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Dear learners, greetings from IIT Guwahati. I welcome you to this course Advanced 

Thermodynamics and Combustions we are in the module 2, Entropy and Exergy. 
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In this module we have already covered two lectures on entropy. So, we are now moving 

for the 3rd lecture. 
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So, in this lecture we are going to discuss about the following topics that is entropy data 

interpretations, entropy equations, entropy balance for a closed systems of course, we will 

also discuss about entropy balance for the Control Volume then we will discuss something 

about entropy as a directionality measures for thermodynamic processes then something 

on isentropic processes. So, prior to this lectures we discussed exhaustively the entropy by 

definitions from the second law and its consequence analysis in variety of systems. 

In fact, the concept of entropy was introduced through Clausius theorem which is 

commonly known as Clausius inequality. Now to make our measurement systems with the 

viewpoint of thermodynamic analysis for closed systems and control volume, in this 

lecture we are going to target on the entropy balance equations and how we can form the 

governing equations for the closed systems and control volume which is similar for energy 

analysis that we did using the first law. 
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So, to start with the first thing that we are going to discuss is that we know what is entropy. 

So, it is a property of systems which was introduced by the second law, now once you 

know the entropy data then how you are going to interpret. 

So, in fact, the word entropy talks about the disorderness of the systems, it allows us to 

know in a particular directions how a system is moving. So, we know that from the first 

law, energy was introduced and from the second law, entropy was introduced and both 

energy and entropy are the abstract concepts and we mainly dealt with energy in our day 

to day conversions and for which there is a balance equations or we call is a energy auditing 

in which we talk about the energy balance which comes into and out of the systems. 

Now similar concept if you want to extend for the entropy how you are going to do that is 

our main viewpoint. So, now, in a thermodynamic sense that when you talk about a 

property, it depends on the states of the systems. 

For example, if I say that system is at point 1 and another system is at point 2 and if you 

talk this entropy for the system 1 that is at state point S1 and at the point 2 it is S2. So, this 

property is coordinate dependent. So, now, by definition of a thermodynamic property if 

it changes value between these two states, is independent on the thermodynamic 

coordinates. 



So, irrespective of the fact whether I take this path or another path when I move from 

system 1 to system 2. So, I say path 1, path 2. In fact, I can also target moving to path 2 in 

an irreversible path 3. So, path 1 and path 2 you can say they may be reversible, this dotted 

line shown here it talks about irreversible path. 

So, why I am drawing here is that irrespective of whether we are at state 1 or state 2 

whatever path it follows, if it is a thermodynamic property it is not going to change this is 

by definitions and this is also true for entropy as well. So, since entropy is a property the 

change of the entropy of the system going from one state to another is same for all the 

processes. 

And by Clausius inequality we know that for an internal reversible processes the entropy 

change 𝑆2 − 𝑆1 = (∫
𝛿𝑄

𝑇

2

1
)

int 𝑟𝑒𝑣
 and if we go for a infinitely small processes then we can 

write this 𝑑𝑆 = (
𝛿𝑄

𝑇
)

int 𝑟𝑒𝑣
and this is true when we are dealing with an internal reversible 

processes. 

But what Clausius inequality says that always not all the processes will be internally 

reversible. So, in a general sense this says that this particular relations which is known as 

Clausius inequality which is always true that is 𝑑𝑆 ≥
𝛿𝑄

𝑇
 and when it is a reversible 

processes the first equation holds good. 
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Now moving further, there are another viewpoint of this entropy analysis that in some 

senses in a chemical engineering persons, they look the entropy evaluation in a different 

viewpoint because when we have the chemical reactions, it is always necessary to work 

with the absolute entropy. So, for that in order to get S1 or S2 we need to find out the 

entropy value at let us say state 1 will be addition of two parameters one is reference 

entropy at a given pressure and temperature or the given thermodynamic conditions plus 

the entropy transfer 
𝛿𝑄

𝑇
. 

So, this is how by definition what we called as absolute entropy. So, the concept of absolute 

entropy is given by 𝑆𝑥 + (∫
𝛿𝑄

𝑇

𝑦

𝑥
)

int 𝑟𝑒𝑣
where Sx is your reference entropy. Now in many 

situations when you deal with the pure substances and this pure substances have three 

different distinct phases that is solid, liquid and gas and their representation can be drawn 

in the property diagrams. 

Typically, the property diagrams are pressure volume diagram as shown in this figure or 

the temperature volume diagrams. So, in both the diagrams you can see the dome that 

constitutes the distinction of three different phases for example, if you look at this dome 

on this dome there is a peak point and we call this as a critical point and this critical point 

essentially distinguishes the two different distinct phases. 

And there are three different regions one is liquid, other is vapour here also we have liquid 

and we have vapour and in between within this dome we say liquid plus vapour. So, the 

important point to be noted here is that for a given coordinates; that means, for a given 

pressure volume or temperature entropy, we can find out the thermodynamic properties of 

all the parameters in the liquid regions or liquid plus vapour regions which is commonly 

known as two phase regions and only vapour regions we call this as a superheated regions 

and if you want to find out the property value and in particular in this case we talk entropy, 

we essentially look for which region we are putting our attentions. 

So, for example, in this case if I locate a point 1 on this saturation curve another point 2 in 

this saturation curve and in this curve we can see the point 1 denotes to saturated liquid 

regions and point 2 denotes for the saturated vapour regions similarly, in the T S diagram 

here. And if you want to find out the property value we also define another parameter 

which is called as a quality. So, this quality within this dome; that means, any value within 



this dome is decided by its quality. So, we call this as either quality of steam or quality of 

any substance maybe any refrigerant. So, for that things the entropy data can be evaluated 

based on the thermodynamic coordinates. 
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So, more clear pictures is shown here, the temperature entropy diagrams and enthalpy 

entropy diagrams. This enthalpy entropy diagrams we normally call this as a Mollier 

diagrams. So, you can see here, in this dome we have saturated liquid, we have saturated 

vapour and this is demarcated by the critical point cp, similarly in the enthalpy entropy 

diagram or Mollier diagram. 

So, on this diagram various constant pressure lines, volume lines, enthalpy lines are 

plotted. So, the entire idea of showing this thing is that while evaluating the data for 

entropy, one can use this graphical representations to calculate the entropy as a 

thermodynamic property. 
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And moreover there are other equations and we call them as entropy equations and this 

entropy equations can be effectively used. In fact, all the property datas were derived from 

this entropy equations and if you can effectively utilize them then we can find out various 

relations and in particular for entropy calculations the ideal choice is the temperature 

entropy equations and normally that equation we call as TdS equations. So, let us talk 

about what this TdS equation is all about and how it is derived for various pure substances. 

So, let us recall that for a pure and simple compressible substances, we can write down the 

first law of thermodynamics that involves q that is nothing but TdS that is in terms of 

entropy, 𝑇𝑑𝑆 = 𝑑𝑈 + 𝑝𝑑𝑉, we have dU that is change in the internal energy and we have 

pdV that is flow work or work transfer. Similarly, if you write this internal energy as a 

function of enthalpy then the first T-dS equations is derived in the form 𝑇𝑑𝑆 = 𝑑𝐻 − 𝑉𝑑𝑝. 

So, these two are the fundamental TdS equations which are useful for evaluation of 

entropy. Now if I take on unit mass basis; that means, if I say 𝑈 = 𝑢 × 𝑚; 𝐻 = ℎ × 𝑚. So, 

m is nothing but mass of the substance. So, on unit mass basics the entropy equations are 

reduced in this form. Now if I want to apply this equations for a saturated liquid to vapour 

systems. 

So, for this systems we know that is pressure is constant. So, from second TdS relation 

𝑑𝑠 =
𝑑ℎ

𝑇
 and dS is nothing but difference in between 𝑠𝑔 − 𝑠𝑓. 



So, from the enthalpy information it is possible to find out what is the entropy change 

between the saturated vapour to saturated liquid region and another expressions for an 

incompressible substance. So, now, when I say incompressible substance we are 

essentially looking the regions, which is typically liquid region. So, in this liquid regions 

entire property is governed by one parameters. 

So, from this TdS equations, we can rewrite 𝑑𝑠 =
𝑐(𝑇)𝑑𝑇

𝑇
+

𝑝𝑑𝑣

𝑇
; dU we can represent it as 

cv times T that is specific in this case it is heat capacity and pdv and since this in the 

incompressible regions, there is no change in the density. So, this term vanishes. So, in 

such cases the entropy equations reduces to (𝑠2 − 𝑠1) = ∫
𝑐(𝑇)

𝑇
𝑑𝑇

𝑇2

𝑇1
. 

And if you take specific heat as a constant you can say ln (
𝑇2

𝑇1
). So, this is all about what 

you do it for the pure substance. Now we will move to ideal gas. So, for that case we have 

two states 1 and 2, now in this we say its property or entropy defined as 𝑠(𝑇2, 𝑣2) or 

𝑠(𝑇2, 𝑝2). 

And for point 1 we say 𝑠(𝑇1, 𝑝1)and 𝑠(𝑇1, 𝑣1). So, a system goes from 1 to 2 the change 

of entropy is written by this two entropy equations and this is again derived from the two 

fundamental TdS equations. 

𝑠(𝑇2, 𝑣2) − 𝑠(𝑇1, 𝑣1) = ∫ 𝑐𝑣(𝑇)
𝑑𝑇

𝑇

𝑇2

𝑇1

+ 𝑅 ln (
𝑣2

𝑣1
) = 𝑐𝑣 (

𝑇2

𝑇1
) + 𝑅 ln (

𝑣2

𝑣1
) 

𝑠(𝑇2, 𝑝2) − 𝑠(𝑇1, 𝑝1) = ∫ 𝑐𝑝(𝑇)
𝑑𝑇

𝑇

𝑇2

𝑇1

− 𝑅 ln (
𝑝2

𝑝2
) = 𝑐𝑝 (

𝑇2

𝑇1
) − 𝑅 ln (

𝑝2

𝑝2
) 
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So, this is all about how you are going to evaluate entropy. Now let us see that how we are 

going to frame entropy audit for a closed systems. 

So, by closed system I mean that a system we consider as a closed systems because it 

contains the same matter and there is no transfer of matter across the system boundary, but 

the energy interactions is possible. So, there is no mass transfer, but energy interaction is 

possible. Now for such a systems we are going to find out what is the entropy balance 

equations. 

So, for that we have the fundamental expressions which is called as Clausius inequality. 

In fact, prior to this we have analyzed this Kelvin Planck statements and Clausius 

statements. So, based on their analysis if you consider a closed systems which is executed 

by two cycles one is through a irreversible process other is through reversible process. 

So, what you see here that a system undergoes the change of state from 1 to 2 first in an 

irreversible process, but it returns to the point 1 again through an reversible process. So, 

in this way it completes a closed cycle. Now for this closed cycle we can write this Clausius 

inequality in this manner that first one, system undergoes from 1 to 2 for which there is a 

boundary heat transfer 
𝛿𝑄

𝑇
 and while return it goes from 2 to 1 in a reversible process. 

And in this process there is an entropy productions because we need to equalize this 

Clausius inequality statement and from this we can write down ∫ (
𝛿𝑄

𝑇
)

2

1 𝑏
+ (𝑆1 − 𝑆2) = −𝜎 



and in fact, this is nothing but your entropy balance equation. 
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Now let us evaluate that particular equation in a more elaborate way; that means, here we 

have shown from initial state to final state it goes in an irreversible path and returns to a 

reversible path. 

We write this entropy balance equations as 𝑆2 − 𝑆1 = ∫ (
𝛿𝑄

𝑇
)

2

1 𝑏
+ 𝜎, 𝜎 is entropy 

production. So, this is the fundamental equation what we call as entropy balance equation 

for a closed systems. Now if you look at this two terms here what it says is that the change 

in the amount of entropy contained within the systems during some time interval is equal 

to sum of the net amount of entropy transferred across the system boundary in same time 

interval and the amount of entropy produced within the system in same time interval. And 

in fact, mathematically when we write these equations, the value of entropy if it is positive 

which is into the systems. 

That means, in a closed system we say when a heat is added into the system then we say 

dQ is positive and when heat is taken out from the systems dQ is negative. So, accordingly 

the change in the entropy is governed by this way whether it is added into the system or 

taken out from the system. 
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Now, we will now look into another viewpoint for the same equations. So, we derived this 

equations like 𝑆2 − 𝑆1 = ∫ (
𝛿𝑄

𝑇
)

2

1 𝑏
+ 𝜎. Let us talk about the significance of this sigma 

what is this sigma? The sigma is nothing but what we call as entropy production. So, what 

does this mean that if a process becomes irreversible then the entropy is produced within 

the systems and it cannot be a negative quantity, that is the most important inferences from 

this entropy equations. 

So, for an irreversible processes there is a entropy productions and it is always greater than 

0 and if there is a possibility that entropy production can be equal to 0 if the system 

undergoes a reversible process. Now based on this the change of entropy from system 1 

and 2 either it can be equal to 0 or it has to be greater than 0 there are possibility it can be 

less than 0. 

So, based on this we have these three possibilities. So, the value of entropy production 

cannot be negative, but the change of entropy of the systems may be positive, may be 

negative or maybe zero. So, we have seen that how it can be positive, how it can be 

negative that all depends whether heat is added into the systems or heat is taken out of the 

systems. 

So, from this analysis we can now frame the entropy statement of the second law which 

says that it is impossible for any system to operate in a way that entropy is destroyed; that 



means, entropy cannot be destroyed it has to be produced always. Now let us evaluate this 

entropy balance equation with another viewpoint; that means, in terms of solving the 

problems. 
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One thing is that when you say productions let us bring the time scale into considerations. 

What is this time scale into considerations? Now if you say it is a closed system and this 

closed systems has a boundary and across which this dQ can be positive or negative. So, 

based on this we have this entropy balance equations. 

Now, if this particular systems which has a boundary and this boundary is as constant 

temperature Tb. So, this equations can be rewritten in this manner because since the 

temperature is constants we can bring this out of the integral. So, at constant temperature 

Tb these entropy equations can now be written as 𝑆2 − 𝑆1 =
𝑄

𝑇𝑏
+ 𝜎. Now on time basis; if 

you want to calculate what is the rate at which entropy is changing. 

So, you can write in the form 
𝑑𝑆

𝑑𝑡
= ∑

𝑄̇𝑗

𝑇𝑗
𝑗 + 𝜎̇. This summation means there are various 

ways that this q can come into the systems. So, entire Q is governed with summation of all 

the number of sources that heat enters or comes out of the systems. 

So, based on that the statement of entropy balance equation can be written as the time rate 

of change of entropy of the system is equal to sum of the time rate of entropy to the portion 



of the boundary whose instantaneous temperature is Tj and the time rate of entropy 

productions due to the irreversibility of the systems. 
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Now having said this entropy balance, we are now able to think about an extended systems 

or enlarged systems what does this mean? 

So, we already say that we have some system and which is not included in the systems we 

say its surroundings. Now this heat interactions is always there between the system and 

surroundings, what I am looking at is that let us bring entire system and surrounding into 

one closed loop or closed platform and we call this as a isolated system. Now when I say 

isolated systems it involves the systems plus surroundings. 

So, for that energy balance equations we can write for isolated system is equal to 0 total 

change of energy for system and surrounding is 0, similarly we can write the entropy 

balance equations in a different way; that means, we can write delta S of isolated systems 

is equal to delta Q by T plus delta isolated and this is nothing but delta isolated is nothing 

but entropy productions. 

So, by looking this equation closely we can say that the since the isolated systems involve 

system and surroundings, we can write (𝛥𝐸)𝑖𝑠𝑜𝑙 = 0 ⇒ (𝛥𝐸)𝑠𝑦𝑠𝑡𝑒𝑚 + (𝛥𝐸)𝑠𝑢𝑟𝑟 = 0 and 

from this equation we can see that this particular term is always greater than 0 because we 



have already proved that 𝛥𝑆 is always greater than 0 or only possibilities that it can be 

equal to 0. 

So, this system and surroundings and in particular we call that as universe and for this we 

can frame this law that (𝛥𝑆)𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 ≥ 0. So, which says that the entropy is always 

produced by all actual processes and for which the entropy of the universe is always greater 

than or equal to 0 or in other words we can say entropy of an isolated systems increases. 

So, in this case the isolated system is nothing but the universe. 
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Now, let us move to entropy balance equations for the control volume. So, basic difference 

between a closed systems and control volume is that in a control volume, both mass and 

energy interaction is possible. 

So, what we have is that in a control volume typically represented by multiple inlets or 

multiple outlet as you can see here. So, we may have something entering into the systems 

something leaving out of the systems. So, this entering we say some mass that is entering 

into the systems m1 and m2 and some mass which is m3 and m4 that comes out and we call 

this as a control volume. 

Apart from this there is energy and there is heat interactions Q from this control volume 

to the surroundings. So, all these things are possible and for these things if you want to 

write down the entropy balance equations, it says that the time rate of change of entropy 



within the control volume is the sum of three terms first term is entropy transfer 

accompanying the by mass flow rate into and out of the systems. 

Second term is rate of entropy transfer at the location of the boundary which is located at 

instantaneous temperature Tj and that entropy transfer is due to heat transfer and third term 

involves entropy productions within the control volume due to irreversibility. 

𝑑𝑆𝐶𝑉

𝑑𝑡
= ∑

𝑄̇𝑗

𝑇𝑗
+ ∑ 𝑚̇𝑖𝑠𝑖

𝑖

− ∑ 𝑚̇𝑒𝑠𝑒

𝑒

+ 𝜎̇𝑐𝑣

𝑗

 

So, from the analysis of closed systems if you enlarge it or elaborate it for control volume, 

we can write down the entropy change for the control volume involving three important 

terms, first term we see accompanying due to the mass flow rate. So, this two terms 

represent due to mass flow rate. And this particular first term refers to entropy change due 

to heat transfer across the system boundary and the last term is nothing but production and 

this production is mainly due to irreversibility. 
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Now let us move more closely and this particular slide shows the elaborate version of this 

differential form of equations for the control volume and the simplified sense that this 

particular equation gets simplified for a steady state entropy rate balance. 



So, what does it mean is that is for a steady state entropy balance we say 
𝑑𝑆𝐶𝑉

𝑑𝑡
= 0. So, 

based on this entropy balance equation reduces to this form ∑
𝑄̇𝑗

𝑇𝑗
+ ∑ 𝑚̇𝑖𝑠𝑖𝑖 − ∑ 𝑚̇𝑒𝑠𝑒𝑒 +𝑗

𝜎̇𝑐𝑣 = 0. Now again when I say that there is no heat transfer so; that means, we say Qj goes 

to 0 this entire equation reduces to 𝑠2 − 𝑠1 =
𝜎̇𝑐𝑣

𝑚̇
 here we have assumed that mass flow rate 

inlet and mass flow rate exit, they are same. 

Further simplifications can be also done for single inlet and single exit control volume at 

steady state. So, in fact, all these equations are relevant or will be required when you solve 

the problems. 
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Now another aspect of entropy balance for the control volume is to elaborate the 

expressions of work transfer and heat transfer for the internal reversible processes. 

And when you say internal reversible processes, it means the internally irreversibilities are 

absent. So, for an internal reversible processes this entropy equations we can say this is 

𝑆2 − 𝑆1 = 0. So, we start with the first basic expressions 
𝑄̇𝑐𝑣

𝑚̇
= 𝑇(𝑠2 − 𝑠1) and this 

particular term (
𝑄̇𝑐𝑣

𝑚̇
)

int, 𝑟𝑒𝑣
= ∫ 𝑇𝑑𝑠

2

1
. 

So, in turn it gives an impression that if you draw a temperature entropy diagram when the 

system undergoes from change of state from 1 to 2 and this area under that diagram is 



nothing but 𝑄̇𝑐𝑣. Now, so this is what we do if it is an internal reversible process for heat 

transfer. Now if this internal reversible process, there is work transfer expressions we can 

rewrite that particular equations. 

That if system does not have the heat transfer, but only work transfer is possible we can 

rewrite that equations in this form, so (
𝑊̇𝑐𝑣

𝑚̇
)

int, 𝑟𝑒𝑣
= ∫ 𝑇𝑑𝑠

2

1
+ (ℎ1 − ℎ2) + (

𝑉1
2−𝑉2

2

2
) +

𝑔(𝑧1 − 𝑧2) and here we can say it involves the kinetic energy change and also potential 

energy change.  

And important point that I need to emphasize here that if you recall this 𝑇𝑑𝑠 = 𝑑𝑈 +

𝑝𝑑𝑣 and 𝑢 = ℎ − 𝑝𝑣 and when you simplify this we will arrive at 𝑣𝑑𝑝 = 𝑇𝑑𝑠 − 𝑑ℎ and 

this is nothing but this particular term ∫ 𝑇𝑑𝑠
2

1
+ (ℎ1 − ℎ2) = − ∫ 𝑣𝑑𝑝

2

1
. 

And with no kinetic energy transfer and potential energy transfer, the internal 

(
𝑊̇𝑐𝑣

𝑚̇
)

int, 𝑟𝑒𝑣
= − ∫ 𝑣𝑑𝑝

2

1
 which means if you can draw on a thermodynamic pressure 

volume diagram. So, the process undergoes a change of state from the 1 to 2 so in fact, 

this is a compression process and the area under that diagram that is 𝑣𝑑𝑝 is shown here. 

So, this is the significance of the entropy balance equation for control volume how you 

can represent them in the thermodynamic diagrams. 
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So, last segment of our discussion is about isentropic processes. So, the word isentropic 

process we mean it is a constant entropy process; that means, system undergoes change of 

state from one to two without involving in change of entropy. 

And such a process in a T-s diagram and h-s diagram is represented here. So, these two 

are for pure substance and it is governed by whether this initial state is in which region 

whether it is liquid state or it is maybe mixture of liquid and vapour state for example, 

state 1 here it is shown as only vapour state even 2 also is a vapour state, but 3 is in the 

liquid plus vapour state. 

But all of them have same entropy. So, ideal choice of temperature entropy diagram or 

enthalpy entropy diagram is that the vertical line indicates the constant entropy axis. Now 

for other situations we can refer the thermodynamic property tables for pure substances. 

So, for pure substances entropy calculation is governed through the property tables. Now 

for ideal gases, instead of enthalpy entropy diagram our ideal choice is the temperature 

entropy diagrams and in this case we can see that we can have the coordinates of 

thermodynamic processes 1 and 2, but within this 1 and 2 process we can draw constant 

volume line, constant pressure line, constant temperature line; constant temperature line is 

a horizontal straight line. 

So, similarly for state point 2 we will have constant volume lines, constant pressure lines, 

but one thing is that this vertical line talk about the constant entropy line. 
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And here in more elaborate expressions for isentropic process is shown with a classical 

viewpoint of thermodynamics where we find the entropy equations. 

And this entropy equations we can start with situations for an ideal gas gases with constant 

specific heat for an isentropic process we can write down two fundamental equations of 

entropy equations 𝑠(𝑇2, 𝑣2) − 𝑠(𝑇1, 𝑣1) = 𝑐𝑣 (
𝑇2

𝑇1
) + 𝑅 ln (

𝑣2

𝑣1
) = 0;  𝑠(𝑇2, 𝑝2) −

𝑠(𝑇1, 𝑝1) = 𝑐𝑝 (
𝑇2

𝑇1
) − 𝑅 ln (

𝑝2

𝑝2
) = 0 and from this equations we can recall the expressions 

for specific heat as a function of 𝑐𝑝 =
𝑘𝑅

𝑘−1
. So, k is specific heat ratio which is 𝑘 =

𝐶𝑝

𝐶𝑣
; 𝑅 =

𝐶𝑝 − 𝐶𝑣. 

By putting this equations in this entropy equations we are able to derive the isentropic 

relations that 
𝑇2

𝑇1
= (

𝑝2

𝑝1
)

𝑘−1

𝑘
= (

𝑣1

𝑣2
)

𝑘−1

and fundamental equation that we still use in our 

classical things which is 𝑝𝑣𝑘 = 𝐶. 

So, thermodynamically we represent in this classical diagram pressure and volume, and 

temperature and entropy and here we draw different constant lines for entropy. So, here 

the exponent is represented for a constant volume process, n goes to infinity, n=1, n=0. 



So, from this equations we say 𝑝𝑣𝑛 = 𝐶. So, n can be 0, n can be 1, n can goes to infinity 

or n can go to k, 𝑘 =
𝐶𝑝

𝐶𝑣
. So, this is nothing but your isentropic equations and which you 

we use in a classical way. 
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So, with this we come to the end of the entropy analysis. So, before you close this lectures 

let us solve some simple problems. 

So, this first problem is about entropy production for closed system. We have saturated 

water at 150 C which is contained in an insulated piston cylinder container assembly, this 

change of state of water goes from saturated liquid state to saturated vapour state and 

change of state is achieved through a paddle wheel arrangements. 

So, schematically we can draw a piston cylinder assembly which is coupled with a paddle 

wheel arrangement. So, basically we are stirring this water, as a result we are introducing 

entropy into the systems and as you are entropy introducing the systems, there is some 

work transfer which is done into the systems by virtue of which the change of state has 

happened from saturated water to saturated vapour. 

So, first thing that we are going to calculate the work done and entropy produced. To 

calculate the work done we have to recall energy balance equation from the first law that 

is Δ𝑈 + Δ(𝐾𝐸) + Δ(𝑃𝐸) = 𝑄 − 𝑊. Now here one assumption that we have, it is an 

insulated container. 



So, that is Q is 0, but there is work transfer and there is no kinetic energy, no potential 

energy. So, the specific work can be now written as 
𝑤

𝑚
= 𝑢1 − 𝑢2. Similarly, we can get 

the second expression for entropy balance. So, we start with this expression as Δ𝑆 =

∫ (
𝛿𝑄

𝑇
)

2

1
+ 𝜎. 

Here there is no heat transfer into and out of the systems. So, it goes to 0. So, we can write 

𝑚(𝑠2 − 𝑠1) = 𝜎;
𝜎

𝑚
= 𝑠2 − 𝑠1 . 

(Refer Slide Time: 48:31) 

 

Now our main intention is to calculate what 𝑢1, 𝑢2, 𝑠1, 𝑠2. So, for that we have to use steam 

table data. 

So, in the steam table so, we can say 150 C saturated water we can find out 𝑢1 =

631.88
𝑘𝐽

𝑘𝑔
; 𝑠1 = 1.848

𝑘𝐽

𝑘𝑔−𝐾
, then we have 150 C saturated vapour. 

So, at this state we can find we can find the data from the steam table which is 𝑢2 =

2559.5
𝑘𝐽

𝑘𝑔
; 𝑠2 = 6.8379

𝑘𝐽

𝑘𝑔−𝐾
. So, from this we can now find out 

𝑤

𝑚
= 𝑢1 − 𝑢2 =

−927.82 𝑘𝐽/𝑘𝑔. 



And 
𝜎

𝑚
= 𝑠2 − 𝑠1 = 4.9961

𝑘𝐽

𝑘𝑔−𝐾
. So, what we see from this data is that this work transfer 

is negative. So, which means that work is being fed into the systems, but the entropy is 

positive so; that means, entropy production is always greater than 0. 

So, this satisfies this fact that through a stirring wheel mechanism, it is possible to change 

the state of water which is initially saturated at 150 C and we can move this to saturated 

vapour through a paddle wheel arrangement. 
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Now, the next problem is about the entropy productions for a control volume. 

So, the data which is given that air enters a device at a temperature 21 C, pressure 5 bar 

and separate streams of air at 1 bar leaves the device at temperature -18 C, other is at 79 

C. So, schematically if you represent this is the device, there is one inlet for which 

temperature enters at 21 C, pressure at 5 bar. 

But the air leaves in both the states 2 and 3 with pressure 1 bar, but temperatures are 

different, one is at hot outlet at 79 C and cold outlet is at -18 C. So, since some mass is 

entering and leaving the systems we say it is a steady flow device and we can say make 

system boundary as shown in the dotted lines. 

So, what assumption that we are going to say is that there is no heat transfer and there is 

no work transfer through this control volume. So, two fundamental equations is required 



one is mass balance which is 𝑚̇1 = 𝑚̇2 + 𝑚̇3, and entropy balance equation can be written 

as 𝑚̇1𝑠1 − 𝑚̇2𝑠2 − 𝑚̇3𝑠3 + 𝜎̇𝑐𝑣 = 0 

Because we have through boundary work 𝑄𝐶𝑉 = 0. Now also there is another data, it is 

observed that 60 percent of mass entering the device leaves at lower temperatures. So, 

from this we can say 𝑚̇2 = 0.4 𝑚̇
1, 𝑚̇3 = 0.6 𝑚̇

1. Now when I put these equations here 

this equations can now be simplified 𝑚̇2(𝑠1 − 𝑠2) + 𝑚̇3(𝑠1 − 𝑠3) + 𝜎̇𝑐𝑣 = 0. 

By putting these two numbers we finally, get the expressions 0.4 𝑚̇1(𝑠2 − 𝑠1) +

0.6 𝑚̇1(𝑠3 − 𝑠1) = 𝜎̇𝑐𝑣  

𝜎̇𝑐𝑣

𝑚̇1
= 0.4 (𝐶𝑝 ln

𝑇2

𝑇1
− 𝑅 ln

𝑝2

𝑝1
) + 0.6 (𝐶𝑝 ln

𝑇3

𝑇1
− 𝑅 ln

𝑝3

𝑝1
)

= 0.4 (1.005 ln
352

294
− 0.287 ln

1

5
) + 0.6 (1.005 ln

255

294
− 0.287 ln

1

5
)

= 0.454
𝑘𝐽

𝑘𝑔 − 𝐾
 

So, by putting all the data we can find out this as 0.454 
𝑘𝐽

𝑘𝑔−𝐾
. So, this also says that this 

term is greater than 0. So, we can say entropy productions from this device is a positive 

quantity. So, in other words it gives the feasibility of existence purchase for such a device. 

So, we have solved two problems one on entropy balance for closed systems other is for 

control volume. So, with this we come to the end of entropy. 

Thank you for your attention. 


