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So, we are going to continue our discussion in this lecture load instability and tearing.  So, in 
the last session we discussed about you know the meaning of imperfection that  you can give 
in the sheet and then what is the use of that and then we derived an equation  for 𝑛 − 𝜀u ok.  
It is a function of imperfection severity that is 𝑑𝐴0 and n strain hardening exponent  right.  So, 
we will continue our discussion in this session.  So, next one what we are going to see is the 
effect of rate sensitivity or strain rate  sensitivity ok.  So, we understand this particular topic 
rate sensitivity means how sensitive is your is  our deformation with respect to change in 
strain rate. 
 
  Slowly or quickly you do the test.  So, how is going to affect the deformation ok or instability 
development or limit strains  ok.  So, that is what the main aim here is.  But until now what 
we have assumed is basically the material actually strain hardens ok and  mostly it is 
insensitive to strain rate mostly it is insensitive to strain rate that is what  we were assuming. 
 
  But that can happen in room temperature ok but the problem is even necking starts then  
the effect of strain rate is going to become significant during that process during that  
localization or necking process.  Even at room temperature when you assume the strain rate 
effect to be small ok but if you  see that once necking starts then the effect of strain rate is 
going to be significant.  So, we cannot actually neglect the effect of strain rate ok because when 
necking starts  you will see that due course that there is going to be unstable increase in one 
of the  strains and you will see that that is going to be a reason for material failure ok.  So, now 
let us assume a material which is actually non strain hardening but it follows  this particular 
strain rate you know flow stress model flow stress relationship 𝜎1 = 𝐵𝜀1̇

𝑚 where m is called 
as strain rate sensitivity  index.  So, we are not bringing in n here strain hardening exponent 
n ok is not available in this equation  which is a general equation that we have seen before 
generally we have seen that equation  before but right now we are using σ = 𝐵𝜀̇𝑚 that type 
of  equation we are saying and here you know that m is called strain rate sensitivity index  we 
know how to get this you know material property ok. 
 
  And here so B is actually a fit constant like what we see as K in case of Holloman power  law 
equation.  So, here you will see that 𝜀1̇ is nothing but a true strain rate which can be  defined 

as 
𝑑𝜀1

𝑑𝑡
 ok that means rate of change of your major strain  ok that is defined by 

𝑑𝜀1

𝑑𝑡
=

𝑑𝑙 𝑙⁄

𝑑𝑡
=

𝑣

𝑙
 

and 𝑑𝑙 𝑡⁄  is nothing but your cross at velocity that you use for  tensile test and 𝑣 is nothing 
but your cross at velocity  and l is nothing but your instantaneous gauge length ok during 
tensile test.  So, you can get true strain rate from these two values ok.  So, you can see that 𝜀1̇ 
depends on a cross head speed and the gauge length instantaneous  gauge length l why 
because it is a true strain rate ok.  So, now let us again go back to our this particular diagram 
which you have discussed in the previous  class. 



 
  So, you have a sheet with imperfection at this particular position let us say ok and  it is 
getting deformed.  So, it is a uniform region is imperfect region.  So, now the load can be 

written as 𝑃 = 𝜎1𝐴 = (𝜎1 + 𝑑𝜎1)(𝐴 + 𝑑𝐴) ok.  So, this will give relationship 
𝑑𝜎1

𝜎1
= −

𝑑𝐴

𝐴
 and 

you  will see that when you have this particular equation you will see that the difference  in 
stress in these two regions that is 𝜎1  is proportional to  the magnitude of imperfection is 
proportional to the magnitude of imperfection defined by 𝑑𝐴 .  So, larger the severity of 
imperfection you will have a large difference in the 𝜎1 values between the net region which 
is nothing but a imperfect region and the neighboring  region which is nothing but a uniform 
region ok. 
 
  So, now what we are going to do is that is what I have discussed here difference in stress  for 
the two regions is proportional to the ok your magnitude of imperfection which is  nothing 
but 𝑑𝐴.  So, now as usual what I am going to do is I am going to use this particular material  
law ok and I am going to get a condition ok.  So, now if I differentiate the material law ok and 
if I put differentiate the material  law I will get a condition for my you know this particular 

change in strain rate with  respect to the strain rate which is nothing but 
𝑑𝜀̇1

𝜀̇1
=

1

𝑚

𝑑𝜎1

𝜎1
= −

1

𝑚

𝑑𝐴

𝐴
 

ok.  So, you have to differentiate this ok and you can substitute here you will get this  

particular equation 
𝑑𝜀̇1

𝜀̇1
=

1

𝑚

𝑑𝜎1

𝜎1
= −

1

𝑚

𝑑𝐴

𝐴
 and minus  

𝑑𝐴

𝐴
  you can substitute here you will get 

this particular relationship and m is nothing but  my strain rate sensitivity index ok.  So, now 
this equation is going to tell you certain important observation for a smaller  value of m ok 
you will see that the difference in strain rate ok the difference in strain  rate will be large and 
the imperfection will go rapidly ok. 
 
  So, difference in strain rate means between these two region there is an imperfect region  
there is a perfect region ok let us see there is an imperfect region ok and there is a perfect  
region ok this is your neck let us say which is a imperfection we have and this is a neighboring  
region which is a uniform region ok. You will see that the difference in strain rate between  
these two ok is proportional to m in this fashion ok.  So, smaller value of m which is generally 
seen in room temperature for most of the materials  ok a room temperature if you evaluate 
m it is going to be pretty small you will see that  there is going to be large difference in strain 
rate between this region and this region if  you measure it there will be large difference in 
strain rate between this region this region  which is actually one important reason for 
imperfection to grow rapidly.  So, this neck will be further localized and you will have a 
fracture as quickly as possible  if m is low which is what you see in a room temperature type 
of deformation ok. But there  are some materials like super plastic materials where m is going 
to be very large of the all  order of let us say 0.3 you will see that the extension could be several 
hundred percent  as a growth of imperfection is very gradual. So, for the neck to have to 
become severe  and you need to have a fracture in that particular failure in that particular 
location due to  localization of neck you will see that m plays a larger role and for those 
materials which  has got pretty large m value ok you will have several hundred percentage of 
elongation or  extension why because the neck growth is actually going to be very gradual the 
imperfection  growth is going to be very gradual which is just opposite to what you have seen 
in this  particular cases for conventional material which are not super plastic in nature you  
will see that it will grow rapidly. So, that is why the super plastic materials  are generally 
having very high ductility of the order of let us say 100%  sometimes 300% why because it 
controls 𝜀t − 𝜀u ok. So, 𝜀t − 𝜀u is controlled by m that is why we were saying that it is going to  
control the post necking phenomenon which is actually going to control the growth of  neck 



whether it is going to grow rapidly or slowly gradually.  So, some metals you know people 
found out that like molten glass which has got m of  the order of 1 ok 𝑚 = 1 can deform almost 
indefinitely ok. 
 
 So, in materials with  lower m value rate sensitivity will not greatly influence the maximum 
uniform strain ok, but  it will affect post uniform elongation ok in which materials with higher 
rate sensitivity  will show higher post uniform elongation. So, necking will be affected by rate 
sensitivity  ok. So, though maximum uniform elongation is not getting affected, but around 
that particular  stage you will see necking is going to start and that will be affected by rate 
sensitivity  and it is found that the post uniform elongation we said that is 𝜀t − 𝜀u  is higher in 
which materials having greater rate sensitivity ok.  So, through the simple analysis one can 
study the effect of strain rate sensitivity index  on the growth of neck ok. So, now the point 
here is as we said that in the neck region  your strain rate is going to be very large as compared 
to the outside region. 
 
 So, one  can develop theories based on that to predict your limit strains or instability strains.  
So, now what we are going to discuss in this section is called as instability tensile instability  
in stretching a continuous sheet. So, when we say continuous sheet it means that for  example 
a conventional sheet which is undergoing deformation through tools like punch ok. So,  
generally sheets are deformed by punch ok which will give some geometric constraint  on the 
development of strain distribution in the sheet ok. So, like punch can change  a strain 
distribution and the contact can change the strain distribution because there  is some 
geometric constraint given to the sheets ok. 
 
  So, you will see that when we stretch a continuous sheet you know the standard way we will 
stretch  we do it ok. So, you will see that a localized neck will develop in that location where 
diffuse  neck was there before ok. So, like what we see in the case of tensile strip and in that  
situations generally it is found that width of local neck ok. Suppose if you measure width  of 
local neck is almost equal to that of your sheet thickness ok and it is so localized  that it 
generally does not affect the overall strain distribution outside that region ok.  So, now what 
will happen because of such localization ok quick tearing can occur in that situations  and 
your entire process will be over the overall formability will be lost in that. 
 
  So, if you want to analyze that we as usual we take a sheet with undergoing deformation  in 
this state of stress you have 𝜎1, 𝜎2, 𝜎3 = 0 because of plane stress and 𝜎1 will give raise to 𝑇1, 
𝜎2 will give raise  to 𝑇2 for a particular thickness you can get this values and that is what set 
of stress  and strain is actually represented here for a proportional process ok.  Of course you 
have 𝜎1 and 𝜎2 is obtained by 𝜎2 = 𝛼𝜎1  , 𝜎3 = 0 you have 𝜀1, 𝜀2 = 𝛽𝜀1  and 𝜀3 = −(1 + 𝛽)𝜀1 
which you have already derived and  principle traction can be obtained by 𝑇1 = 𝜎1𝑡  and 𝑇2 =
𝜎2𝑡 = 𝛼𝑡 .  These are all we already discussed and one can get data from this.  So now what 
we are going to do is we are going to put a condition for local necking, we are  going to put a 
condition for evaluate a condition for local necking and as usual we are going  to use 
maximum tension for that.  So we are saying that necking will to some extent start ok onset 
of necking ok is assumed  to start when the major tension reaches a maximum value which is 
represented by this  particular equation ok. 
 

  So we are saying that 
d𝑇1

𝑇1
=

d𝜎1

𝜎1
+

d𝑡

𝑡
=

d𝜎1

𝜎1
+ d𝜀3 =

d𝜎1

𝜎1
− (1 + 𝛽)d𝜀1.  With this this entire 

equation can be framed.  Now what happens when the tension reach maximum we are going 

to put this equation to be equal  to 0 when we set it we can get 
1

𝜎1

𝑑𝜎1

𝑑𝜀1
= 1 + 𝛽 is not it.  So if 



you put this equation to be equal to 0 you will get this particular equation 
1

𝜎1

𝑑𝜎1

𝑑𝜀1
= 1 + 𝛽 and 

this equation is actually  known to us before ok in considering condition we also get this type 
of equation and we the  left hand side we call it as a normalized strain hardening you know 

parameter ok 
1

𝜎1

𝑑𝜎1

𝑑𝜀1
= 1 + 𝛽 ok.  So here as usual your 𝛽 is nothing but your strain ratio ok 

depending on 𝛽 values  one can get this condition and you will see that this equation is valid 
it is very important  this equation is valid only for those process in which 𝛽 > −1  why 
because during this process we can expect thinning we can expect thinning. 
 
  So this diagram you have to refer ok so 𝛽 = −1 ok in all  this process you will get some sort 
of thinning in the sheet while deforming only in those  process this equation is valid and if 
you go in this direction the one which is going  to thicken ok below this in this zone if you pick 
up ok this equation is not valid  why for simple reason that if it is strain hardening material 
the tension will never  reach a maximum in this case tension will never reach a maximum and 
we are putting a  condition here no maximum tension is reached ok maximum major tension 
is reached that is  not going to happen in this type of situations where your 𝛽 < −1 ok why  
because it is going to thicken on the other hand if it is a strain hardening material  then further 
it is going to complicate the situation the tension will never reach a maximum.  So you cannot 
put this condition this condition is valid in all this situations ok when you  have 𝛽 > −1 ok 
the form of the equation is already known only thing  is in the previous equation we got the 

previous model we got 
1

𝜎1

𝑑𝜎1

𝑑𝜀1
= 1 ok and then we applied 𝜎1 = 𝐾𝜀1

𝑛 we applied  is not it and 

then we got 𝜀u = 𝑛 ok if you remember that ok but here only  change is becomes a function 
of 𝛽 now ok. So now as usual we say that for material obeying  a power law like σ̅ = 𝐾ε̅𝑛 and 
for von Mises material this  can be written as a 𝜎1 = 𝐾𝜀1

𝑛  and here I just mention  𝐾′ because 
𝐾′ could be a function of K and 𝛼 and 𝛽 , K could be a function  of K strain hardening strength 
coefficient n strain hardening exponent stress ratio and  strain ratio ok. So if you want to use 
original form of the equation still one can use now  what our problem is now you have to if 

you differentiate this particular equation and  put a condition you will see that 
1

𝜎1

𝑑𝜎1

𝑑𝜀1
=

𝑛

𝜀1
. So 

it is going to be a similar derivation as we did before  ok only thing is like on the right hand 

side you have 
𝑛

𝜀1
. 

 

  So now both the you know left hand sides are equal 
1

𝜎1

𝑑𝜎1

𝑑𝜀1
 and  on the right hand side you 

have 1 + 𝛽 and here you have 
𝑛

𝜀1
. So we are  saying that 1 + 𝛽 and 

𝑛

𝜀1
 ok. So 

𝑛

𝜀1
= 1 + 𝛽  ok. So 

since this is a process happening at instability when necking is start so you can  say 𝜀1
∗ =

𝑛

1+𝛽
 

and 𝜀2
∗ = 𝛽𝜀1

∗ = 𝛽
𝑛

1+𝛽
 ok. So assuming that assuming that your 𝛽  is going to remain same 

even  at maximum tension even at maximum tension or during necking ok during local 
necking  during your local necking isn't it ok. 
 
 We are going to assume that 𝛽 is going to  remain same but then it may not be true we will 
see that ok.  So still you will see that we are going to have this particular equation so 𝜀1

∗ =
𝑛

1+𝛽
, 𝜀2

∗ = 𝛽
𝑛

1+𝛽
 ok. So now if you add these 2 if you add these 2 ok 𝜀1

∗ + 𝜀2
∗ = 𝑛.  So this is a 

simple condition for your local necking with the help of maximum tension we  derived it ok. 
So with the help of maximum tension we derived it ok. 
 
 So now this 𝜀1

∗ and 𝜀2
∗ as we discussed before these are actually called as forming ok limit 



strains  these are actually called as forming limit strain one is major strain other one is minor  
strain ok.  So 𝜀1

∗ and 𝜀2
∗  are strains at maximum tension because it satisfy that maximum  

tension condition ok and that equation can be drawn in this diagram ok Y axis being 𝜀1and X 
axis you have 𝜀2, 2 principle strains and if you plot that particular equation  𝜀1

∗ + 𝜀2
∗ = 𝑛 it will 

give you a line like this which is called  as maximum tension line and it will meet Y axis at n it 
will meet Y axis at n why because  𝜀2 = 0 here 𝜀1 = 𝑛  in that equation. So it will meet at  n 
and it is going to have an angle of 45 ° ok.  So now so what is the physical meaning of this line 
this line tells that any data point  you pick up any 𝜀1 data you have it here it is going to tell 
you that maximum  tension is reached when you pick up that particular 𝛽 when you pick up 
that particular 𝛽  say for example when you put ok 𝛽 = −1/2 ok when you put 𝛽 = −1/2 in 
this equation ok 𝛽 = −1/2 let us say ok here also  𝛽 = −1/2  if you put what will happen here 
so your 𝜀1

∗ = 2𝑛 , 𝜀2
∗ = −𝑛 ok. So it is −𝑛, 2𝑛 is a data point  at which you are going to have 

localized snaking if you follow 𝛽 = −1/2  if you follow 𝛽 = −1/2  ok. 
 
 So that is the meaning of this  particular line ok. Similarly if you follow any other you know 
𝛽 value you will get  different place at which you are going to have localized necking ok.  And 
it also tells that as long as you are below the line you are actually in the safe  region as long as 
you are below the line you are actually in the safe region once you  cross this line that means 
maximum tension is reached ok local necking is started that  would useful deformation 
formability is lost so the material will be will not be will be  unsafe ok above this so I am 
writing failed region above the line. So this actual maximum  tension line actually separates 
safe strains from failed strains ok.  So below the line you will have useful forming window so 
you can deform any sheet you can  make any component made of any material ok. 
 
 So if you get this maximum tension line you  have to maintain the deformation such that all 
the strain data points will be below this  particular maximum tension line then there is no 
problem ok. But there is one point here  so the important point here is when we do 
experiments when we do actual trials ok and  find out this 𝜀1

∗ and 𝜀2
∗ there is some discrepancy 

as shown in this particular  figure as shown in this particular figure. So I think we understand 
the fact that you  know like this kind of you know sheets can be used for different you know 
strain paths  we will discuss about it little later and you will see that all these sheets will have  
a circle grids on the on its surface of a particular dimension and then you deform the  sheet 
ok say for example here all are deformed at different 𝛽 values ok.  So here probably 𝛽 = 1, 2 
this could be 𝛽 = 0 plane strain 2  this could be 𝛽 is equal to your uniaxial value whatever 
you have ok. So if you deform  it and allow it to fail ok so the circle grids will be converted 
into ellipses ok and you  can measure your limit strains 𝜀1 and 𝜀2 closer to the neck region 
and you can get  𝜀1

∗ and 𝜀2
∗ from this ok from experiments point of 𝜀1

∗ and 𝜀2
∗  you can get from 

this ok. 
 
 So and you can compare that all this data  ok with respect to maximum tension line as 
discussed here ok. So both the quadrants you  can get for first quadrant as well as second 
quadrant. So first quadrant ok and second  quadrant one quadrant is 𝛽 > 0 the other case is 
𝛽 < 0 ok.  So 𝛽 > 0 0 other one 𝛽 < 0. So this kind of data points can be  compared from 
experiments as well as from maximum tension line and that will lead to  something called as 
forming limit diagram or forming limit curve it is called forming  limit curve FLC ok. 
 
 It will tell you the onset of local necking it will tell you onset  of local necking ok which means 
as I told in the previous diagram it will separate safe  and failed strains in a sheet ok. But when 
you compare experimental data and  maximum tension line as I mentioned ok this is your 
maximum tension line and your experimental  data is given and maximum tension line is 



given ok and it continues here ok both are  shown here. Maximum tension line and 
experimental data are put in one graph and they are compared  here you will see that or when 
you say 𝛽 < 0 ok that means −1/2, 0 or in between if you see the experimental data and 
maximum tension line to some extent  can coincide well ok. So when you go for 𝛽 <
0 experimental FLC coincides with maximum tension line mostly there is no issue. But  on the 
right hand side ok in this particular stage the right hand side 𝛽 > 0  if you see there is 
significant difference between your experimental data and your maximum  tension line ok. 
 
 So you are forming limit curve ok you are forming limit curve from  experiment does not 
coincide with maximum tension line that you get from the previous  theory ok. Why 
something is happening to the growth of neck ok which is not observed in  other 𝛽 values 
until now but if you pick up on the right hand side quadrant when 𝛽 > 0  ok. Let us say 𝛽 = 1   
ok 𝛽 = 1 would be be forming limit curve would be somewhere here if you take 𝛽 > 1 and if 
you take 𝛽 = 1 for example ok. So there is something ok that  stabilizes the or slows down a 
growth of neck ok once reaches once tension reaches a maximum  value ok. So that 
stabilization actually delays you know whether you are forming limit is  reached or not and 
there could be some more useful deformation safe region ok that can  be attained by the 
material that is why you have large difference or some difference between  your maximum 
tension line and experimental data and the pattern is also different you  see the maximum 
tension line keep on decreasing but on the right hand side you will see there  is some 
increment in your forming limit strain ok. 
 
  So there is some process that delays your or stabilizes or slows down the growth of  neck ok 
once maximum tension is reached ok. So what is that ok so what is that that can  be 
understood from this particular analysis. So this diagram is already known to you this  
diagram is already known to you already introduced this to you. So what we are considering 
here  is a simple sheet a thin sheet ok and you are seeing that the principle stresses 𝜎1, 𝜎2 are 
mapped here and I know your 1 is along this 1 direction 2 is along 2 direction  and it is 
undergoing deformation and a localized neck is formed here localized neck is nothing  but 
this dotted region this region is nothing but your localized neck.  The cross section is shown 
here you can see there is a local neck that is formed already  formed here ok that region I am 
calling it as B and outside region I am calling it as  A and that is also shown here ok this local 
region localized neck region is called as  B and outside that region is called as A here and it 
has got a thickness let us assume that  the sheet has got a thickness ok. 
 
 We are going to define something called as  𝜃 , 𝜃  is actually the angle between the neck 
direction and the major principle  stress that is 𝜎1 ok. So now there are certain things that we 
need to understand  in this first one is what we are saying is local neck as shown in this figure 
would occur  along a line of pre-existing weakness at a limit strain ok in the uniform region 
that  is approximately given by 𝜀1

∗ and 𝜀2
∗ which is described before ok.  What does that mean? 

That means that suppose you take a sheet and you assume that there  is an imperfection like 
we have done before ok then necking is going to happen in the  pre-existing weakness let us 
say for example imperfection ok along the direction it is  going to happen and let us imagine 
that necking is going to happen in that location then 𝜀1

∗ and 𝜀2
∗ uniform region is shown as a 

forming limit strain ok that is a physical  meaning of this 𝜀1
∗ and 𝜀2

∗ and how is it related to this 
B region is  what is given here ok. Local neck would occur along a line of pre-existing  
weakness at a limit strain in the uniform region ok why because the defect is already  weaker 
it is going to fail first ok. So, we are going to have a conservative approach  to choose 𝜀1

∗ and 𝜀2
∗ 

in the uniform region that is in the A region ok. 
 



  So now if we identify uniform region as A and imperfection as B and imperfection meaning  
that is where necking is going to happen then certain conditions have to be analyzed assumed  
when we do this necking process analysis. What are the conditions I have noted here  the 
stress and strain ratios we call 𝛼  and 𝛽  must remain constant as assumed in  the 
differentiation before ok before and during the necking process. Basically 𝛼 and 𝛽  should 
remain throughout the course of deformation ok even during necking also which is not 
actually  true but let us say it is like this. Then the process is a localized one the necking  
process is a localized one it is going to be there in a particular very small location and  the 
strain distribution outside the location is almost same something like that you have to  
maintain and the neck must take a form of narrow trough it is not you know that is why it is 
called  localized one ok narrow trough in the shear rather than a patch or diffuse region that  
would influence the conditions away from the neck. So it is so localized that it should not 
affect  anything happening outside that region ok which means that it is going to be a narrow 
trough ok. 
 
  So now what we are saying is once the necking process becomes severe ok so diffuse necking  
has happened and then now localization is severe let us say the uniform region A this region 
A ceases to strain ok it will not strain it will stop strain ok which means that the strain  
increment parallel to the neck in the Y direction in the figure ok the strain  increment parallel 
to the neck that is along the Y direction ok will be 0. So I am going to say  that along the neck 
direction that is Y ok I am going to say that 𝑑𝜀𝑌 = 0 .  So once the necking process becomes 
severe the uniform region A ceases to strain and  moreover the strain increment parallel to 
neck ok gradient strain gradient will develop across  the neck along the neck it is going to be 
strain increment is going to be 0. So I am going to write  𝑑𝜀𝑌 = 0. So once localized necking 
has done we can measure there are lot  of grids on the seed surface so you can measure 𝑑𝜀𝑌 
ok practically you can measure it and  that so the increment is going to be 0 ok. 
 
 So now let us go ahead to the next one there  is something called a geometry constraint ok. 
Geometry constraint means these two regions are  attached to each other is not it. So these 
two regions A and B are actually attached to each  other right. So because of this geometry 
constraint requires that strain increment along the neck  strain increment along the neck 
must be equal to that in the same direction outside it.  That means if you want to measure 𝑑𝜀 
along neck that is Y in B that should be equal to the  strain increment along the same direction 
in A also Y because these two are actually constrained  these two are actually connected these 
two are actually connected that means the strain  increment in Y direction both regions A and 
B along the neck must be 0. 
 
 So I am going to say  that 𝑑𝜀𝑌𝐴 = 𝑑𝜀𝑌𝐵 = 0 which also in a way  tells that my 𝛽 = 0 for 

necking ok. So 𝛽 =
𝑑𝜀2

𝑑𝜀1
 , so here you can say 2 is like you can say Y ok. So which also tells a fact 

that your  𝛽 = 0 for localized necking. This indicates that necking neck can develop only  
along the direction of 0 extension. 0 extension means what? That is along your Y direction 
with  respect to this figure it is along Y direction only in this particular region B you are going  
to have you know development of neck ok. 
 
 So with this entire thing from this figure  what we are going to do is we are going to relate 
you can see that there are two coordinates X Y  and 1 2 we can relate these two ok we can 
relate strain increments in these two you know axis ok 1  2 and X Y by this equation ok. So 
𝑑𝜀𝑌 = 𝑑𝜀1𝑐𝑜𝑠2 𝜃 + 𝑑𝜀2𝑠𝑖𝑛2 𝜃 = 0 I am putting a condition now.  So by putting this condition 
what I am going to do is I am going to show that when you take 𝛽 = 1 that is when you pick 



up a 𝛽 value on the right hand side of this diagram  this particular diagram right hand side of 
this particular diagram I am going to say that this  direction of 0 extension does not exist ok. 
Whereas if you put some other condition for  example in this side tensile and plane strain ok 
the direction of 0 extension exists that  means there is some 𝜃  there is some definite 𝜃 . 
 
 This 𝜃 actually defines the angle  isn't it. So the B region being your neck region and the 
direction of that along Y is going to  define the direction of 0 extension this 𝜃 is going to be 
something which you are going to  calculate here ok. So this equation relates your strains in 
1 2 with respect to your X Y and I am  using this and this condition is already known to 
me 𝑑𝜀𝑌 = 0 ok.  And now what I am going to do is for isotropic material which is what we are 
discussing until  now and uniaxial tension ok this equation is already derived by us 𝑑𝜀2 =

 𝑑𝜀3 = −
 𝑑𝜀1

2
 you already derived this ok. So if you put  this condition in this equation you will 

see that this equation will give you 𝛽 = −1/2 and if you put it in this equation it will give 𝜃 =

55° ok.  So you can get this I mean somehow you have to bring in 𝛽 into this so 
 𝑑𝜀1

𝑑𝜀1
 here also 

 𝑑𝜀2

𝑑𝜀1
 you can put ok. 

 
 So this will become  𝛽 ok that 𝛽 value if you put it here you will get 𝜃 = 54.74° ok. So then  
which means that there is some definite 𝜃 ok that means the angle between your direction  of 
0 extension and the principal stress exists in uniaxial ok. Now when you go for plane strain  

we know that 𝛽 = 0 so if you put 𝛽 = 0 here ok that means 
 𝑑𝜀2

𝑑𝜀1
= 0 here then you will see 

that 𝜃 = 90°  which means the pre-existing that your 0 extension line is going  to be 
perpendicular to 𝜎1 there also it is existing. Now if you pick up a one case along on  the right 
hand side that is 𝛽 > 0  ok let us say 𝛽 = 1  I am picking up. 
 
  If you put 𝛽 = 1 here so 𝑐𝑜𝑠2 𝜃 + 1 × 𝑠𝑖𝑛2 𝜃 = 0 it is not going to happen ok that means here 
𝜃 is actually does not exist which means that  there is no direction in which extension is 0 
when you go for right hand side for example  𝛽 = 1 there is no direction which extension is 
0. So just to conclude if there is  no direction of 0 extension for example in the stretching 
process in which 𝛽 > 0 we took an example of 𝛽 = 1 the strain circuit tension is a maximum 
or still given  by 𝜀1

∗ and 𝜀2
∗ but geometric constraints prevent the instantaneous growth  of 

neck ok. So because of that reason because of no direction of 0 extension ok for example  when 
you have 𝛽 = 1 ok we say that ok so that actually delays the growth of neck  or slows down 
the growth of neck and hence there are chances that you will have larger strains in  actual 
experimental data ok when compared to your maximum tension line. So that is why you  have 
large difference in this particular zone 𝛽 > 0 ok. So this can be explained  with this particular 
simple analysis ok. 
 
 So now let us go into the details of necking  in the biaxial tension how it is going to happen 
the biaxial tension. So we pick up only one case  that is necking in biaxial tension that is on 
the right hand side of your forming limit curve that  is this side yeah this side of the forming 
limit curve ok. So then we are going to this particular  region and we are going to say how 
necking is going to happen we are going to briefly discuss  it. As discussed before in the first 
quadrant of strain diagram your forming limit diagram  where both principal strains are 
positive ok. So there is no direction of 0 extension ok 𝜀1 , 𝜀2 or let us say positive ok 𝜀1 will be 
always positive but 𝜀2  could  be positive or negative. 
 
 So we are picking up this particular region where both are positive  there is no direction of 0 



extension because 𝜃 does not exist that is what we said.  However we say that under biaxial 
tension experiments necking occurs actually ok when  we do when you take 𝛽 = 0  and 
deform material is actually going to neck but it happens  at a strain level beyond the point of 
maximum tension that is why you have larger 𝜀1

∗ and 𝜀2
∗ in the previous figure ok. So now 

what we are going to do is just to understand  little bit more of what is happening in that 
region we are going to use this particular  schematic. This schematic tells about the biaxial 
stretching of sheet with imperfection  uniform region. As usual we are saying that so this 
sheet is actually stretched ok due  to 𝜎1 and 𝜎2, 2 direction 1 direction is defined and as usual 
we are defining a region  A and a region B, B is a region which is a weaker region which has 
got a thickness of  𝑡𝐵  when compared to A 𝑡𝐵  is less ok. 
 
 So here it is 𝑡𝐴 here it is 𝑡𝐵, 𝑡𝐵 < 𝑡𝐴 ok and deformation is happening ok and B region is a pre-
existing defect and that  is where let us say that necking is going to start and we are going to 
have a simplest  case where it is going to be oriented perpendicular to the principal you know 
stress that is 𝜎1 ok B ok. So now the point here is this belongs to same  material A B both 
belong to same material only thing is their thickness is different  which is nothing but an 
imperfection equivalent to all the imperfections in the material ok.  So we are going to define 
something called as f ok. The imperfection is a groove denoted  as B where the thickness is 𝑡𝐵 
it is slightly less than the uniform region 𝑡𝐴 and it is  characterized by a factor f that is called 

as inhomogeneity factor 
𝑡𝐵

𝑡𝐴
. We are going  to call 𝑓 =

𝑡𝐵

𝑡𝐴
  is like for example 𝑡𝐴 you take it as 

let us  say 1 mm thick sheet and 𝑡𝐵 would be let us say 0.9999 mm very small heterogeneity 
you  are picking up, inhomogeneity factor you are picking up. So 1 − 𝑓0 = 0.001  you can say 
something like that you can imagine ok.  So I am putting 𝑓0 here for simple reason that it is at 
the start of the deformation  it is at the start of the deformation initial one let us say which 
means that there are  chances that during course of deformation during necking this 𝑓 can 
slightly change  ok. So as discussed in the previous section strain in the region B ok strain in 
the region  B, B is your this region strain in the region B parallel to the groove would be 
constrained  by the uniform region A and I can say 𝜀2𝐵 = 𝜀2𝐴  ok. 
 
 So that is 2 ok 𝜀2𝐵 that is along this direction these 2 regions are going  to have same strain 
along 2 direction 𝜀2𝐵 = 𝜀2𝐴 ok.  So and the process is going to be proportional process for the 
uniform region ok. So in the  groove region neck region we do not know so for the uniform 
region we are saying that  you are going to have 𝜎1𝐴, 𝜎2𝐴 = 𝛼0𝜎1𝐴 again I am using 𝛼0 not 𝛼 
ok because it is initial one let us say on  the uniform region and 𝜎3𝐴 = 0 plane stress 𝜀1𝐴  will 
be there  𝜀2𝐴  will be there 𝛼0  will give you 𝛽0  and 𝜀3𝐴 = −(1 + 𝛽0)𝜀1𝐴  which we already 
know ok.  So now this 𝑇1 = 𝜎1𝐴𝑡𝐴 = 𝜎1𝐵𝑡𝐵 correct  it will be transmitted to both the regions A 

and B and this will lead to this particular  equation we can say 
𝑡𝐵 

𝑡𝐴
 which is what we want 

𝑡𝐵 

𝑡𝐴
=

𝜎1𝐴

𝜎1𝐵
= 𝑓 = 𝑓

0
  also nothing  wrong in it definition remains same ok. So, 

𝑡𝐵 

𝑡𝐴
=

𝜎1𝐴

𝜎1𝐵
= 𝑓  ok. 

 
 So, you can see the relationship ok where  𝑡𝐵 < 𝑡𝐴. So, accordingly 𝜎1𝐴, and 𝜎1𝐵 are related 
ok. So,  now deformation is happening with these constraints and this is what will happen 
here ok the same  figure can be referred. So, we are going to put one particular first stage for 
example.  So, here is an yield locus is plotted 𝜎1 versus 𝜎2 red one is the initial yield  locus you 
can say ok. 
 
 So, now consider initial yielding ok the entire material is going to  yield the material has got 
a different yield strength let us say (𝜎𝑓)

0
 ok. So,  now you are going to deform beyond uniaxial 



yield strength ok what will happen is the  groove region that is this B region will reach yield 
point first ok why because your 𝜎1𝐵 > 𝜎1𝐴 correct. So, your 𝜎1𝐵 > 𝜎1𝐴. So, because it has to it 
is a weaker region ok  𝜎1𝐵 > 𝜎1𝐴 for 𝑓 < 1 which is what we generally take for  𝑓 < 1. So, the 
groove will reach or the imperfect region B will reach yield point  first why because your 
𝜎1𝐵 > 𝜎1𝐴 . 
 
  So, now the point is the material in the groove cannot deform because of the geometric 
constraint  𝜀2𝐵 = 𝜀2𝐴 because of that what will happen is as a stress in A  increases to reach 
the yield locus ok. Now A point will also start going in the same  direction like that of B and it 
will also reach your you know yield locus by the time  what will happen the point representing 
the region B must move around the yield locus  to 𝐵0 ok. So, you will see that when uniform 
region is deforming and reach yield  locus by that time what will happen is the B would 
slightly rotate and will go to 𝐵0  this itself indicates a fact that your 𝛼 is not going to be same 
ok your it is going  to be 𝛼, 𝛼0 is going to be changed to your 𝛼 ok.  So, though we say it is a 
proportional process here itself you will see that ok the uniform  region and the groove region 
are not going to have same 𝛼 it is going to be slightly  different why because your 𝜎1𝐵 > 𝜎1𝐴 
ok. So, this is  the situation now what will happen is now what you are going to you are going 
to further  deform the sheet considering some increment in deformation ok you are further 
deforming  it ok for which increments parallel to the groove must be same correct. 
 
 So, 𝑑𝜀2𝐴 = 𝑑𝜀2𝐵  right which is what we have seen before also ok  𝑑𝜀2𝐴 = 𝑑𝜀2𝐵 ok.  So, here 
here ok these two should be the increment should be same why because they are connected  
to each other. So, this situation what I am going to do I am going to draw it in a  vector diagram 
like this. So, I am going to say that your 𝑑𝜀2𝐴  and 𝑑𝜀2𝐵 is represented by ok this length and 
my 𝜎1𝐴  is represented by this and 𝜎1𝐵  is represented by this ok and your A region is 
characterized by 𝛽0 because of  𝛼0 and your B region is characterized by 𝛽 corresponding to 
𝛼 ok.  And you can see that your 𝜀1𝐵 > 𝜀1𝐴 quite naturally why because  your 𝜎1𝐵 > 𝜎1𝐴 as per 
the previous discussion ok. 
 
 Your 𝜎1𝐵 > 𝜎1𝐴 ok and because of that ok your 𝑑𝜀1𝐵 > 𝑑𝜀1𝐴 ok and all the four strains can be 
vectors can  be increment can be represented in this particular diagram.  So, the strain 
increments across the groove will be greater than that in the uniform region  and uniformity 
will become greater. So, f will also change during the course of deformation  ok and as shown 
in the figure above you will see that your 𝑑𝜀1𝐵 > 𝑑𝜀1𝐴 ok. This can be directly interpreted 
from this relationship 𝜎1𝐵 > 𝜎1𝐴 and that can be represented with this diagram right.  So, now 
what will happen is so it is clear that in the B region strain in the groove  ok or in the neck in 
the B region will increase ahead of that in the uniform region, but only  slightly while the 
tension is increasing ok. 
 
 So, you slowly deform the material tension  is increased you will see that little bit ahead in B 
strains will be little bit ahead  in B why because your 𝜎1𝐵 is going to be larger ok.  But now 
this particular effect the difference is going to gradually accelerate after the  tension reaches 

a maximum ok. So, the growth of 𝜀1 in the uniform region and in  the neck region or the groove 
region ok if that difference is going to accelerate ok  when it will accelerate and if it reaches a 
tension at maximum and continues till the  groove reaches a state of plane strain 𝛽 = 0 which 
is what is shown in this  particular figure. So, it is a same figure you will see that  it is a part 
between 𝜎1 and 𝜎2 ok and this situation is already known to us  initial yield locus is there and 
this point ok is for A and it will slightly rotate for  B and because of that there will be some 
change in 𝛼 ok with respect to 𝛼0 ok,  but if you further deform it and once tension crosses 
maximum tension ok what will happen  here is you will reach a state of plane strain which is 



what we have seen in the previous  analysis also ok. So, like this which we have seen in the 
previous  one also like for example, 𝛽 = 0  I said for making will happen. 
 
 So, here  also you will see that slowly the 𝛽 value will tend to move towards this particular  
point where your 𝛼 = 1/2 which is nothing, but 𝛽 = 0 ok.  So, it will reach a state of plane 
strain which is shown in this particular figure ok,  but in the case of A it is not so, in the case 
of A ok this is for your 𝐴0 A point  A location it is not so like that ok. So, when plane strain is 
reached at 𝐵𝑓 this particular  f basically says that it is going to fail ok B location is going to fail 

ok. The strain  parallel to the groove ceases the strain parallel to the groove ceases the same 
thing has been  represented in the strain diagram 𝜀1 versus 𝜀2 you will see that.  So, the strain 
parallel to the groove means you are 2 ok, you are 2 if you see it is actually  going to stop here 
ok like in the previous vector diagram I am saying 𝜀1𝐴

∗ , 𝜀2𝐵
∗  this is 𝜀2𝐵

∗  both are plotted here  
you will see that in the A region ok it will go up to a particular extent ok up to up to  this 
particular stage ok both B and A are going to remain same almost same, but after  some time 
you will see that there is a unstable increase in B that is why you will see that  it is going to 
suddenly increase when compared to A, but A keeps on straining uniform region  keeps on 

straining further here and when 𝜀2𝐴, 𝜀2𝐵 reaches star. 
 
 That means,  when it reaches your limit strain you will see that these 2 points will also reach 
its  star value that is limit strain is actually reached.  When plane strain is reached at 𝐵𝑓 the 

strain parallel to the groove ceases because that  is actually plane strain ok. So, along the 
groove it is going to be 0, but in the thickness  direction and perpendicular groove there will 
be some gradient ok. The groove will  then continue until failure or tearing and the strain in 
the uniform region totally ceases  ok. So, you will have more strain localization only in the 
groove region ok to have a localized  necking and material is going to tear apart after that. 
 
  If the localization is not there it means that the strain is getting localized somewhere  else 
also ok then you have to be little bit careful that out of these 2 whichever is weaker  is going 
to dominate and material will fail here ok. So, now, you will this particular  diagram you will 

see that your 𝜀2
∗ is going to be same ok. Why because it is  along the groove region 𝜀1𝐴 < 𝜀1𝐵 

ok. So, now, this 𝜀1𝐵 if you look at and 𝜀1𝐴 if  you see this 𝜀1𝐵 strain is going to be several 
values larger than this ok maybe like 4 times  10 times larger than with respect to A ok. 
 
 So, the strain state just outside the neck  is of interest. So, that 𝜀1𝐴

∗  and 𝜀2𝐴
∗ when failure 

occurs can be estimated  and can be called as forming limit strain for a particular 𝛼0 and 𝛽0  
ok. So, which means that this B region will undergo  unstable increase in your you know in 
your 𝜀1 ok, but you will see that this A  region is not like that it is going to be very uniform 
strain and you will see that  2 A and B is almost same it is along the groove and this particular 
diagram tells a fact that  when localized necking happens the reference is actually in the A 

region only the reference  is actually in the A region only. So, that 𝜀1𝐴
∗  and 𝜀2𝐴

∗  becomes  a 
forming limit strain ok becomes a forming limit strain ok.  B region we do not choose because 
B region is already a necked zone. So, just to have  a conservative approach you pick up a 
location just closer to the neck, but in the uniform  region and call that as a forming limit 
strains theoretically you can predict like this. 
 
 So,  in the biaxial you know deformation necking has got this many stages ok. So, initially  you 
will see that it is going to the groove region or the B region is going to reach yield locus  by 
when A reaches B will get rotated in this way.  So, 𝐵0 , 𝐴0 are represented this it tells that 𝛼 is 
going to be different  and 𝜎1𝐵 > 𝜎1𝐴 because 𝜎1𝐵 > 𝜎1𝐴 then 𝑑𝜀1𝐵 > 𝑑𝜀1𝐴  which can also be 



represented in this strain plot which tells that your strain increment  in B is going to grow 
ahead of A ok. And once maximum tension is reached around that particular  situation you 
will see that the B region the 𝛽 is going to actually switch or tend  towards pain strain type of 
deformation and which means that pain strain means the strain  along the neck region 
parallel to the groove or along the neck region ceases ok which means  you are going to put 
more strains in the other two directions ok.  So, you further deform it the groove will or the 
neck region will further continue to  deform it will fail it will tear ok and strain in the uniform 
region actually ceases ok.  But we always refer uniform region ok when this situation is 

happening ok and that will  lead to 𝜀1𝐴
∗  and 𝜀2𝐴

∗  to show at forming limit  strains ok. 
 
 So, now if you try to get strain rate in these two regions ok let us say you  know in the A 
region and in the B region if you compare strain rates because strain is  larger for a common 
time you will see that strain rate in the B region is going to be  you know several it is going to 
be a multiplication factor it is going to be large much much larger  than the limit strains or 
the strain rates in the A region ok.  Because strain is large for a common time you will see that 
the strain rate also would  be larger in the neck region as compared to A ok. So, maybe like 4 
times you know 8 times  10 times would be larger than in A. So, this can be used as a measure 

for you know localized  necking ok. So, now let us assume that you are getting 𝜀1𝐴
∗  and 𝜀2𝐴

∗  ok 
which  is going to denote forming limit strain ok by following  𝛼0 and 𝛽0  are the initial stress 
ratio and strain ratio that you have picked  up and deformed the sheet. 
 
 Now you got forming limit strains now ok.  So, now you have to repeat the same strategy for 
various various values of 𝛼 s and 𝛽 s  ok. So, then you will get different data points in your 
forming limit curve ok different data  points mainly on the right hand side of forming limit 
curve let us imagine. So, you will get  this first star you will get the second star you will get 

this third star ok these 3 points  let us say 𝜀1
∗ and 𝜀2

∗ will give you if you join it it will give you 
a  locus that will give you the forming limit curve on the right hand side.  On the left hand side 
we are still assuming that your maximum tension line is sufficient  to get the the forming limit 
ok. So, on the left hand side is nothing, but a maximum tension  line you know which you can 

get it from 𝜀1
∗ + 𝜀2

∗ = 𝑛 . 
 
  So, only these 2 lines this maximum tension line and on the right hand side you repeat  the 
same strategy for different values of 𝛼 and 𝛽 and you get 𝜀1

∗ and 𝜀2
∗ and you plot together this 

entire curve is called as forming limit curve in  short it is called as FLC ok. So, FLC is going to 
tell you when localized necking is actually  going to start. So, which also tells a fact that below 
this curve you are actually in  the safe zone when you cross this you are going to be little bit 
careful the material  can fail all is already it is already failed you have to be careful with this.  
So, when you as long as you are below this curve you will be safe ok. Sometimes you can  also 
define band for this ok band this type of band can be defined which means that there  is a 
transit zone ok. 
 
 So, below this lower line it is safe above this curve is definitely  failure but you are in the 
transit zone ok which tells a fact that you have to be careful  moment you enter into this 
particular zone at any time it may reach actual forming limit  curve ok.  So, forming limit curve 
essentially is nothing but it is actually what is it is a locus of  all the limit strains in different 
𝛼 s and 𝛽 s different 𝛼 s and 𝛽 s ok and  like you are stress strain behavior it is a material 
property it is a material property  ok. So, you change something in the material then it will 
change otherwise it is not going  to change ok. Say for example you do some heat treatment 
your forming limit can change  you do some material processing like you know friction stir 



welding then your forming limit  can change otherwise it is not going to change ok. 
 
  So, what are the applications of forming limit curve ok. So, failure diagnosis of your you  
know sheet grades ok. So, when it can fail what type of fracture ok all those things  you can 
understand from this quality of sheet estimation. So, whether the material has got  is a good 
quality with respect to forming limit or not that is the main thing ok. So,  maybe material is 
good in terms of corrosion but in terms of forming limit whether it is  good or not we do not 
know. 
 
 So, that can be estimated and you can select  particular sheet grade for a particular 
component ok. Suppose you want to make a sheet component  used in let us say aerospace 
structures or automotive structures ok or even tube also  ok. So, you want to select ok then 
ok it has to have a minimum forming limit to make that  component that is the meaning. What 
does that mean? That means if you make a component out  of a particular material let us say 
stainless steel then in none of the locations in none  of the locations in that component it can 
cross the forming limit curve. The strains  can cross the forming limit curve it is not allowed 
ok.  It means that suppose if you want to make a you know a cup a little bit a complex cup  
which is used for some automotive application ok then you will you will have a big machine  
and then you have a die punch setup for that and you do it in shop floor you can get that  part 
and you can locally check visually you can check ok whether there is any localized  necking 
starts or there is severe thinning ok. 
 
  And if you measure 𝜀1 and 𝜀2 in that location by putting some circle grids of course  before 
deformation you have put that and deform it and measure it in the location then that  will 
give you some idea of what is the value of 𝜀1 and 𝜀2 with respect to forming  limit curve of 
that particular material. Which means before going for component level you  know your you 
know your stage ok you need to get forming limit of that particular stainless  steel for example 
ok. So, that SS let us say SS you know stainless steel some grade  is there of particular 
thickness 2 mm you need to have forming limit curve for that.  Standard methods can be used 
and you have to evaluate and in none of the locations in  that actual component strain can 
cross the forming limit curve ok. And you will see that  in actual component you know at any 
location you pick up it is going to be one of the 𝛼  s  or 𝛽  s or in between. 
 
 We already seen 5 different 𝛼 s and 𝛽 s right from you  know your the least in the second 
quadrant to your first quadrant right.  So, in the sheet component you will see so from this 
quadrant to this quadrant you already  you have seen that. So, now in the actual component 
you will see that it will follow  one of this strain or combination of all the strain pass that is 
why this forming limit  curve is going to be important. It tells actually the necking strains or 
the forming limit strains  at various strain pass which a component can follow during the 
course of manufacturing  ok. 
 
 So, in none of the locations it can cross this particular forming limit curve.  So, which means 
the selection of material can be done for a particular component using  this forming limit 
curve ok. Suppose this is a forming limit curve of one material and  you make a component 
and you will see that one particular critical location the strain  has crossed this and it has 
reached here this particular point which means that the material  is actually components 
already failed ok and you cannot make that component with that material.  So, either you 
change the material or you change the process conditions ok. You are  not you know it is not 
affordable for you to change the material let us say then you  change the process conditions 
such that the same material you can make that component  which also tells the fact that 



selection of process conditions such as lubrication forming  temperature strain rate can be 
decided based on this particular forming limit curve ok.  So, now here I made a note the shape 
of forming limit curve depends on number of material  properties and on the initial 
inhomogeneity factor that is your f chosen theoretical theoretically  ok so depends on you 
have to assume an initial f to get a forming limit curve theoretically. 
 
  So, it is said that your forming limit curve depends on f also. We will see that in due  course 
how f is going to affect the forming limit curve ok by showing some schematics  of forming 
limit curve you will see that ok. So, we stop here and then we will discuss  in the next session. 


