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Dear learners, welcome to this course Advanced Thermodynamics and Combustions, we 

are in module two that is Entropy and exergy. 

(Refer Slide Time: 00:38) 

 

On this module, we are in the second lecture that is entropy analysis that is part II. 
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And in this lecture, we will discuss the following topics. So, first one is Clausius Theorem 

and Second Law of Thermodynamics. In fact, some of the components we have already 

seen in the first lecture. Then next segment will be irreversible process that is evaluation 

of heat and entropy; in fact, in our previous lecture we mostly concentrated on reversible 

processes. 

And the third segment of this lecture will be entropy for non-equilibrium states; that means, 

normally when the entropy is evaluated, we assume that initial and final states are in 

equilibrium states. And if under some circumstances, if that condition is not ensured how 

do you calculate the entropy. And the last segment of this lecture will be principle of 

increase in the entropy, or we can say law of universe for entropy. 
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So, let us revisit the Clausius Theorem which was stated for a reversible cycle. In the 

previous lecture, what it says is that, during this particular reversible cycle we consider 

that the entire cycle is discretized in terms of small segments or we can say the closed path 

of the reversible cycle is replaced with another closed but, zigzag path which consists of 

alternate reversible isothermal and reversible adiabatic processes and each one consist of 

a Carnot cycles. 

So, likewise we can have many number of Carnot cycles for this closed system or the 

closed cycle. Now, considering this what we found is that, the cyclic integral of the 

parameter∮
𝑑𝑄̶

𝑇𝑅
= 0. So, this was the stated as a one of the Clausius theorem for a 

reversible process. What it says that, Clausius theorem may be stated as the cyclic integral 

of the parameter ∮
𝑑𝑄̶

𝑇𝑅
= 0for a reversible process. In fact, it is the another form of the 

second law of thermodynamics. 
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So, the story does not stop here, but what we can extend this particular theorem is to 

analyze this Clausius theorem for an irreversible cycle. In fact, this is the main emphasis 

of today’s lecture where we will consider the irreversible cycle and calculates its closed 

integrals. So, to do that let us see this particular figure where we are basically looking 

irreversible engine I and this irreversible engine takes certain quantity of dQ, heat is 

receiving and it is producing dW amount of work. 

But in one sense we can say that in doing so, only for this irreversible engine we can maybe 

bit of some analysis we can say that there are two temperature reservoir sources only for 

this irreversible engine that takes dQ amount of heat at temperature T. And this engine 

also has another partition which says that as if some invisible temperature source at a 𝑇′ is 

sitting onto there, where the engine is supposed to reject the heat and it produces the dW 

amount of work. 

But, what we can see is that when it receives the dQ amount of heat, it is nothing but a 

heat rejected by a reversible engines. So, essentially the entire combined systems if you 

look at the reversible engine R receives 𝑑𝑄1 amount of heat from a high temperature 

source at T1. And it rejects dQ amount of heat to the irreversible engines, and side by side 

it produces dW amount of work. So, in fact, if you consider this reversible and irreversible 

engine together, this entire things; so, you can say this is the combined system. 



So, this combined system consists of the reversible engine as well as the irreversible 

engine. And another important point that I need to emphasize that, for this irreversible 

cycle, this dQ is positive when 𝑇′ ≤ 𝑇; when 𝑇′ ≥ 𝑇, dQ is negative. 

In fact, this is nothing but the summary from the second law; so, this is the conclusion 

what we are going to make. So, in a sense that when you talk about these combined systems 

involving reversible engine and irreversible engine, it seems that the entire combined 

systems receives dQ1 amount of heat and it produces dW amount of work.  

But this is not possible, because it violates second law of thermodynamics or Kelvin 

Planck statements which means that there is no heat rejection systems here; that means, 

this combined system is interacting only a single reservoir. 
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So that means, the Kelvin Planck statement is violated. So, for that things; so, this must 

give us the conditions that for this reversible engine dW is less than 0 and this implies that 

you will also have dQ1 for this reversible engine is also less than 0. 

So, what we can say; the net work for the combined systems cannot be positive, because 

it exchanges heat only with a single reservoir. So, the cyclic integral of reversible heat that 

is dQ1 cannot be positive hence the engine I must generate heat that flows out of the 

systems. So; that means, there has to be another reservoir; and in fact, this another reservoir 



means it is having a temperature 𝑇′. And this  𝑇′ ≤ 𝑇 then dQ is positive; when this 𝑇′ ≥

𝑇, dQ is negative and for a reversible cycle this 𝑇′and T must be equal. 

So, same philosophy if it is represented in a mathematical form what we can write first 

thing we say that based on the Kelvin Planck statements we can write ∮ 𝑑𝑊̶
𝑅

< 0. So, this 

means your ∮ 𝑑𝑄̶1𝑅
< 0, because this reversible engine is interacting with the high 

temperature source at temperature T1 by receiving dQ1 amount of heat. And again, if you 

talk the temperature of reservoirs that this reversible engine interacts is nothing, but your 

T and T1. 

So, based on this we can write the ratios of heat to temperature that is 
𝑑𝑄̶1

𝑇1
= −

𝑑𝑄̶

𝑇
. And in 

fact, this minus dQ sign is because this dQ with respect to reversible engine, it is negative, 

but this is being absorbed by the irreversible engines. So, irreversible engine if you write 

this negative sign goes off. 

So, we can write this as ∮
𝑑𝑄̶

𝑇𝐼
. Now, if you simplify this equations what we land of is the 

fact that ∮
𝑑𝑄̶

𝑇𝐼
=

1

𝑇1
∮ 𝑑𝑄̶1𝑅

. Because, T1 is a constant temperature because it is a reservoir 

temperature which is constant. So, it is taken out of this integral as you can see here, this 

T1 is taken out of the integral here; and finally, this particular expressions is now written 

in terms of this important expressions ∮
𝑑𝑄̶

𝑇𝐼
=

1

𝑇1
∮ 𝑑𝑄̶1𝑅

. Now, from this what we can 

conclude is that here we can say that since T1 is greater than 0, because it is always absolute 

temperature and dQ1 is less than 0 that we have concluded from the Kelvin Planck 

statement. So, this means that your ∮
𝑑𝑄̶

𝑇𝐼
< 0 and this is what we call as Clausius 

inequality. 
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Now, there are two options we have the Clausius equality sign for a reversible cycle. Now, 

we have proved the Clausius inequality situations for an irreversible cycle. So, for a 

reversible cycle ∮
𝑑𝑄̶

𝑇𝑅
= 0 and for irreversible cycle ∮

𝑑𝑄̶

𝑇𝐼
< 0. By combining them 

together, we can frame this Clausius mathematical statement of second law and sometimes 

we call this as a Clausius inequality. So, it says that ∮
𝑑𝑄̶

𝑇
≤ 0. 
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So, the next segment we have is that we have to elaborate more with respect to irreversible 

process and to elaborate more we need to see the evaluation of heat and entropy and their 

correlations. So, in order to relate the change in entropy of heat for an irreversible process, 

we are now considering a cycle in which the system begins from an initial state i and passes 

during an irreversible process I to the final state f. So, then it returns to the initial state. 

So, what we say here that to analyse this relation for heat and entropy for an reversible 

process, we are considering this temperature entropy diagram. So, in this temperature and 

entropy diagram we are fixing this initial state i first, then system is supposed to go to the 

final state f. And since your analysis is focused on irreversible process; so, we assume that 

there is some kind of irreversible process which is denoted by this dotted line and it is 

proceeding in these directions. 

Now, while in return this final stage takes a reversible path; so, this is a reversible path 

and this is an irreversible path. Now, what we are trying to say that what happens to entropy 

and heat for these reversible and irreversible paths. So, remember one thing, heat is a path 

function, but entropy is a point functions. 

So, it depends on the point to point; that means, entropy is independent of the path. So, we 

must know that what is the difference in the entropy between the final and initial states. 

Second part we need to emphasize that during this reversible path and irreversible path 

what is the magnitude of heat that is going to change or going into the path that if it is a 

reversible and if it is not a reversible. 

So, first thing to analyse this heat and entropy separately. So, let us first consider this 

entropy function that is ∮ 𝑑𝑆, when it is evaluated? It is evaluated for the cycle; that means, 

for the cycle it goes in this way and comes back in this path. So, this consist of two paths, 

the entropy for this irreversible path i and entropy change for this reversible path r. 

So, if the system goes from i to f; so, ∮ 𝑑𝑆 =𝐼 ∫ 𝑑𝑆
𝑓

𝑖
+𝑅 ∫ 𝑑𝑆

𝑖

𝑓
. So, this is what for what 

you write for entropy and what you can write with respect to Clausius inequality from this 

equations. That means, we can replace ∮ 𝑑𝑆
𝑅

= ∮
𝑑𝑄̶

𝑇𝑅
. 



So, we can write these two equations, but this ∮
𝑑𝑄̶

𝑇𝐼
< 0. And; in fact, when you if you 

have put this equation as 1 and this equation as 2; so, on subtraction of 2 from 1; we can 

write that dS this is first term sits here.  

Second term of the first equation it is also here then since you are subtracting there is a 

negative sign here and negative sign for this equation 2 and this must be greater than 0. 

Because, in this case it is less than 0; in this case it is greater than 0, because from 1 to 2 

when you subtract this will take a other trend; so, it will be greater than 0. 

⇒𝐼 ∫ 𝑑𝑆
𝑓

𝑖
+𝑅 ∫ 𝑑𝑆

𝑖

𝑓
−𝐼 ∫

𝑑𝑄̶

𝑇

𝑓

𝑖
−𝑅 ∫

𝑑𝑄̶

𝑇

𝑖

𝑓
> 0 

But interestingly if you look at this particular equations and try to find out by definition of 

entropy what it means to us is ∮ 𝑑𝑆
𝑅

= ∮
𝑑𝑄̶

𝑇𝑅
. So, this reversible term will get cancelled 

and irreversible term will remain. So, when you only look for this irreversible process, we 

end up in having this expressions that 𝐼 ∫ 𝑑𝑆
𝑓

𝑖
>𝐼 ∫

𝑑𝑄̶

𝑇

𝑓

𝑖
. 

That means, entropy is greater than the cyclic integral value and for the very small changes; 

that means, we can remove this integral. So, we can represent in terms of differential form 

that is (𝑑𝑆)𝐼 > (
𝑑𝑄̶

𝑇
)

𝐼
. Or in other words in a general sense that for any process we can 

write this particular expression by putting an inequality and equality signs where it says 

𝑑𝑆 ≥
𝑑𝑄̶

𝑇
. 
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Now, having said this we now have many inferences or consequences from our analysis. 

So, let us club them together that to find what are the possible sequences. Since we have 

heat, we have entropy; so, the processes that can have is, for heat we can think of the 

process can be adiabatic or the process can be non-adiabatic. 

And when you have this adiabatic and non adiabatic, we may have reversible or 

irreversible. And similarly for entropy, we can say it is an isentropic process; that means, 

entropy does not change and it is a non-isentropic process. And these things can be applied 

for a reversible process or irreversible process; so, this is the basics of this particular 

analysis. 

So, we are trying to evaluate mathematically what are the different consequences we are 

going to see. So, first thing we say by definition of entropy we say 𝑑𝑆 =
𝑑𝑄̶𝑅

𝑇
 and this for 

a irreversible process 𝑑𝑆 ≥
𝑑𝑄̶

𝑇
. So, here QR stands for, the heat transfer that happens in a 

reversible process. 

So, as you all know at this stage that always we use the word isentropic as reversible 

adiabatic which means 𝑑𝑄̶𝑅 = 0. So, this is the truth, but there are other possibilities and 

finally, with those possibilities we can analyze that this is the only truth that is possible 

which means always a reversible adiabatic path means isentropic. 

Now, let us evaluate one by one. So, first by definition when you say isentropic process 

we say 𝑑𝑆 = 0; so, this means 
𝑑𝑄̶

𝑇
≤ 0; this is from Clausius inequality. But; however, 

when this equality sign will hold good if the process is reversible. 

So, what are the consequence of isentropic process means, because isentropic process does 

not talk about heat transfer. And from this analysis we can say that if dQ is equal to 0 

which means process is reversible or dQ is less than 0 means process is irreversible. That 

means, from this expressions we have two possibilities, either dQ is equal to 0 or dQ less 

than 0. 

Now, let us see the consequence one by one. So, first one if a process is reversible, but 

isentropic. So, means your dQ is equal to 0 and isentropic and dS is equal to 0. So, dQ is 

equal to 0 and dS is equal to 0; means, this process has to be adiabatic because, dQ is 0. 



Now, second consequence if the process is isentropic and adiabatic, process is isentropic 

and adiabatic; isentropic means, your dS is 0 adiabatic means is dQ is equal to 0. 

So, then it has to be a reversible one which means 𝑑𝑄̶𝑅 = 0. Or in other words we can 

write this statement that an isentropic adiabatic process cannot be irreversible. So, in a 

very simple sense we normally refer the same consequence as isentropic process which is 

nothing but a reversible adiabatic process. Now, let us move towards the irreversible 

situations; so, the case three. 

Irreversible isentropic means your dS is equal to 0, but your dQ is less than 0 because this 

will come from the Clausius inequality. So, when I say process is irreversible, but 

isentropic it is of course, a non adiabatic process, but dQ is less than 0. 

So, which means in an irreversible isentropic process heat always flows out of the systems; 

so, dQ is always negative is less than 0. And fourth category, if the process is irreversible 

and adiabatic; so, by irreversible I mean, we are looking into Clausius inequality and by 

adiabatic I mean dQ is equal to 0.  

So, if you put this things equation, you will see that dQ is equal to 0 and process is 

irreversible then we can say your T must be always greater than 0; that means, temperature 

always increases. So, in a sense that in a non isentropic process temperature always 

increases. So, this is the some of the summary that has come out from our analysis of 

irreversible process in the name of heat and entropy. 



(Refer Slide Time: 26:16) 

 

Now, till this point of time whatever we have evaluated it is about the initial state, final 

state, entropy, heat and we are mainly focused on the equilibrium state. That means, always 

we say initial state and final state are in thermodynamic equilibrium. That means, it is 

when we say thermodynamic equilibrium all unbalanced force are 0, temperature is 0, no 

chemical reactions, all these things are satisfied. 

But what happens in some situations if it is unable to achieve the equilibrium states, then 

what is going to happen? So, there are some circumstances in the nature, it is not possible 

to achieve the equilibrium states. So, generally the calculation of entropy change is 

associated with the irreversible processes are with following observations. 

That means system did not change at all only entropy changes for the reservoirs. In fact, 

for all our previous analysis in terms of reversible processes, we have seen either system 

did not change at all, but only entropy change that happens in the reservoirs. Both initial 

and final states of the systems are in equilibrium states which are suitable for which a 

reversible process can be connected. 

That means if your initial and final states are equilibrium then we can say that actual 

process is irreversible, but we can connect this actual processes with a reversible one. So, 

if this is possible then still then also process is treated as irreversible and we can evaluate 

the properties from the initial and final point through this data of the reversible process. 



But there are certain processes that involves internal thermal irreversibility with 

equilibrium only in the final state or initial state, such processes are characterized as non 

equilibrium states. And when such a processes are modelled, we are talking about infinite 

number of thin slice of volume element of each systems for which we have different initial 

temperature, but same final temperature. And when you do this particular analysis, it will 

talk about infinite number of reversible isobaric processes of each slice which may be used 

to take the system from the initial non equilibrium state to final equilibrium state and vice 

versa. 
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Now, one such example I can give here. So, whatever we have talked about in the previous 

slides, if you can simplify our thought process it goes like this. For example, we have a 

metallic bar which is connected between a high temperature reservoir and low temperature 

reservoir that is T0 and TL. Of course, the bar is thermally insulated; that means, only heat 

can be conducted through the bar. 

So; obviously, what happens is that, as long as the heat getting conducted, temperature 

distribution along the bar can be drawn in a linear fashion. By recalling Fourier law we 

can find out the linear relations of temperature that is from initial to final temperature with 

respect to x, x means the length of the bar. 

Now, your length of the bar is L. So, assuming a in linear distribution of temperatures we 

can write this equations 𝑇𝑖 = 𝑇0 −
𝑇0−𝑇𝐿

𝐿
𝑥. So, basically from this equations we can find 



out all the intermediate points that joins T0 and TL. And in fact, from this slope of the line 

we can find out temperature distribution at any location of the bar. 

And ultimately another way of modelling this is that same bar is now kept in thermal 

insulations. But only difference is that now they are not connected with the reservoirs. If 

this happens the; obviously, since heat cannot come out from the bar, we will have a final 

equilibrium temperature Tf and that is nothing but 
𝑇0+𝑇𝐿

2
. So, this can be drawn as the final 

equilibrium temperatures. 

Now, the same problem we are looking as if it we have a gross bar, but what we can view 

is that we can take small volume element from this bar. And for this volume element we 

can actually evaluate the same equilibrium to initial temperature and final temperatures 

and try to see the entropy. 

Now; that means, for the small element we write 𝑑𝑆𝑑𝑉 = (𝑆𝑓 − 𝑆𝐼)
𝑑𝑉

 final entropy minus 

in initial entropy and this we say this is only for small volume element dv. First, we have 

to evaluate this, then we can integrate, ∫ 𝑑𝑆𝑉
𝑥=𝐿

𝑥=0
= (𝑆𝑓 − 𝑆𝐼)

𝑠𝑦𝑠𝑡𝑒𝑚
  to find entropy change 

of the system. So, this is the analysis which we are going to do in one of the problems 

where we can evaluate the entropy change in which the system goes from initial non 

equilibrium state to the final equilibrium state and that is for an irreversible process. 
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So, after talking exhaustively about reversible and irreversible processes, we are now 

trying to frame the principle of increase in the entropy. So, in our previous lecture we 

discussed that entropy change for the universe is always 0 for a reversible processes, and 

all natural processes are irreversible, but the change in the entropy is always positive. 

And what are the natural processes which are actually irreversible, but we have modelled 

as if a reversible process can connect between them, they involve external mechanical 

irreversibility, internal mechanical irreversibility, external thermal irreversibility, and 

chemical irreversibility. And for all these cases we calculated entropy change of the 

system, entropy change of the surroundings and all these values we say that dS is always 

positive. And in fact, this expression will talk about that the terms dS of the universe is 

always positive. 
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Now, with this idea and with the Clausius inequality we are going to talk about the entropy 

principle. So, what does this mean that the entropy change of the universe it is found to be 

positive for every irreversible process, thus when an irreversible process occurs the 

entropy of the inverse always increases. And this is called as preposition of entropy 

principle which means entropy of the universe always increases. 

Now, to prove it in a more elaborate way we can say that another way of looking at the 

fact that we can actually prove this is that entropy by assuming the second law of 



thermodynamic thermodynamics is correct. For which the entropy of the final state is 

always greater than the initial states, this has to be true. 

So, for that reason we want to ensure that we have some initial state i and we have from 

final state f, the process goes in an irreversible adiabatic manner that is the irreversible 

process is conducted between i and f. But, through this irreversible process we can connect 

the final state to initial state through a reversible adiabatic process, irreversible isothermal 

process, and reversible adiabatic process; so, this is reversible. 
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The reversible isothermal process when you do it, we can show that the second law has to 

be satisfied. And for that reasons let us evaluate the work diagram which is represented as 

a x and y in this case which says which can be written in this manner that the process which 

is i f and when you say i f we say irreversible adiabatic. So, we can write 𝛥𝑆 = 𝑆𝑓 − 𝑆𝑖. 

Now, you are assuming to connect this final state to initial state in a reversible manner 

which says goes from f to k, k to j and j to i; so, let us see one by one. So, process f to k 

the entropy change will be  𝑆𝑘 − 𝑆𝑖, and since, since this process is reversible adiabatic. 

So, we can say 𝑆𝑓 = 𝑆𝑘. And for the process k to j now when we are from this process we 

reach here. 

Now, k to j we can join in and we get the point j such that it is achieved through a reversible 

isothermal process. That means, from to k to j you draw a isothermal curve proceeding in 



this directions and finally, whatever this entropy at i and j are equal 𝑆𝑗 = 𝑆𝑖. So, wherever 

they cut it the point j is located; that means, for the process j-I, we can write 𝛥𝑆 = 𝑆𝑘 − 𝑆𝑗. 
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Now, from this we can now conclude the fact that in this entire cyclic process we see that 

only heat transfer that happens is during this reversible isothermal process that is at 

temperature some temperature 𝑇′. And all other processes does not involve any heat 

transfer, because the processes are adiabatic. So, considering this we can say the only heat 

transfer QR occurs in the cycle and I have written QR, because that particular process is 

reversible one. 

Reversible isothermal process for which we have Δ𝑈 = 0 which means this QR is nothing 

but your work transfer W. But, the second law puts the restriction that QR cannot enter the 

system, it cannot be positive. Because, it is interacting with only one reservoir, there is no 

second reservoir in which because heat interaction takes place at QR at temperature 𝑇′, 

there is no heat rejections. So, this QR cannot enter the systems; means it cannot be 

positive. 

So, considering this we say this 𝑄𝑅 = 𝑇′(𝑆𝑗 − 𝑆𝑘) ≤ 0. That means, process k to j we can 

write this expressions; that means, we says (𝑆𝑘 − 𝑆𝑗) ≥ 0. So, already we proved in some 

sense that for reversible and irreversible process we framed the rule 𝛥𝑆 > 0, here also you 

proved it for a particular systems. And finally, it can emphasize that in terms of entropy 



principle which says that entropy of the system can be divided into two parts and the 

entropy change of each part can be summed up. 

The second one is that reversible process can be found that they may cause the process to 

change in the opposite directions. In fact, this was actually represented in the graphically 

in their previous picture says that in a first thing we assume the entropy change of the 

systems into multiple number of parts. And for each part we can calculate this entropy that 

is process i to f, f to j, j to k and so on. 

So, all so, for all these cases if you calculate this entropy; and finally, when you sum it up 

it we land of having one particular relations that is 𝛥𝑆 ≥ 0. Now; obviously, we can say 

now the entropy of the universe 𝛥𝑆 ≥ 0. So, this is the law of entropy or entropy of the 

universe. 
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So, ultimately we can summarize with following inferences an increase in the entropy of 

the system is regarded as the increase in the disorderness. By disorderness, we mean for a 

particular thermodynamic processes; for example, the disorderness during a free expansion 

process of an ideal gas means more freedom of movement to a larger volume. The 

disorderness for an isothermal dissipation of heat means increase in the reservoir 

temperature. 



Disorderness with respect to heat dissipation from a metallic bar is nothing but the loss of 

internal energy from an object is not utilized to run an heat engine. For example, another 

kind of important thing is that heat loss from a metallic bar is viewed thermodynamically 

as loss of internal energy. But, this loss of internal energy cannot be utilized to run a heat 

engine and this goes as a irreversible loss. 

And more over the isolated system that is another definition for entire universe is an 

isolated system which involves system and surroundings, when it experience an 

irreversible processes it always moves towards the state of greater disorder. Which means, 

entropy of the universe always increases. So, this imposes the third law of thermodynamics 

when entropy is zero, this is possible only at absolute zero temperature. 

So, the absolute zero temperature is the basics at which the thermodynamic parameter 

entropy is zero and this absolute zero we say it is about - 273.16 Kelvin. And this is not an 

arbitrary state; that means, all of a sudden this number does not come, because at this 

things we say that entropy is zero. 

Now, another advantage of this entropy is that, when you look at entropy it is a point 

functions and if you recall the first law which says 𝑑𝑈 = 𝑑𝑊̶ + 𝑑𝑄̶. Now, dU is a point 

function, but dW and dQ are their path functions; so, these are path dependent. But this 

point function and path dependent they cannot be correlated that is the actual assumption 

that we make in the beginning. But this is not true because, this path function or inexact 

differentials can be written in terms of point functions that is −𝑝𝑑𝑉 + 𝑇𝑑𝑠 and here dS 

stands for the entropy, V stands for the volume. 

So; that means, the relation of the point function is always holds good here, even though 

the right hand side of the equation involving work and heat they are path function. So, it 

means that in exact differentials of work and heat are replaced with exact differential in 

terms of internal energy and entropy. So, this is another significance of the entropy; so, 

with this we conclude for this lecture. 
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Now, we will try to solve a problem which we have discussed in one of our slide which 

we call this as entropy calculations for non equilibrium states. Although theoretically I 

have explained that things. Now, there is a mathematical problem which says that we have 

a high temperature reservoir, we have a high temperature reservoir is at 𝑇0, low 

temperature reservoir is at TL. 

And there is a metallic bar that connects between high temperature and low temperature 

and there is a thermal insulation in between them. In the beginning because of this region 

there is a temperature change from 𝑇0 to TL, and this change happens in a linear fashion. 

Now, after sometimes the reservoirs are disconnected and this entire bar is now kept under 

thermal insulation. 

So, that there is 𝑑𝑄 = 0 for the outside; that means, so, Δ𝑆surr = 0. But, what happens to 

the bar? Bar after certain time it assumes the equilibrium temperatures. So, what we see is 

that initially the system is not in equilibrium state, the final state is in equilibrium state. 

So, to do that what we are going to model this that we are going to create a small element 

dx. And in fact, this is the length of the bar is L and we are going to calculate what is the 

volume element, small volume element 𝑑𝑣. And this small volume element can be written 

as 𝐴𝑑𝑥 and for the small volume element, the mass will be because we can multiply 

density; so, we can say 𝑑𝑚 = 𝜌𝐴𝑑𝑥. For this small mass we can calculate 𝑑𝑄 =

𝑐𝑝(𝑑𝑚)𝑑𝑇 = 𝑐𝑝. 𝜌. 𝐴. 𝑑𝑥. 𝑑𝑇. 



So, there are two integral, one is with respect to dT temperature other is with respect to x 

length. Now, we have already written that the final temperature is Tf, initial temperature is 

Ti. So, we can find out the entropy change for this small volume element.  

𝑑𝑆 = (𝑆𝑓 − 𝑆𝑖)𝑑𝑣
= ∫

𝑑𝑄

𝑇

𝑇𝑓

𝑇𝑖

= (𝑐𝑝𝜌𝐴𝑑𝑥) ∫
𝑑𝑇

𝑇

𝑇𝑓

𝑇𝑖

= (𝑐𝑝𝜌𝐴𝑑𝑥) ln
𝑇𝑓

𝑇𝑖

= (−𝑐𝑝𝜌𝐴𝑑𝑥) ln (
𝑇0

𝑇𝑓
−

𝑇0 − 𝑇𝐿

𝐿𝑇𝑓
𝑥) 

Now, this dv element is with respect to for small element dx. 
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Then this can be further integrated for the entire bar 

(𝑠𝑓 − 𝑠𝑖)𝑠𝑦𝑠𝑡𝑒𝑚
= ∫ (𝑑𝑠)𝑑𝑣𝑑𝑥

𝐿

0

= (−𝑐𝑝𝜌𝐴) ∫ ln (
𝑇0

𝑇𝑓
−

𝑇0 − 𝑇𝐿

𝐿𝑇𝑓
𝑥) 𝑑𝑥

𝐿

0

= (𝑐𝑝𝜌𝐴) (1 − ln
𝑇𝐿

𝑇𝑓
+

𝑇0

𝑇0 − 𝑇𝐿
ln

𝑇𝐿

𝑇0
)

= (0.385 × 8830 × 0.2) (1 − ln
200

300
+

400

400 − 200
ln

200

400
)

= 12.2
𝑘𝐽

𝑘𝑔 − 𝐾
 

 



And. In fact, this is greater than 0 we say entropy of the universe is 0, because Δ𝑆surr = 0, 

because this is 𝑑𝑄 = 0. So, this system plus surrounding we say Δ𝑆univ > 0and that is for 

a non equilibrium state, this is what we also prove here. 
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And the next problem is again in the name of entropy principle, what the problem 

statement is that we have a refrigerator it is to be operated in lowering the temperature of 

the body from that of surroundings to any desired temperature. That means, a body which 

is initial temperature at T1 is to be reduced to temperature T2. And in fact, the surrounding 

temperature is also T1 and here we call this as a reservoir temperature. 

So, what we can see that to talk about this entropy principle through a refrigerator think 

about a refrigerator that takes W as work input and to for this work input and this 

temperature to be lowered, it must take certain quantity of Q from this body and when the 

heat rejected to atmosphere again is 𝑄 + 𝑊.  

So, by framing this we are now able to apply this entropy principle which says that 

Δ𝑆univ ≥ 0. And of course, refrigerator need some work, but we want to find out what is 

the minimum work. 

So, for this entropy universe we have 3 parts, one is Δ𝑆𝑏𝑜𝑑𝑦 = 𝑆2 − 𝑆1, because body goes 

from temperature goes from temperature T1 to T2. Then Δ𝑆𝑟𝑒𝑓 = 0, because refrigerator is 

cyclic device. Then the reservoir, we can write Δ𝑆𝑟𝑒𝑠 =
𝑄+𝑊

𝑇1
 . So, by clubbing all together 



we can write 𝑆2 − 𝑆1 +
𝑄+𝑊

𝑇1
≥ 0; 𝑇1(𝑆2 − 𝑆1) + 𝑄 + 𝑊 ≥ 0; 𝑊 ≥ 𝑇1(𝑆1 − 𝑆2) − 𝑄 . So, 

this is the conditions that amount of work requirement for the refrigerator.  

Now, if this is the situation and the question is that minimum work. So, 𝑊𝑚𝑖𝑛 =

𝑇1(𝑆1 − 𝑆2) − 𝑄. So, this is the minimum work requirement for this refrigerator by 

applying entropy principle; so, with this I conclude this lecture today. 

Thank you for your attention. 


