 major principle stress is known.  If I want to know 

𝛼 the simple relationship what I have is Von Mises yield function.  So I can directly write for 

region B also 
𝜎̅ 

√(1−𝛼+𝛼2)
= 𝜎1𝐵 = 199.9 . If you simplify this you will get 𝛼 = 0.99 which is 

not actually 1.  You will see that the with respect to A region 𝜎1𝐴 = 𝜎2𝐴 which  is given but 

actually if you calculate 𝛼 in the groove region it is slightly less than  1.  It is not equi-biaxial 

tension.  It is biaxial tension but 𝛼 ≠ 1 there is a change.  So one has to be little bit careful 

and understand this particular thing and that is all.  So if 𝛼 is known to me so now I can find 

𝜎2𝐵 because 𝜎2𝐵 = 𝛼𝜎1𝐵 = 0.99 × 199.9 = 197.9 𝑀𝑃𝑎.  So I am going to use two important 

relationship.  One is my Von Mises yield function 
𝜎̅ 

√(1−𝛼+𝛼2)
= 𝜎1 and then this particular 

relation 𝜎1𝐵 =
𝜎1𝐴

𝑓0
 okay.  These two relationship this one and this one these two 

expressions are actually used to  evaluate the entire problem.  So region A, region B okay 

are divided and we can apply these equations appropriately  to get a required answer.  But 

again I am telling uniform region starts to deform if some strain effective strain  is given we 

have to use that instead of zero plastic strain. 

 

  So now here we do not have choice to assume it to be zero even at the start of the 

deformation  okay.  So this is the third problem.  So now let us go to fourth one which is a 

general one okay.  So now assuming that tensile necking begins at maximum load okay so 

that we already put  this condition is not it.  So we already said that your 𝑑𝑓 = 𝑓 = 𝑑𝑃 = 0 



right.  Begins at maximum load find the actual true strain 𝜀 at necking for the following  

material loss after deriving a general equation okay.  So basically you need to get the actual 

true strain at necking.  So basically you can say 𝜀𝑢 you want to get okay at necking.  But only 

difference is there are three different stress strain loss that is given and some  specific 

values are given to get some actual values for this 𝜀𝑢 okay.  One is 𝜎 = K(𝜀 + 𝜀0)n this 

equation we already  know where 𝜀0 is your pre strain that value is given 0.05 and n is also 

given 0.25  and K is given as 500 mega Pascal.  There is next equation 𝜎 = 𝜎0 + K𝜀 this is a 

very linear  equation between true stress and true strain and 𝜎0 is nothing but 250 MPa and  

K is about 350 MPa they have and another one is a trigonometrical function okay 𝜎 =

𝐾 sin(𝐵𝜀) and K is given as 500 MPa and your B is let us say  2𝜋.  So since it is tensile 

necking begins as maximum load you want to get actual true strain we  are going to put the 

same condition which we derived before that is 
𝑑σ

𝑑ε
= 𝜎 or 

1

σ

𝑑σ

𝑑ε
= 1 we said is not  it the 

same equation can be used here.  So 𝜎 s are given so you have to differentiate and equate it 

to the same equation get a general  form of the equation apply these values you will get 𝜀 

that would be the approach.  So 𝜎 = K(𝜀 + 𝜀0)n so 
𝑑σ

𝑑ε
= 𝑛𝐾(𝜀 + 𝜀0)n−1 = 𝐾(𝜀 + 𝜀0)n = 𝜎 .  

So this 𝜎 = 𝐾(𝜀 + 𝜀0)n so you can equate like  this from this you will get 𝑛 = 𝜀0 + 𝜀𝑢 and 

𝜀𝑢 = 𝑛 − 𝜀0, n is already given as 0.25,  𝜀0 is 0.05 so 𝜀𝑢 would be 0.2 okay.   

So this is straight line fit 𝜎 = 𝜎0 + K𝜀 so which is  nothing but 𝑌 = 𝑚𝑋 +  𝐶 slope of this 

curve would be nothing but slope will  be nothing but m only so you will get K , 
𝑑σ

𝑑ε
= 𝐾 =

𝜎 = 𝜎0 + K𝜀  is original equation so from this you can get 𝜀𝑢 =
350−250

350
= 0.  Your 𝜎 =

𝐾 sin(𝐵𝜀) then 
𝑑σ

𝑑ε
= 𝐾 𝑐𝑜𝑠(𝐵𝜀) = 𝐾 sin(𝐵𝜀) = 𝜎   so from this you can get 𝜀 =

1

𝐵
𝑡𝑎𝑛−1(𝐵) 

is nothing but  you can substitute 2𝜋 here and you may get some value please check it this 

would be your  𝜀𝑢.  So three values of 𝜀𝑢 all are different these are going to be different these 

are  not going to be same so the condition remains same that is tensile instability condition  

at maximum load is being applied but if you change the material loss which the material  is 

going to follow then accordingly your 𝜀𝑢 prediction is also going to change it is  not a small 

change it is a going to be a good change this could be 0.2 this is 0.29 this  could be maybe 

0.22 maybe 0.23 will come so all these values is going to tell you finally  that depending on 

the material law the instability prediction is going to be different.  

So we have seen four problems in this so four problems so here we have used the maximum  

load condition at the narrow section and got 𝑃𝑚𝑎𝑥 and use that 𝑃𝑚𝑎𝑥 to get to apply the  

same thing to the wider cross section wider section and in this from this you can get  at that 

particular maximum load if that is the case what is the length in a small part  of that wider 

region is what we found out.  Next one is similar situation you have a narrow region and 

wider region if it is pulled up  to failure now they are asking us how to find out the variation 

in n with respect to the  strain values within a small range of strain.  So in that way we 

looked into the problem the tone of the problem is basically to relate  n, 𝜀𝑢 and the 

imperfection so we started in this way.  We started in this way third one is straight away 

that our balanced biaxial tension situation  and then the situation in the uniform region that 



is in the A region is given to us now  we wanted to find principal stresses and 𝛼 in the B 

region so here also we have used  two important expression one is the Von Mises yield 

function expression and the heterogeneity  factor f but not related to thickness we have 

already converted that into stress ratio that  is what we have used here in the second 

equation and then we were found out all the values. 

 

  The fourth one is a very general one suppose if the material fails at the instability the  

maximum load then you want to find uniform true strain so then in that case how material  

law is going to change the value so that is what is given here.  So with this we stop next 

module we are going to start a new section.  


