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I welcome you all to the session of thermal engineering basic and applied. Today we shall solve 

a few examples and through this exercise we shall try to illustrate the concept that we have 

learned from the theoretical analysis of steam turbines.  

(Refer Slide Time: 01:01) 

 

So, the first problem that we will solve today is from the impulse turbine. Let me first read out 

the problem statement. Then we shall start solving the problem following the theoretical 

understanding that we have. 

 

It is given that an Impulse turbine with single row wheel has mean diameter 100 cm and speed 

of rotation 3000 RPM. The nozzle angle is 20° and the ratio of blade velocity to steam velocity 

is 0.44. The ratio of relative velocity of steam at the blade outlet to that at the blade Inlet is 0.86. 

It is given that the blade outlet angle is 3° less than the inlet blade angle and the mass flow rate 

of steam is 10 kg/s. We need to calculate a few parameters, but first we need to draw the velocity 

triangles. Then we need to calculate the tangential, axial and resultant thrust on the blades, 

power developed by the blades and lastly the blading efficiency.  

 



So, let me tell you one thing that it would be much more convenient to solve the problem if we 

draw the velocity triangles properly. So, the first task should be to draw the velocity triangles 

and then we can calculate the parameters those are asked in this problem. So, if we solve the 

problem as I said that first it would be essential to draw the velocity triangles.  

 

So, let us now draw the velocity triangles in fact we have discussed this part in the context of 

the derivation of blading efficiency or diagram efficiency of impulse turbine. So, let us consider 

the blade velocity as u.  Sometimes it is also denoted by 𝑉𝑏. And let us complete the Inlet 

velocity triangle first so, that is the absolute velocity of steam coming out from the nozzle which 

is making an angle 𝛼1 that is the nozzle angle. 

 

And since the wheel is rotating, so the velocity of steam relative to the blade velocity is the 

relative velocity and we can draw the velocity triangle as shown in the slide with 𝐶1, the absolute 

velocity at the blade Inlet 𝑊1, the relative velocity at the inlet. Since I have also discussed that 

blade velocity is calculated based on the mean diameter and if you look at the problem statement 

it is given that the mean diameter of the wheel is 100 cm. 

 

That means we can now superimpose the outlet velocity triangle on the common 𝑉𝑏 or common 

blade velocity. So, now we draw the outlet velocity triangle with 𝐶2 & 𝑊2. Then let us name the 

points of triangles A, B, C, D. So, triangle A B C is the velocity triangle which is at the inlet of 

the blade and triangle B C D is the velocity triangle at the exit of the blade. And we can see that 

angle 𝛽1 is blade angle at the inlet and the angle 𝛽2 is blade angle at the outlet and this angle 

is 𝛼2 as shown in the slide. Most importantly the component of absolute velocity in the axial 

direction is 𝐶𝑎1 that is the flow velocity at the inlet. Similarly component of absolute velocity 

in the axial direction is 𝐶𝑎2 that is the flow velocity at the outlet and we can clearly see 

that 𝐶𝑎1 ≠ 𝐶𝑎2 from the velocity triangle. 

 

And since there is no pressure drop of the steam when it is passing through the blades or moving 

blades, the relative velocity at the exit of the blade is not equal to the relative velocity at the 

inlet of the blade and that too we had seen that it is because of this roughness of the blade 

surface, there is a reduction in the relative velocity and that is why we could define blade 

velocity coefficient 𝐾𝑏 or 𝐾.  

 



So, we can see that 𝐶𝑎1 ≠ 𝐶𝑎2 and this component is ∆𝐶𝑎 that is responsible for the axial thrust 

that would be produced. Similarly we try to draw the component 𝑊𝜃2 & 𝑊𝜃1 or we can 

draw 𝐶𝜃1 & 𝐶𝜃2. So 𝐶𝜃1 is basically component of absolute velocity in the tangential direction 

at the inlet and 𝐶𝜃2 is the component of absolute velocity in the tangential direction at the exit.  

 

So ∆𝐶𝜃 = 𝐶𝜃1 +  𝐶𝜃2 and ∆𝐶𝑎 = 𝐶𝑎1 −  𝐶𝑎2.  

 

So, this ∆𝐶𝜃 is responsible for the tangential thrust and it is because of this thrust we are getting 

work output and power and ∆𝐶𝑎 is responsible for the axial thrust and that thrust should be 

consumed by the bearing.  

 

So, this is the velocity triangles. In fact today we will be solving a few numerical problems and 

we will be using the similar velocity diagram at least for the impulse turbine and 2 important 

relations that I would like to now write from the velocity triangles that we have drawn. If you 

look at this as I said you this ∆𝐶𝜃 and ∆𝐶𝑎 these 2 components are very important to calculate 

the tangential as well as axial thrust. So, we can see there are 2 ways by which we can really 

solve the problem one is through graphical representation. So, basically mean velocity can be 

calculated because RPM is given, diameter is given and we now use a suitable scale to represent 

that mean velocity. And knowing the nozzle angle we also can know what would be the absolute 

velocity. But today we shall try to solve the problems analytically just by using the trigonometric 

relations. So, we can now calculate that mean velocity that is very important quantity 

Mean velocity, 𝑢 =
𝜋𝐷𝑚𝑁

60
; 𝑁 = 𝑅𝑃𝑀 

So, we can calculate mean velocity. If  𝛼1 is given then next we can calculate 𝐶1. Now 2 

relations will be used today one is  

 ∆𝐶𝜃 = 𝑊𝜃1 + 𝑊𝜃2 = 𝐶𝜃1 + 𝐶𝜃2 

(Refer Slide Time: 12:50) 



 

So, we go to the next slide and we can write 

∆𝐶𝜃 = 𝑊𝜃1 + 𝑊𝜃2 = 𝐶𝜃1 + 𝐶𝜃2 

That we will be using because essentially you have to calculate ∆𝐶𝜃 for the tangential thrust. 

Another thing is if you now look at the inlet velocity triangle ABC we can see that  

𝐶𝑎1 = 𝐶1 sin 𝛼1 

Here 𝐶𝑎1 is flow velocity at the inlet that is the component of absolute velocity in the axial 

direction at the inlet. If we look at the velocity triangle and we give name AE as shown in the 

slide then from triangle AEC we could write that 

𝐴𝐸 = 𝐶1 sin 𝛼1 

Similarly if you now look at the triangle AEB 

𝐶𝑎1 = 𝑊1 sin 𝛽1 

Now we also can write another important relation that from ∆ ABC & ∆ AEB 

𝐶1 cos 𝛼1 − 𝑢 = 𝑊1 cos 𝛽1 

So, this indicates from the velocity triangles that  

𝐸𝐶 − 𝐵𝐶 = 𝐸𝐵 

And also we can write 

𝐶1 sin 𝛼1 = 𝑊1 sin 𝛽1 

So, from these 2 relations we can write 

tan 𝛽1 =
𝐶1 sin 𝛼1

𝐶1 cos 𝛼1 − 𝑢
 

So, this expression will be used today to calculate 𝛽 many times. So now let us go back to the 

problem statement. We have already drawn the velocity triangles for the blades, next we need 

to calculate the tangential, axial and resultant thrust.  



(Refer Slide Time: 17:55) 

 

 

Tangential thrust, 𝐹𝑡 = �̇�𝑠∆𝐶𝜃 

 Here, �̇�𝑠 = mass flow rate of steam 

If we go back to the previous slide, I have already written the expression of ∆𝐶𝜃 

∆𝐶𝜃 = 𝑊𝜃1 + 𝑊𝜃2 = 𝑊1 cos 𝛽1 + 𝑊2 cos 𝛽2 

Basically we know  

Blade velocity coefficient, 𝐾𝑏 =
𝑊2

𝑊1
 

Now if we again read the problem statement then it is given that the ratio of relative velocity of 

steam at the blade outlet to that at the inlet is 0.86. That means this is the blade velocity 

coefficient 

𝐾𝑏 =
𝑊2

𝑊1
= 0.86 

So, you can understand if we can somehow calculate 𝑊1 from the data given or using the blade 

velocity triangles, we will be able to calculate 𝑊2. Now it is also given that ratio of blade 

velocity to steam velocity is 0.44. So 

𝑢

𝐶1
= 0.44 ⇒ 𝐶1 =

𝑢

0.44
 

So, already we have calculated 

𝑢 =
𝜋𝐷𝑚𝑁

60
=

𝜋 × 100

100
×

2800

60
= 157

m

s
 

 𝐶1 =
157

0.44
= 356.82

m

s
 



So, we could calculate the absolute velocity of steam at the exit of the nozzle that is at inlet of 

the blade and also the blade velocity right. Now we need to find 𝛽1 because that is very 

important.  

Given 𝛼1 = 20° & 𝑢 = 157
𝑚

𝑠
 

tan 𝛽1 =
𝐶1 sin 𝛼1

𝐶1 cos 𝛼1 − 𝑢
= 0.6731 

⇒ 𝛽1 = tan−1(0.6731) = 33.95°  
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So, you can check again the numerical value, but the procedure is correct. So, this is 𝛽1. Now 

we need 𝛽2. If we go back to the problem statement it is given that the blade outlet angle is 3° 

less than the blade inlet angle. So, that means from the problem statement 

 𝛽2 = 𝛽1 − 3° = 30.95° 

So, basically now if we would like to calculate ∆𝐶𝜃 then as already we have mentioned here 

∆𝐶𝜃 = 𝑊𝜃1 + 𝑊𝜃2 = 𝑊1 cos 𝛽1 + 𝑊2 cos(𝛽1 − 3°) 

Now look at this expression this expression 

𝐶1 sin 𝛼1 = 𝑊1 sin 𝛽1 ⇒ 𝑊1 =
𝐶1 sin 𝛼1

sin 𝛽1
 

Now ∆𝐶𝜃 =
𝐶1 sin 𝛼1

sin 𝛽1
cos 𝛽1 + 𝐾𝑏𝑊1 cos(𝛽1 − 3°) 

See in this expression all parameters like 𝐶1, 𝛽1, 𝛽2 & 𝐾𝑏 are known so we can calculate ∆𝐶𝜃. 
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And if we can calculate ∆𝐶𝜃, then tangential thrust will be 

Tangential thrust, 𝐹𝑡 = �̇�𝑠 × ∆𝐶𝜃 

I am not calculating this. Here �̇�𝑠 is given as10 kg/s. Similarly we can calculate axial thrust  

𝐹𝑎 = �̇�𝑠 × ∆𝐶𝑎 

So, now we need to calculate ∆𝐶𝑎. So, if we look at the geometry 

∆𝐶𝑎 = 𝐶𝑎1 − 𝐶𝑎2 

Already we know 𝛽1 & 𝑊1 so 

𝐶𝑎1

𝑊1
= sin 𝛽1 

And we already have calculated 𝛽2. We know 𝑊2 from the blade friction coefficient and then 

we can easily calculate from these velocity triangles.  

∆𝐶𝑎 = 𝑊1 sin 𝛽1 − 𝑊2 sin 𝛽2 = 𝑊1 sin 𝛽1 − 𝐾𝑏𝑊1 sin 𝛽2 

So, again you can calculate easily this ∆𝐶𝑎 because 

𝑊1 =
𝐶1 sin 𝛼1

sin 𝛽1
, 𝛽1 = 33.95°, 𝛽2 = 30.95° 

So, you can calculate the axial thrust. Now calculating these 2 quantities 𝐹𝑡& 𝐹𝑎 we can calculate 

resultant thrust 

 Resultant thrust, 𝐹𝑅 =  √𝐹𝑡
2 + 𝐹𝑎

2  

So, if we now move to another part of this problem that is power developed by the blades. 
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So, let me tell you once again that you can easily calculate ∆𝐶𝑎 & ∆𝐶𝜃 because all quantities are 

known. We know 𝐶1 = 356.82, 𝛼1 = 20°, 𝛽1 = 33.95° so, you can easily calculate 𝑊1. So, 

now let us calculate power developed by blade that is  

Power developed by blade, 𝑃 =
Tangential thrust × Velocity 

1000
 

We can divide this quantity by 1000 to write the quantity in KW unit.  

𝑃 =
�̇�𝑠∆𝐶𝜃 × 𝑢

1000
 𝐾𝑊 

So, try to understand had we calculated tangential thrust correctly and we have already 

calculated blade velocity then we can easily calculate the power developed by the blades. And 

now finally we need to calculate blading efficiency. See let me tell you one thing that P is the 

power we are getting or power developed by the blades at the cost of some input energy. So, 

this much amount of power developed by the blades at the cost of the input energy that is 

supplied to the blade. So, we can write that 

Blading efficiency, 𝜂𝑏 =
Rate of work done on the blade

Rate of energy input to the blade
 

So, rate of work done on the blade is the power developed by the blade. If we now try to simplify 

this quantity 

Blading efficiency, 𝜂𝑏 =
�̇�𝑠∆𝐶𝜃𝑢

1
2 𝑚𝑠̇ 𝐶1

2
 

So, basically the kinetic energy of the jet which is available at the inlet of the blade is the input 

energy and at the cost of this energy, P amount of power is developed. So, now we can write 

one step further that is 



𝜂𝑏 =
2∆𝐶𝜃𝑢

𝐶1
2  

Now you calculate this quantity because already we have calculated ∆𝐶𝜃 and we know blade 

velocity and we have already calculated 𝐶1 that is absolute velocity of steam leaving the nozzle. 

So, we can calculate the blading efficiency.  

(Refer Slide Time: 34:52) 

 

So, with this next let us move to another problem. Let me read out the problem statement first 

and then we shall start solving the problem. In a single stage impulse turbine (It should be a 

single stage, there is a mistake in the problem statement itself it should be in a single stage 

impulse turbine) the mean diameter of the wheel is 100 cm, speed of rotation is 280 RPM, the 

velocity of steam at the exit of the nozzle is 280 m/s.  

Let us first write the data given.  

𝐷𝑚 = 100 𝑐𝑚, 𝛼1 = 25°, 𝐶1 = 280
𝑚

𝑠
 

So try to recall the velocity triangles that we have drawn in the context of the previous problem. 

The turbine blades are symmetrical and due to friction in the blade the relative velocity of steam 

at the blade outlet is 0.87 times the relative velocity of steam at the inlet. That means the problem 

statement is telling us to consider the blade velocity coefficient. So, basically it is given the 

blades are symmetrical. What does it mean normally blades are symmetrical? I had mentioned 

that if it is not provided, we have to assume that the blades are symmetrical for the impulse 

turbine. Blades are fabricated from the same die so, basically the blades are geometrically 

similar. So 𝛽1 = 𝛽2. And it is given that the relative velocity of the steam at the blade outlet is 

0.87 times of the relative velocity at the inlet that means relative velocity at the blade exit is less 



than the blade relative velocity at the blade inlet and this is because of the friction. So, that 

means it is given that blade friction or blade velocity coefficient 

 𝐾𝑏 =
𝑊2

𝑊1
= 0.87 

So, all this data are given, we have to calculate the power developed when axial thrust on the 

blade is 150 N.  

(Refer Slide Time: 38:15) 

 

So, we can again draw the velocity triangle with 𝐶1, 𝑊1, 𝛼1, 𝐶2, 𝑊2, 𝛽1, 𝛽2, 𝛼2. From the velocity 

triangle, we can find the component ∆𝐶𝑎 as we can see 𝐶𝑎2, 𝐶𝑎1. So, we name the velocity 

triangle A B C D. Now first we can calculate 

 𝑢 =
𝜋𝐷𝑚𝑁

60
=

𝜋 × 100 × 2800

100 × 60
= 146.53

𝑚

𝑠
 

So, this is the velocity blade velocity. As I had mentioned, we can use the relation 

tan 𝛽1 =
𝐶1 sin 𝛼1

𝐶1 cos 𝛼1 − 𝑢
=

280 sin 25°

280 cos 25° − 146.53
 

⇒ 𝛽1 = 47.81° 

Once again I am telling you that please check the numerical value but the procedure is correct. 

Once we have calculated 𝛽1 then quickly we can calculate 𝑊1. 

 𝑊1 =
𝐶1 sin 𝛼1

sin 𝛽1
=

280 × sin 25°

sin 47.81°
= 159.7

𝑚

𝑠
 

See I told you that we also can solve the problem graphically because we have calculated u and 

if we use suitable scale we can represent that u, we know 𝛼 and 𝐶1 is already given, so we can 

calculate 𝐶𝑎1 and other quantities. But now we are trying to solve it analytically.  
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 𝑊2 = 0.87 𝑊1 = 0.87 × 159.7 = 138.95
𝑚

𝑠
 

If we go to the problem statement again then we need to calculate the power developed when 

axial thrust on the blades is 150 N. That means 

Axial Thrust, 𝐹𝑎 = �̇�𝑠(𝐶𝑎1 − 𝐶𝑎2) = 150 𝑁 

⇒ �̇�𝑠 =
150

𝐶𝑎1 − 𝐶𝑎2
 

Now if we go back to the geometry we can see 

 𝐶𝑎1 = 𝐶1 sin 𝛽1   &  𝐶𝑎2 = 𝑊2 sin 𝛽2 

It is given that 𝛽1 = 𝛽2. So here 𝐶1, 𝛼1is given and 𝑊2 is not given directly but we could 

calculate 𝑊2. So 

�̇�𝑠 =
150

𝐶𝑎1 − 𝐶𝑎2
=

150

280 sin 25° − 138.95 sin 47.81°
= 9.75

𝑘𝑔

𝑠
 

Now we have to calculate the power developed by blades because that is the quantity of interest 

for this particular problem.  

Power developed by blades =
�̇�𝑠∆𝐶𝜃 × 𝑢

1000
 𝐾𝑊 

If we do so then we can write the unit KW provided this ∆𝐶𝜃 and 𝑢 is in m/s and �̇�𝑠 is in kg/s. 

So, in this expression we already know that 

�̇�𝑠 = 9.75
𝑘𝑔

𝑠
 & 𝑢 = 146.53

𝑚

𝑠
 

So, we have to calculate ∆𝐶𝜃 that is the tangential thrust.  
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So, now 

Tangential thrust =  �̇�s ∆Cθ  

That means this is due to the change in swirl velocity ∆Cθ. If we go back to the previous problem 

then 

∆𝐶𝜃 = 𝑊𝜃1 + 𝑊𝜃2 = 𝐶𝜃1 + 𝐶𝜃2 

Here we are considering 

∆𝐶𝜃 = 𝑊𝜃1 + 𝑊𝜃2 

= 𝑊1 cos 𝛽1 + 𝑊2 cos 𝛽2 

We can verify whether we have written it correctly or not from the velocity triangles.  

⇒ ∆𝐶𝜃 = 𝑊1 cos 𝛽1 + 0.87 × 𝑊1 cos 𝛽1 

Because
𝑊2

𝑊1
= 0.87 & 𝛽1 = 𝛽2 

⇒ ∆𝐶𝜃 = 𝑊1 cos 𝛽1 + 1.87 

⇒ ∆𝐶𝜃 = 159.7 cos 47.81 + 1.87 
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And if we calculate it and plug in the value of ∆𝐶𝜃 in the expression of power developed here 

then we can get 

Power developed = 286.56 𝐾𝑊 

So, you can check it whether it is correct or not. So, while solving these problems you can 

understand or recapitulate the theoretical part that we have learned.  

 

And finally the last problem that I will solve today is from another type of turbine that is the 

impulse reaction turbine.  
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So, if you try to recall we had established the expression of the blading efficiency for both 

impulse and reaction turbine. Today we have solved 2 problems from the impulse turbine. This 

problem is from the impulse reaction turbine. Now let us quickly read out the problem statement. 



An Impulse reaction turbine having degree of reaction equals to 0.5; we know that this is 

sometimes called only reaction turbine to distinguish this type of turbine from the impulse 

turbine or it is also known as impulse reaction turbine. And degree of reaction is the enthalpy 

drop in the moving blades to the total enthalpy drop that we have discussed. The turbine runs at 

280 RPM. The inlet blade angle of the moving blade and the exit angle of the fixed blade are 

30° and 20° respectively, mean diameter of the wheel is 0.6 meter and the steam condition is 

1.5 bar with equality 95%; of course that is the steam quality at the Inlet of the blade. We are 

asked to calculate the required height of the blade to pass 60 kg/s of steam and the power 

developed by this stage. So, let us quickly solve this problem.  

 

So, this is impulse reaction turbine. As I said you that this type of turbine is also known as 

reaction turbine because sometimes we need to distinguish them or to differentiate them from 

the impulse turbine, we call it reaction turbine otherwise the impulse reaction is also a common 

name of this type of turbine. The degree of reaction 𝑅 = 0.5. And we know that degree of 

reaction is basically enthalpy drop in the moving blades to the total enthalpy drop.  

 

The fundamental difference in a reaction turbine when steam passes through the blades or 

moving blades is that the pressure drops. And at the cost of the pressure drop the relative 

velocity is increased a little and steam turbine rotates because of both impulsive effect that is 

change in momentum due to the change of direction of the jet as well as the reaction force that 

is impressed on the blades in the opposite direction. So, for 𝑅 = 0.5 

𝑅 =
∆ℎ𝑚𝑏

∆ℎ𝑚𝑏 + ∆ℎ𝑓𝑏
= 0.5 

⇒ ∆ℎ𝑚𝑏 = ∆ℎ𝑓𝑏 

As I told you that typically blades are symmetrical because fabricating blades of a turbine is not 

so easy. So, basically blades are fabricated from same die and 𝛽1 = 𝛽2 for the geometrical 

similarity.  

 

So, basically blades are geometrically similar otherwise we have to use different dies for 

different blades and that would be again much more expensive. So for 𝑅 = 0.5 we know 

that 𝐶1 = 𝑊2 that means absolute velocity of steam from the fixed blade or nozzle is equal to 

relative velocity of steam from the exit of the moving blades and we know that we are using a 

common 𝑉𝑏 to superimpose the velocity triangles.  

 



So, that means if we consider velocity triangles both at inlet and outlet of the blades then we 

can see that these 2 triangles are having a common side that is 𝑉𝑏;   𝛽1 = 𝛽2;   𝐶1 = 𝑊2. So, the 

triangles are symmetrical. So, basically if we try to draw the velocity triangles, triangles will be 

symmetrical. Let us first draw the velocity angles and then we will discuss.  
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So, first we have drawn the velocity triangles in the slide with 

parameters 𝛼1, 𝛽2, 𝛽1, 𝐶1, 𝑊1, 𝐶2, 𝑊2 & 𝛼2. Then we have named the vertices of triangles A, B, 

C, D. So, for 𝑅 = 0.5, the triangles are symmetrical. 

For 𝑅 =
1

2
;  ∆𝐴𝐵𝐶 = ∆𝐵𝐶𝐷 

𝐶1 = 𝑊2;  𝛼1 = 𝛽2;  𝛽1 = 𝛼2;  𝐶2 = 𝑊1 

So, try to understand we have a common side BC and blades are symmetrical. So, triangles are 

symmetrical. Now from the data given in this problem statement, we can easily calculate u. So,  

𝑢 =
𝜋𝐷𝑚𝑁

60
=

𝜋 × 0.6 × 2800

60
= 87.92

𝑚

𝑠
 

So, that is the blade velocity. And it is given that the inlet blade angle of the moving blade is 

30° and exit angle of the fixed blade is 20°. So, 

𝛽1 = 𝛼2 = 30° 

𝛽2 = 𝛼1 = 20° 

So, these are the data given. Now we need to calculate the power developed. 
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Power developed by the blade, 𝑃 =
�̇�∆𝐶𝜃𝑢

1000
 𝐾𝑊 

Now ∆Cθ = 𝐶𝜃1 + 𝐶𝜃2 

If we look at the velocity triangles 

⇒ ∆Cθ = 𝐶1 cos 𝛼1 + 𝐶2 cos 𝛼2 

= 𝑊1 cos 𝛽1 + 𝑊2 cos 𝛽2 

This we have discussed in the context of the solution of the previous problem that is ∆Cθ =

𝑊𝜃1 + 𝑊𝜃2. Now we can easily calculate the value because we know everything. We 

know 𝛼1 = 20° ; 𝛼2 = 30°. So, if we can calculate 𝐶1, 𝑊1 then we can calculate easily ∆𝐶𝜃. For 

that from triangle A B C, we can apply sine law because already we know u.  

(Refer Slide Time: 1:04:52) 

 

 



So, applying sine law 

𝐶1

sin(180 − 𝛽1)
=

𝑊1

sin 𝛼1
=

𝑢

sin 𝐴
 

Now from this we can easily calculate 𝐶1 & 𝑊1. From the velocity triangle, 

𝐴𝑛𝑔𝑙𝑒 𝑠𝑖𝑔𝑛 𝐴 = 180 − (150 + 20) = 10° 

Now;   𝐶1 =
𝑢 sin(180 − 30)

sin 10
= 253.15

𝑚

𝑠
 

𝑊1 =
𝑢 sin 20

sin 10
= 173.16

𝑚

𝑠
 

 

I am telling you once again to check the numerical values. So, we have calculated 𝐶1, 𝑊1. Next 

we can calculate ∆𝐶𝜃.  

(Refer Slide Time: 1:07:48) 

 

∆𝐶𝜃 = 𝐶1 cos 𝛼1 + 𝐶2 cos 𝛼2 

= 𝐶1 cos 𝛼1 + 𝑊1 cos 𝛽1 

 Data we have;  𝐶1 = 253.15
𝑚

𝑠
; 𝑊1 = 𝐶2 = 173.16

𝑚

𝑠
; 𝛼1 = 20°; 𝛽1 = 30° 

Putting all the values; ∆𝐶𝜃 = 387.84
m

s
  

So, this is ∆Cθ. Now we can calculate the power developed. 

Power developed by the blade, 𝑃 =
�̇�∆𝐶𝜃𝑢

1000
 𝐾𝑊 

In the problem statement it is given that mass flow rate �̇� = 60
𝑘𝑔

𝑠
. 

𝑃 =
60 × 387.84 × 87.92

1000
 𝐾𝑊 



Finally last part is that if we need to really have flow of steam 60 kg per second then at this rate 

we need to calculate the height of the blade (h). So, if we go back to the previous slide then one 

important part is that it is given that the steam condition is 1.5 bar with quality 95%.  So, from 

here we can calculate the specific volume of steam at this condition.  

Specific volume of steam, 𝑣 = 𝑣𝑓 + 𝑥𝑣𝑓𝑔  

 

So, corresponding to that pressure 1.5 bar  

Specific volume of steam, 𝑣 = 0.001053 + 0.95 × 1.1594 = 1.1024
m3

𝑘𝑔
 

So, this is the specific volume of this steam. Now let me discuss here that steam will flow. 

�̇� × 𝑣 = flow velocity × flow area 

⇒ 60 × 1.1024 = 𝐶𝑎1 × 𝜋𝐷𝑚 × ℎ 

So, now try to understand in this expression we know 𝐷𝑚, we have to calculate ℎ that is the 

blade height provided that we know 𝐶𝑎1. 

𝐶𝑎1 = flow of velocity = 𝐶1 sin 𝛼1 

We can easily calculate this as we have already calculated 𝐶1 and 𝛼1 is given. So, if we plug in 

the value of 𝐶𝑎1 & 𝐷𝑚 then we can calculate easily ℎ. So, you can check the numerical value 

of ℎ that should be in cm.  

 

So, to summarize today’s class, we have solved a few numerical problems from Steam turbine. 

We have covered both impulse as well as impulse reaction turbine essentially to illustrate the 

concept that we have learned from the theoretical discussion. So, with this I stop here today and 

we shall continue our discussion in the next class. Thank you.  

 


