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Second Law Applied to Processes of Power Plant and Ideal Cycle of Power Plant 

 

I welcome all to the session of Thermal Engineering and today we shall discuss about the 

Second Law Applied to Processes of a Power Plant. So, if we try to recall in the last class, we 

have discussed about the mathematical form of the combined first and second law. And if we 

apply this combined first and second laws to different processes in a power plant then we could 

establish the expression of energy transfer, whether it is in the form of heat added to the system 

or it is in the form of work being extracted from the system. We could establish those 

expression. So, we have seen that if we apply that for mathematical form to the process which 

is there in a boiler & also the process which is there in a turbine, and from there we could write 

the expression of rather the mathematical expression of heat which is added to the boiler, 

essentially, for the change of the thermodynamic state of the working substance. And for the 

turbine, we had seen that while stream is flowing through the turbine, it does work and we are 

getting work output. 
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So, just for the recapitulation again, we can draw the schematic diagram of the power plant. 

So, we can see only the major equipment like boiler, turbine, condenser and pump. So, this B 

for boiler, T for turbine, C for condenser, P for pump. So now, though, we have seen that the 

amount of heat which is needed to be supplied to the boiler for the conversion of steam and the 



amount of work that we are getting from the turbine. The mathematical expression of these two 

quantities we have established. I had discussed that in a similar way we also can find out the 

expression of this quantity which is rejected from the condenser. We have also discussed that 

second law of thermodynamics puts a restriction that if we need to run this plant in a cyclic 

manner, there must be a provision of energy rejection. 

 

So, for this particular component that is pump, you need to know the quantity that is the amount 

of work that must be added to pump the condensate to the boiler and what would be it 

mathematical expression? So, we can consider that all the processes are ideal. So, the process 

is constant pressure heat addition in Boiler, it is reversible adiabatic expansion in turbine. And 

we have discussed that walls of the turbine are insulated so that there is no heat leakage or heat 

loss through the wall of the turbine and the process can be considered to be reversible adiabatic 

process. In condenser the process is constant pressure, heat rejection process. And the last 

process which is in the pump is important. Now, we will discuss about it today. 

 

Also, we shall be discussing this part in our subsequent classes that the thermodynamic state 

of the working substance at 1 is liquid, in particular, it is saturated liquid. So, when this pump 

is supplying the saturated liquid from this condenser to the boiler and it is because of this 

pumping process, we need energy input that is 𝑊𝑖𝑛, in the form of work. So, what is the 

process? Can we represent this process as a reversible adiabatic process? 

 

Because you know that there is no heat interaction between the system and surroundings. If we 

consider the pump is a system and the surrounding, so, there is no heat interaction. We also can 

consider the process where the condensate is pumped back to boiler and this process can be 

represented by the reversible isothermal process. So, basically, you know that boiler is a heat 

interacting device and the process is also a heat interacting process. Turbine is also a device in 

which there is no heat interaction between system and surroundings. Somehow, we have to 

admit that in reality there must be some amount of heat leakage, but while we are trying to 

estimate the efficiency of the cycle, we also need to estimate the efficiency or the performance 

of all the processes which constitute together to form the cycle. 

 

So, this particular device Turbine is a work interacting device because we are getting work 

output. Similarly, this Condenser is also a heat interacting device because this is required where 

heat must be rejected to operate the system in a cyclic manner. What about this Pump? So, this 



device is not a heat interacting device but we need to supply work for this pumping. So, if it is 

not a heat interacting device, so, there is no heat interaction between system and surroundings. 

We can represent the process as the reversible adiabatic process. Can you represent the process 

by reversible isothermal process? Because you know that thermodynamic state of the working 

substance at point 1 is saturated liquid. So, while pumping, the state is getting changed and it 

is coming to state 2 where pressure is definitely higher and that is what our objective is. 

 

But since it is an incompressible fluid, so, there is no change in specific volume. But can we 

really represent the process by a reversible isothermal process? So, as liquid is being pumped 

from state 1 to state 2 and it is viscous liquid, so it is because of this distributive effect, slight 

temperature rise will be there. So, maybe we cannot map the process by reversible isothermal 

process. Even if we try to represent the process by reversible isothermal process, what would 

be the mathematical form of this quantity 𝑊𝑖𝑛 which is required to be supplied to operate this 

pump? So, basically till now we have discussed about the mathematical expression of 

this 𝑄𝑖𝑛, 𝑊𝑜𝑢𝑡 and in a similar way you also can calculate 𝑄𝑜𝑢𝑡.I am not going to discuss that.  

 

So, what about 𝑊𝑖𝑛? To do that we need to understand little bit about second law which is 

applied to the flow process. So, we shall be doing the second law applied to flow process. So, 

you know that if any particular process concerns a flow across the system boundary, you know 

that in the pumping process, there is a continuous flow from 1 to 2. So, the process concerns a 

flow across the system boundary. Now why do we need to go for this analysis is very important. 

Essentially, we are trying to apply second law to a flow process that means we are trying to 

look at the entropy transport for a flow process. Why? See you know that when the process is 

taking place inside the pump, entropy is getting changed maybe from state 1 to state 2. Now, 

what is the entropy transfer to that flow, that we also need to know. Why do we need to know? 

Because we are trying to calculate this quantity 𝑊𝑖𝑛 and while you are trying to calculate 𝑊𝑖𝑛 

alongside the first law of thermodynamics applied to flow process, we need to know the entropy 

transport for a flow process.  

 

So, I am sure that you have studied about the net change in entropy for a control mass system. 

So, knowing the net change of entropy for a control mass system, the expression of the net 

change of entropy for a control volume within a control volume can be mathematically written. 

If we know the net rate of change of entropy for a control mass system, we can mathematically 



write the expression of the net rate of change of entropy for a process across the control volume 

by applying the Reynolds transport theorem. 

 

So, I would like to tell you that our concern is to express the net change of entropy for a flow 

process. We know, how to calculate the net rate of change or net change of entropy for a control 

mass system. So, if we are targeting to write the expression of the change of entropy for a flow 

across the control volume, then by knowing the expression of that particular quantity for a 

control mass system, we can write it for a control volume by applying the Reynolds transport 

theorem.  

 

So, we can write the Reynolds transport theorem, just the mathematical expression, although 

we have discussed it but for the sake of completeness, I am again writing today. 

RTT → (
𝑑𝑁

𝑑𝑡
)

𝑠𝑦𝑠
= (

𝜕𝑁

𝜕𝑡
)

𝐶𝑉
+ ∫ 𝜌𝑛(𝑉𝑟𝑒𝑙. �̂�)𝑑𝐴 

 

Now, our objective is to know the mathematical expression of the change of entropy, for a 

process across the control volume by knowing the change of entropy for a control mass system 

and to do that we need to apply this transformation equation. 
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Here, 𝑁 = 𝑆 =  Total entropy;    𝑠 =
𝑆

𝑚
= Specific Entropy 

 

So, we can write that  



(
𝑑𝑆

𝑑𝑡
)

𝑆𝑦𝑠
= (

𝜕𝑆

𝜕𝑡
)

𝐶𝑉
+ ∫ 𝑠𝜌(𝑉𝑟𝑒𝑙. �̂�)𝑑𝐴 

So, if I go back to the previous slide, this  

(
𝑑𝑁

𝑑𝑡
)

𝑠𝑦𝑠
=  net change of an extensive property say N within the system 

Similarly, (
𝑑𝑆

𝑑𝑡
)

𝑆𝑦𝑠
=  net change of entropy within the system 

(
𝜕𝑆

𝜕𝑡
)

𝐶𝑉
=  net change of entropy within the control volume 

∫ 𝑠𝜌(𝑉𝑟𝑒𝑙. �̂�)𝑑𝐴 =  net transport of entropy owing to the flow across the boundary 

 

So basically, the quantity in the left hand side is known because we know the change of entropy 

for a control mass system & by knowing this quantity, we can write the net change of entropy 

within CV. To do that we also need to know the net transport of entropy due to flow or owing 

to the flow across the boundary. Why? Because as I told you that if you try to find out the 

mathematical expression of  𝑊𝑖𝑛 which is needed to run the pump, we need to know this. Why? 

I will be explaining soon. 
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Change of entropy within the control mass system, (
𝑑𝑆

𝑑𝑡
)

𝑆𝑦𝑠
=

�̇�

𝑇
+ �̇�𝑔𝑒𝑛 

𝑇 = Temperature of the boundary through which heat transfer takes place 

�̇� = Heat either being added to the system or being extracted from the system 



Now, if we have multiple such boundaries through which heat is getting interacted between 

system and surroundings, we can write this the summation sign. 

 (
𝑑𝑆

𝑑𝑡
)

𝑆𝑦𝑠
= ∑

�̇�

𝑇
+ �̇�𝑔𝑒𝑛 

∑
�̇�

𝑇
+ �̇�𝑔𝑒𝑛 =  (

𝜕𝑆

𝜕𝑡
)

𝐶𝑉
+ ∫ 𝑠𝜌(𝑉𝑟𝑒𝑙. �̂�)𝑑𝐴 

So, if we consider the control volume as shown in slide and we have an inlet to the control 

volume and exit to the control volume. And control volume is changing its state from 1 to 2. 

So, this is a flow system, so, there is flow in and there is flow out. Now, the change of entropy 

within the control volume is (
𝜕𝑆

𝜕𝑡
)

𝐶𝑉
, entropy transfer due to flow in and flow out. The quantity 

∫ 𝑠𝜌(𝑉𝑟𝑒𝑙. �̂�)𝑑𝐴 represents the change in entropy within the control volume due to the flow. 

So, entropy specific is not changing in the respective flow section. In that case, what we can 

do? We can take S out from this and we can write  

∑
�̇�

𝑇
+ �̇�𝑔𝑒𝑛 =  (

𝜕𝑆

𝜕𝑡
)

𝐶𝑉
+ 𝑠 ∫ 𝜌(𝑉𝑟𝑒𝑙. �̂�)𝑑𝐴 

∫ 𝜌(𝑉𝑟𝑒𝑙. �̂�)𝑑𝐴 = Mass flow rate 
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So, for the convention, we know that for the outlet, outward normal and flow direction are in 

the same direction, whereas the outward normal for the inflow is opposite to the flow direction. 

So, considering that we can write 

⇒ ∑
�̇�

𝑇
+ �̇�𝑔𝑒𝑛 =  (

𝜕𝑆

𝜕𝑡
)

𝐶𝑉
+ (�̇�𝑒𝑠𝑒 − �̇�𝑖𝑠𝑖) 



 

So, basically, if the entropy which is coming in with the flow is 𝑠𝑖 and entropy which is going 

out from this control volume that is 𝑠𝑒. So, the exit is section e and the inlet is section i. So, in 

this particular control volume, we have single entry single exit. It is highly possible that within 

this control volume multiple inlets and multiple exits can be there. In that case, we can modify 

this equation like this. 

∑
�̇�

𝑇
+ �̇�𝑔𝑒𝑛 =  (

𝜕𝑆

𝜕𝑡
)

𝐶𝑉
+ ∑(�̇�𝑒𝑠𝑒 − �̇�𝑖𝑠𝑖)  

 Now, if you try to recall, we have discussed that one important assumption is that in this 

particular plant, we are considering that all the processes are steady state steady flow process..  

 

So, for steady state steady flow process, 

(
𝜕𝑆

𝜕𝑡
)

𝐶𝑉
= 0 

For the steady state, there is no difference between state 1 and state 2. So, the change in entropy 

and steady flow, so, we have discussed about the physical significance of these two coupled 

keywords that is steady state, steady flow, so, this is equation. 

⇒ For SSSF, ∑
�̇�

𝑇
+ �̇�𝑔𝑒𝑛 =  ∑ �̇�𝑒𝑠𝑒 − ∑ �̇�𝑖𝑠𝑖 

 

So, this is the equation which we shall apply along with the first law of thermodynamics, to 

obtain the amount of work that should be added to the pump for the operation.  
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Next we can discuss about two different processes.  

Case-1: SSSF process but it is reversible isothermal 

 

So, basically, we would like to discuss about a process which is steady state steady flow also 

which is reversible and isothermal. So below is the entropy transport equation for this steady 

state steady flow process. 

∑
�̇�

𝑇
+ �̇�𝑔𝑒𝑛 =  ∑ �̇�𝑒𝑠𝑒 − ∑ �̇�𝑖𝑠𝑖 

So, to arrive this equation we did this exercise. Now, though you are familiar with this equation 

because you have studied it in the thermodynamics course but I have again derived it because 

it will be very much needed to obtain the expression which you are looking for in today's class.  

 

So, basically, we know that it is a single entry and single exit. So now, if we look at this 

particular system and we consider this pump and control volume, at any instant of time there 

is only one inlet and one outlet. So, basically for single inlet and single exit we can write 

�̇�

𝑇
+ �̇�𝑔𝑒𝑛 =  �̇�𝑒𝑠𝑒 − �̇�𝑖𝑠𝑖 

So if it is single entry and single exit, we know that from the mass conservation equation 

�̇�𝑒 = �̇�𝑖 = �̇� 

So we are trying to have the expression for 𝑊𝑖𝑛 for a process which is steady state steady flow 

process, on the top of that we are assuming that the process is reversible and isothermal.  

If the process is reversible then, �̇�𝑔𝑒𝑛 = 0 

⇒
�̇�

𝑇
=  �̇�(𝑠𝑒 − 𝑠𝑖) 

So, this is in the rate form, so, we can write it in specific form 

⇒ 𝑞 = 𝑇(𝑠𝑒 − 𝑠𝑖) − − − − − (1) 

So, this is very important.  
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Now, we have to apply again the property relation.  

Property relation → 𝑇𝑑𝑠 = 𝑑ℎ − 𝑣𝑑𝑝 

But we know 𝑇𝑑𝑠 = 𝑑𝑢 + 𝑝𝑑𝑣 

But you try to understand, we are trying to establish the expression of 𝑊𝑖𝑛 for a process which 

is there in a pump. So, in this process, pressure is changing. So, the sole objective of having 

this particular component in this circuit is to raise pressure from point 1 to point 2 or state 1 to 

state 2. So, the pressure is changing and this is a flow process. So, the thermal energy is not u 

rather the thermal energy for the flow process is ℎ = 𝑢 + 𝑝𝑣. Hence, 𝑇𝑑𝑠 = 𝑑ℎ − 𝑣𝑑𝑝 

 

So, you know that if it is reversible isothermal process, then T is not getting changed. So 

basically, we can write 

𝑇 ∫ 𝑑𝑠
2

1

+ ∫ 𝑑ℎ
2

1

− ∫ 𝑣𝑑𝑝
2

1

 

⇒ 𝑇(𝑠2 − 𝑠1) = (ℎ2 − ℎ1) − ∫ 𝑣𝑑𝑝
2

1

 

From equation − 1, 𝑞 = 𝑇(𝑠2 − 𝑠1) 

𝑞12 = (ℎ2 − ℎ1) − ∫ 𝑣𝑑𝑝
2

1

    − − − −(2) 

 

First law for steady state steady flow process across the control volume 

�̇� + 𝑚𝑖 (ℎ𝑖 +
𝑐𝑖

2

2
+ 𝑔𝑧𝑖) = 𝑚𝑒 (ℎ𝑒 +

𝑐𝑒
2

2
+ 𝑔𝑧𝑒) + �̇� 

So, we have seen that, �̇�𝑒 = �̇�𝑖 = �̇� 



⇒ 𝑞 + (ℎ𝑖 +
𝑐𝑖

2

2
+ 𝑔𝑧𝑖) = (ℎ𝑒 +

𝑐𝑒
2

2
+ 𝑔𝑧𝑒) + 𝑤 

 

This is the genetic expression if the control volume is changing, it is state from 1 to 2, we can 

write 

𝑞12 + (ℎ1 +
𝑐1

2

2
+ 𝑔𝑧1) = 𝑤12 + (ℎ2 +

𝑐2
2

2
+ 𝑔𝑧2)  − − − − − (3) 
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So now, using equation 2 we can write 

(ℎ2 − ℎ1 + ℎ1 +
𝑐1

2

2
+ 𝑔𝑧1) − ∫ 𝑣𝑑𝑝

2

1

= (𝑤12 + ℎ2 +
𝑐2

2

2
+ 𝑔𝑧2) 

⇒ 𝑤12 = − ∫ 𝑣𝑑𝑝
2

1

+
𝑐1

2 − 𝑐2
2

2
+ 𝑔(𝑧1 − 𝑧2) 

So, this is very important form which we wanted to have. So, what you can see? The above 

equation gives us the expression for the work which should be added or the energy which 

should be added in the form of work for a steady state steady flow process which is also 

reversible and adiabatic.  
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If we do not consider the changes in kinetic and potential energies then we can write that work 

done in a steady state steady flow, reversible and isothermal process, 

𝑤12 = − ∫ 𝑣𝑑𝑝
2

1

 

This equation holds good when the changes in kinetic energy and potential energy are 

negligible. So, this is very important. If they are not negligible, we cannot write. If they are 

negligible we can write this form. 
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So, let us try another case. 

Case-1: SSSF but now the process is reversible and adiabatic 

 

So, when process is reversible as well as adiabatic then what would be the expression of this 

quantity work done?  



From equation − 1, Second Law or the flow process, 𝑚(𝑠2 − 𝑠1) = 0 

⇒ 𝑠2 = 𝑠1 ⇒ 𝑑𝑠 = 0; Hence that is Isentropic process.  

Reversible adiabatic process is also called the isentropic process.  

Property Relation → 𝑇𝑑𝑠 = 𝑑ℎ − 𝑣𝑑𝑝 

Why? Because pressure is changing in this is a flow process. 𝑇𝑑𝑠 = 𝑑𝑢 + 𝑝𝑑𝑣 That is 

applicable to any processes but in this particular process we are writing 𝑇𝑑𝑠 = 𝑑ℎ − 𝑣𝑑𝑝 

because pressure is changing from state 1 to state 2.  

⇒ 𝑑ℎ = −𝑣𝑑𝑝 

⇒ Change in enthalpy, (ℎ2 − ℎ1) =  − ∫ 𝑣𝑑𝑝
2

1

 

 

So, this is what we can write. So, if the process is steady state steady flow process and along 

with that the process is reversible and adiabatic, then the process is isentropic process. So, 

reversible adiabatic process is isentropic process because entropy is not getting changed. 

 

So now, let’s write the first law for reversible adiabatic process 

�̇� + �̇� (ℎ𝑖 +
𝑐𝑖

2

2
+ 𝑔𝑧𝑖) = �̇� (ℎ𝑒 +

𝑐𝑒
2

2
+ 𝑔𝑧𝑒) + �̇� 

So, this is the rate equation. Now, the quantity �̇� = 0 because this is reversible adiabatic 

process, hence there is no heat interaction between system and surroundings.  

For the reversible adiabatic process, 𝑑𝑠 =  0 (isentropic process),  

For adiabatic process that is �̇� = 0  

For single entry and single exit, we could write �̇�𝑒 = �̇�𝑖 = �̇� 
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From the first law, we can write, 

𝑤12 =
�̇�12

�̇�
= ℎ1 +

𝑐1
2

2
+ 𝑔𝑧1 − ℎ2 −

𝑐2
2

2
− 𝑔𝑧2 

= (ℎ1 − ℎ2) + (
𝑐1

2 − 𝑐2
2

2
) + 𝑔(𝑧1 − 𝑧2) 

= − ∫ 𝑣𝑑𝑝
2

1

+ (
𝑐1

2 − 𝑐2
2

2
) + 𝑔(𝑧1 − 𝑧2) 

From the property relation (ℎ1 − ℎ2) = − ∫ 𝑣𝑑𝑝
2

1
   

Again, if we just ignore the changes in kinetic and potential energies, then the work done even 

for a steady state steady flow process but the process is reversible and adiabatic can be written, 

𝑤12 = − ∫ 𝑣𝑑𝑝
2

1

 

So, for the negligible value of the changes in kinetic and potential energies, we can write this 

is the expression. 
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So, for the reversible isothermal, steady state steady flow process, work done 

𝑤12 = − ∫ 𝑣𝑑𝑝
2

1

 

For the reversible adiabatic, steady state steady flow process, work done 

𝑤12 = − ∫ 𝑣𝑑𝑝
2

1

 

So, the expression of work done for the reversible, steady state steady flow process is generic 

and it does not depend whether the process is adiabatic or isothermal. So, this is what is 

important. So, our objective was to find out, what would be the expression of 𝑊𝑖𝑛 which is 

added to the pump? If the process is reversible isothermal or reversible adiabatic, there will be 

a slight change in temperature of the flowing fluid because of the dissipative effect and 

considering this if we try to represent the process by  the reversible adiabatic process, even then 

the expression of work done is remaining same that is nothing but − ∫ 𝑣𝑑𝑝
2

1
. Why it is so? 

Basically you know that for a reversible, steady state steady flow process, the expression of 

work done is same. It indicates that any reversible process steady state process can be reduced 

to a series of alternate reversible adiabatic and isothermal processes. 

 

So, we try to represent the processes in T-s plane, So, X-axis is s & Y-axis is T. So, say a 

system is changing from state 1 to state 2. Now, what I was discussing that expression is same. 

So, basically the reversible steady state steady flow processes can be reduced to a series of 

reversible and adiabatic processes. So, conclusion is any such process can be reduced to a series 

of alternate reversible adiabatic that is vertical line and reversible isothermal that is horizontal 

line.  



 

So, you know that if we try to summarize, we have discussed about the mathematical 

expression of the work done for both these steady state steady flow reversible isothermal and 

adiabatic processes. And we have seen that the mathematical expression is the same, no matter 

whether the process is isothermal or adiabatic. 

 

And from there we could conclude that any such process can be reduced to a series of alternate, 

reversible adiabatic and reversible isothermal processes. So, this particular exercise will give 

us a clue about the mathematical form of the work which is needed to add to the pump for 

supplying the condensate from the condenser to the boiler. 

 

So, with this, we complete our discussion on the basic of the first and second law applied to 

the processes which are there in the power plant. In the next class, we shall start our discussion 

from the ideal power cycle. So, with this I stop here today. Thank you. 


