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Dear learners, greetings from IIT Guwahati. We are in the MOOCs course that is 

Advanced Thermodynamics and Combustions. Today we are going to start the second 

module and title of this module is Entropy and Exergy. 
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So, the list of topics under this module will be covered mainly will be focusing on entropy 

which is one of the consequence or you can say the statement from the second law. Other 

option is that we are going to discuss something on exergy; that means, this is the another 

form of representation of energy that is exergy which says what is the maximum amount 

of exergy what a system can have considering the potential of the systems. 

So, on this module there will be 6 lectures. So, let us start the first lecture today that is 

Entropy Analysis Part I. 
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So, in this entropy analysis we are going to discuss the following topics that is, Clausius 

theorem and second law of thermodynamics. Prior to this we have already discussed 

exhaustively about the zeroth law, first law and second law. And here we will be giving 

specific emphasis to second law just to define the property which is known as entropy. 

Then we are going to discuss about the entropy and second law where is the what is the 

link in between and since this is entropy then we must evaluate this entropy.  

So, what are the possible methods what we have to calculate the entropy of a system? Now, 

one of the fundamental diagrams based on the entropy is the temperature entropy diagram. 

This is similar to the very basic concept when you dealt with the first law, we talk about 

work and this work transfer was expressed in terms of pressure volume diagram or PV 

diagram. 

And this PV diagram is used for work transfer and since the second law talks about heat, 

so, we must include that what diagram will talk about the heat transfer from a systems. So, 

that is nothing but your temperature entropy diagram. And in the second law it also 

introduce the concept of inequality; that means entropy or work transfer can increase or 

decrease. So, it is not possible to have complete conversion of heat to work. 

So, in order to make it equal then we need to introduce some topics or some restrictions 

and those restrictions will be covered in the name of reversibility and irreversibility and 

both reversibility and the irreversibility have definite bearing for the parameter entropy. 
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So, let us start the first segment of this today’s lecture that is Clausius theorem and second 

law. Prior to this we have discussed about the second law in two forms; one is Kelvin-

Planck statement and Clausius statement. And another consequence of the second law is 

nothing but the Clausius theorem. 

What does that Clausius theorem is all about we are going to explain. To start with first 

thing, first we can introduce that when you talk about this work diagram it is normally 

represented in terms of generalized force versus generalized displacements. So, if you look 

at this particular figure you can see that there is a circle or you can say we can find out 

many points on this circle.  

And thermodynamically we can represent it as a closed cycle; that means, a system can 

undergo in a closed cycle or in other words we can talk of a cyclic systems. So, here the 

smooth closed curve we call this as a reversible cycles; that means, we can choose any 

direction any path and find out all the properties based on the this diagram; that is based 

on the force and the displacements we can represent this work diagram and one interesting 

thing is that mathematically we can view this entire curve or this closed curve in a multiple 

number of zigzag paths. 

So, this zigzag path can be represented as you can see here one particular path can be a-b-

c-d, other path can be e-f-g-h and side by side you can have multiple number of zigzag 



path or rather you can say infinite number of zigzag path. And these zigzag paths we can 

construct with a concept of Carnot cycle.  

What does this mean that we can imagine this particular reversible cycle with multiple or 

infinite number of reversible processes that involves alternate reversible isothermal 

process and reversible adiabatic process which means this is nothing but the processes that 

are involved in a Carnot cycles. 

So, for example, one can split this entire closed curve in a cycle like a-b-c-d. So, a-b-c-d 

is one particular Carnot cycle, e-f-g-h is another cycle and in each cycle we can say that 

there are some heat is getting added, some heat is getting rejected and so on. So, this is 

nothing but your work diagrams and we will find its significance in the subsequent slides. 

What we will talk about what is the relation between this Q1 and T1.  

Maybe when you talk about Q1 it is happening at constant temperature process, now when 

you are talking about b-c process it is nothing but a reversible adiabatic process. So, to 

summarize this what we can say that these isothermal and adiabatic processes are 

represented by various diagrams and the work done in all reversible paths between the 

same states is the same that is the consequence that we derived earlier. 

And moreover another important point that to be noted is that; no two adiabatic lines can 

intersect so that infinite adiabatic strips is possible. That means, this adiabatic strips, at 

any point of time they cannot intersect and so we can have any adiabatic strips. So, likewise 

the complete process on this work diagram can be represented by infinite number of Carnot 

cycles.  
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This is one part. Now, let us talk about one particular segment of this closed curve. So, 

what I can say? If you take one particular segment in which a system undergoes a change 

of state from its initial state ‘i’ to a final state ‘f’ and this is nothing but a reversible process.  

So, you can say path i-f is a reversible process. But if you want to represent this particular 

path in terms of Carnot cycles, so, what I can draw? At point ‘i’ can draw a adiabatic line 

and point ‘f’ also I can draw another adiabatic line and at one particular point that is on 

this adiabatic line which passes through the initial point we can also draw another path a-

b which is nothing but an isothermal path. 

So, in other words what I can say that the initial state when the system undergoes a change 

of states from its initial state ‘i’ to ‘f’ then what happens? We can as well say that this is a 

path process i-f, but side by side we can construct like i-a-b-f. So, what does this mean? In 

a such a way that area under the path i-f is also equal to area under the path i-a-b-f. 

So, in a sense we have represented this particular any reversible path with respect to a 

Carnot cycle. So, if these two are these two areas are equal then we can frame this relations 

like for we can use the first law for the process i-f. So, you can write 𝑄𝑖𝑓 = 𝑈𝑓 − 𝑈𝑖 −

𝑊𝑖𝑓 that is change in the internal energy minus work transfer during this path. 

Now, same equation we are going to use for the path i-a-b-f which means that I can write 

it as 𝑄𝑖𝑎𝑏𝑓 = 𝑈𝑓 − 𝑈𝑖 − 𝑊𝑖𝑎𝑏𝑓 . 𝑈𝑓 − 𝑈𝑖 is nothing but the internal energy change at the 



final and initial state and it will remain same. So, this factor always will remain same 

because this is change in internal energy and it is a point functions. 

So, from these two equations we can say that if you have reversible paths like one in a 

Carnot cycle other is like any reversible path. So, we can say 𝑊𝑖𝑓 = 𝑊𝑖𝑎𝑏𝑓 or similarly we 

can say 𝑄𝑖𝑓 = 𝑄𝑖𝑎𝑏𝑓. So, it is a very important consequence that says that work transfer 

and heat transfer among all reversible paths are same. 

So, in a reversible process the temperature may change in any manner, but it is always 

possible to find a reversible zigzag path consisting of adiabatic and isotherms, but the heat 

transfer between isothermal segment is same as that of original process. 
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So, now that particular consequence again we are going to revisit the work diagram and 

we try to see another type of relations and in fact this will talk about nothing but your 

Clausius theorem. So, what has been found by the Clausius is that we are choosing two 

isothermal processes that is one is a-b at temperature T1 and we can find out another 

isothermal process that is c-d at temperature to T1 and T2. 

So, basically we are talking about a cycle a-b-c-d in which Q1 amount of heat is being 

transferred through the process a-b at temperature T1 and this process is isothermal and Q2 

heat is rejected at temperature T2. And for this particular cycle a particular relation always 

holds good that is for the cycle a-b-c-d. We can found that 
𝑄1

𝑇1
+

𝑄2

𝑇2
= 0. 



Now, you repeat the same thing for all subsequent cycles. Like we can think about a cycle 

e-f-g-h in which Q3 is added at temperature T3 and Q4 is rejected at temperature T4. So, for 

this process we can write also another expression 
𝑄3

𝑇3
+

𝑄4

𝑇4
= 0.  

So, likewise we can think about multiple number of segments consisting of alternate 

reversible isotherms and adiabats and frame an equations such that it can be written as 

𝑄1

𝑇1
+

𝑄2

𝑇2
+

𝑄3

𝑇3
+

𝑄4

𝑇4
+ ⋯ … . . = 0. So, this entire expression may be summarized in terms of 

summations, that is ∑
𝑄𝑗

𝑇𝑗
𝑗 = 0.  

Now, we have expressed this path in a discrete manner and if it has to happen in a 

continuous manner; that means, if these strips are very close. So, these steps can be 

represented in terms of integrations. So, this integration; that means, a parameter which is 

defined that is dQ and this dQ is nothing but this very small reversible heat transfer by T 

is equal to 0 ∮
𝑑�̶�

𝑇𝑅
= 0. 
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So, what we can summarize that when a cycle is imagined to be consist of large number 

of strips with adiabatic curves close to each other with isothermal curves connecting them, 

the process becomes infinitesimally small as if the original cycle is bounded by two 

adiabatic curves and such a cycle is reversible and based on this logic Clausius framed a 

theorem which called as Clausius theorem.  



It states that the cyclic integral of the parameter ∮
𝑑�̶�

𝑇
,

𝑅
 this is nothing but this integral term 

is 0 for a reversible process. So, this is another consequence and another mathematical 

statement for the second law of thermodynamics. 
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Now, let us find more details on what is this 
𝑑�̶�

𝑇
. So, if you again generalize this in another 

view point like we have another figure that talks about; for example, there may be any 

thermodynamic processes. So, you have some initial states i and some final states f; that 

means these are the state points or thermodynamic coordinates on a general work diagram. 

Now, what we are going to talk about is that we are going from initial state to final state 

in any one reversible path. So, R1 is one such reversible path, but we are not returning 

again same path, but we are returning in another reversible path. So, R1, R2 is nothing but 

the reversible paths. 

So from the Clausius theorem we can write that cyclic integral for the path R1 and R2 must 

be equal to 0. So, you can split this since from system initial state i we are going to go to 

the final state f. So, for which the reversible heat transfer is  𝑅1
∫

𝑑�̶�

𝑇

𝑓

𝑖
. 

Similarly, another expression you can say write from final state to initial state we are going 

to for the path 2  𝑅2 ∫
𝑑�̶�

𝑇

𝑖

𝑓
; So,  𝑅1 ∫

𝑑�̶�

𝑇

𝑓

𝑖
+  𝑅2 ∫

𝑑�̶�

𝑇

𝑖

𝑓
= 0. Now, from these equations we can 



rewrite; that means, initial and final states are now reversed. So, the minus sign comes 

here.  𝑅1
∫

𝑑�̶�

𝑇

𝑓

𝑖
−  𝑅2

∫
𝑑�̶�

𝑇

𝑓

𝑖
= 0 

Now, when you do this one interesting thing again we can frame out that now if you just 

differentiate what happens in two different reversible path. What you can see that one of 

the cyclic integral is   𝑅1 ∫
𝑑�̶�

𝑇

𝑓

𝑖
 and the cyclic integral  𝑅2 ∫

𝑑�̶�

𝑇

𝑓

𝑖
 is in another reversible path 

is R2 and likewise we can keep on writing infinite number of reversible path. 

So, one interesting thing is that integral of that parameter 
𝑑�̶�

𝑇
 remains constant. And since 

it is constant and what is remains fixed that we have fixed our initial state and final state. 

Now when a such a parameter is dependent on the state points, then we call this as a 

property and this property what we call this as a entropy change that is 𝑆𝑓 − 𝑆𝑖. 

And this is a point function or it is not path dependent. It depends on the initial state and 

the final state. 
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Now, let us have a more clear understanding of this. What the Clausius said is that there 

exist a function of thermodynamic coordinates of the system whose value at the final state 

minus its value at the initial states represents the cyclic integral 
𝑑�̶�

𝑇
 for any reversible path 

between i and f. 



And this function is denoted as entropy and this concept of entropy is demonstrated by 

Clausius in 1865, but one of the remarkable consequence what you can see here is that 

entropy change of the system is independent of the path rather it depends on the point i 

and f. But although there can be a heat transfer; that means, heat can come out of the 

system or heat can be entered into the system, they are path dependent, but the entropy 

change does not depend on the path. 
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So, the concept of this existence of entropy is interpreted in a similar manner as that of 

internal energy functions. So, First law introduced the concept of internal energy function 

in a similar sense we can also define the function which is entropy functions. This entropy 

change shows certain quantity is independent of the choice of the reversible processes 

connecting the initial and final equilibrium state as a consequence of second law of 

thermodynamics. 

Since both U and S are state functions they are evaluated from the initial and final states. 

And they are independent on path connecting between the states. Now that change in the 

entropy if the state points are very near, so that they are infinitesimally near then we can 

𝑆𝑓 − 𝑆𝑖 we can write it as a 𝑑𝑆. So, basically we are representing this entropy change in a 

very infinitesimally small process that is 𝑑𝑆 =
𝑑�̶�𝑅

𝑇
. 



Here I have denoted R because this QR is nothing but it is a reversible heat transfer. And 

in fact, and it is a consequence that this T has to be represented in terms of absolute 

temperatures and this is again the corollary of the Carnot theorem. So, one thing we can 

see is that when you talk about 𝑑�̶�𝑅 = 𝑇𝑑𝑆. So, this is another important significance 

which has close relevance with respect to work transfers. 

So, when you say reversible work transfer we write it as a 𝑝𝑑𝑉. When you say reversible 

heat transfer you write it as a 𝑇𝑑𝑆. So, these two things makes us our understanding simple 

to talk about heat and work transfer in a particular process. 
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So, I mentioned earlier that we talk about entropy, but next question is that how you are 

going to evaluate the entropy and we already mentioned that the entropy is a state functions 

and it is independent of the path. And one thing you can say that if you recall this particular 

equation 𝑑𝑆 =
𝑑�̶�𝑅

𝑇
, here this 𝑑�̶�𝑅 is a in exact differential.  

So, this is an in exact differential. Whereas, that in exact differential when divided by 

absolute temperature, it gives an exact differential. So, this is a one of the mathematical 

consequence that how it happens and that is the reason that one case 𝑑�̶�𝑅 is a path 

dependent, but whereas, 𝑑𝑆 is a path independent. 

So, with this logic, so instead of looking at QR alone we can also talk about the property 

entropy for a any thermodynamic systems. Likewise for any systems we evaluate the 



thermodynamic properties based on states, in a similar way we have to explore that how 

we can find the property that is entropy for any thermodynamic processes. So, one simplest 

formulation that can be made is for ideal gas. 

So, for an ideal gas we can write the basic equations 𝑝𝑉 = 𝑛𝑅𝑇, where n stands for number 

of moles and these equations can be rewritten in a differential part 𝑝𝑑𝑉 + 𝑉𝑑𝑝 = 𝑛𝑅𝑑𝑇. 

Then from our previous understandings we can recall this definition that is heat capacity, 

specific heat at constant volume 𝐶𝑉 = (
𝜕𝑈

𝜕𝑇
)

𝑉
. We also know that 𝐶𝑝 = 𝐶𝑉 + 𝑛𝑅. Then we 

also know 𝑈 = 𝐻 − 𝑝𝑉. 

So, these equations can be used in the first law to evaluate the property entropy. How? So, 

first thing is that we can replace this 𝑑𝑄 in terms of 𝑑𝑆 and then we can replace 𝑑𝑈 in 

terms of 𝑑𝐻 then 𝑝𝑑𝑉 will get cancelled. So, ultimately we get an expression 𝑑𝑆 =

𝐶𝑝
𝑑𝑇

𝑇
−

𝑉

𝑇
𝑑𝑝. Or in other words that is also in terms of pressure we can write in terms of 

𝐶𝑝
𝑑𝑇

𝑇
− 𝑛𝑅

𝑑𝑝

𝑝
. 

So, this particular equation can be integrated to find the absolute entropy and since it is 

any arbitrary integral, so, there is a term S0 and that term S0 in terms of integration we call 

this as a constant. In our thermodynamic view point we call this as a reference entropy. 

So, for any kind of systems when you always evaluate the change, we have to see this 

change or reference value with respect to a with respect to certain pressure and 

temperatures. And in our case it is the atmospheric conditions that is close to 0.1 MPa and 

298 K; entropy of any gas is calculated. 

So, 𝑆 − 𝑆0 = 𝐶𝑝 ln 𝑇 − 𝑛𝑅 ln 𝑝. Now, when you look at this change of entropy and this 

change of entropy between one particular state to another state; obviously, this S0 is going 

to be eliminated. 
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Now, let us see how we can talk about this entropy evaluation or change of entropy in 

another workable expressions. So, let us recall that the entropy change can be represented 

in two expressions; one is in terms of Cp other in term is in terms of CV. 𝑑𝑆 = 𝐶𝑝
𝑑𝑇

𝑇
−

𝑛𝑅
𝑑𝑝

𝑝
. 

And if you remove this change with respect to finite change that is 𝛥𝑆 = ∫ 𝐶𝑝
𝑇𝑓

𝑇𝑖

𝑑𝑇

𝑇
−

𝑛𝑅 ln (
𝑝𝑓

𝑝𝑖
), so, you can integrate this equations from Ti to Tf and of course, from pi to pf 

and of course, here if the Cp is not a function of temperature, then it this has to be within 

the integral, if not then we can take out these integrals. 

Similarly, another way of representing this entropy change in terms of CV. So, here it is 

𝛥𝑆 = ∫ 𝐶𝑣
𝑇𝑓

𝑇𝑖

𝑑𝑇

𝑇
+ 𝑛𝑅 ln (

𝑉𝑓

𝑉𝑖
). So, in a similar way 𝑑𝑆 can be replaced with Δ𝑆. So, these 

two expressions gives us the workable model or workable expressions to calculate the 

entropy change. So, by workable model I mean we know the thermodynamic coordinates 

and in our case either it is a pressure-temperature or it is a temperature-volume. 

So, in both the way if you know any two parameters then we can also find out the entropy 

change. 
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Then after this entropy evaluation we are now going to talk about something on 

temperature-entropy diagrams. So, I mentioned that when you talk about work transfer in 

a 𝑝𝑉 diagram. So, any process goes from 1 to 2 and we say if you drop normal, so, we can 

say area under this curve is nothing but work transfer. In the same logic we are going to 

say because 𝑊 = ∫ 𝑝𝑑𝑉
2

1
. 

In the same logic we can represent the temperature diagram and for same process 1 to 2 

and our expression shows that this 𝑄𝑅 = ∫ 𝑇𝑑𝑆
𝑓

𝑖
, so, it means that area under the 

temperature entropy diagram represent the heat transfer, area under 𝑝𝑉 diagram which 

represents the work transfer. 

Now,  here we are going to introduce some terms like if you have this temperature-entropy 

diagrams we may have a situations where for an isentropic process in a vertical line, other 

may be an isothermal process in a horizontal line. So, such a process and if you talk about 

this, this is nothing but your isentropic. As you can clearly see there is no area. So, it means 

that in isentropic process Q is equal to 0 and when you go for isothermal process this 

diagram will be a rectangle. 

So, it is a isothermal process and the area under the diagram will be a rectangle. So, to 

summarize this, what you can say? Area under the diagram represent the heat transfer to 

or from the systems. In a 𝑇 − 𝑆 diagram, an isentropic process is nothing but a vertical line 



and we call this as isentrope and this isothermal process is referred as a isotherm. And why 

it is important? Because it is particularly convenient for representing all idealized cycles 

of heat engines. 
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Now, moving further there are some other viewpoints like how this temperature-entropy 

diagram is again linked with the Carnot cycles. So, for example, if you have some initial 

state i to f and you are going this in a one of the reversible path R1 and another reversible 

path R2, there may be infinite number of reversible path possibilities, and as you can say 

the net heat transfer during this process will be the area under the closed curve. Now, one 

of the important thing is that we can talk about Carnot cycle like talking about the two 

upper limits and we can draw a rectangle. So, the upper limit of temperature is this. So, I 

can say AB line we can draw a isotherm. Another line which is DC which is the lowest 

point on this curve, so, I can talk about another line. So, ABCD is nothing but a Carnot 

cycle consisting of two reversible isothermal processes and two reversible adiabatic 

process. 

However, we have this R1 and R2 they are nothing but the reversible path or reversible 

processes. So, once you know the heat transfer from this 𝑇 − 𝑆 diagram we can easily 

calculate the work transfers. Then thermal efficiency for the engine can be evaluated. 
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Again moving further some important significance for entropy diagram we can draw. So, 

I have already demonstrated what is an isentrope constant entropy line in a T-S diagram, 

what is an isotherm which is a constant temperature line in a T-S diagram and there are 

other processes like we can have a isochoric process. So, your volume is equal to constant. 

So, this curves goes in this manner. There are isobaric where curves are remains constant.  

We can also talk about an adiabatic process where 𝑄 =  0. We can also talk about 

polytropic process. All these processes can be talked about by giving the definition 𝑝𝑉𝑛 =

𝐶. 

So, this part I have already mentioned based on the exponent n, this path can be specified. 

But one more important thing is that if you recall our expressions of entropy in terms of 

Cp and in terms of CV specifically for isochoric process and isobaric process, one important 

consequence it gives that for an isobaric process we say 𝑑𝑝 =  0. So, this particular 

expression now becomes (
𝜕𝑇

𝜕𝑆
)

𝑝
=

𝑇

𝐶𝑝
. 

And similarly, for an isochoric process when 𝑑𝑉 =  0, so, (
𝜕𝑇

𝜕𝑆
)

𝑉
=

𝑇

𝐶𝑉
. So, what it says is 

that 
𝜕𝑇

𝜕𝑆
 is nothing but the slope of this diagram. So, if it is a constant pressure process or 

whether it is a constant volume process.  



So, the slope of the constant pressure and constant volume process on a T-S diagram is 

independent on the nature of the systems. So, here you can say T is your absolute 

temperature, CV is your property, the specific heat capacity of the medium. So, these are 

independent on any other nature of the hydrostatic systems. 

(Refer Slide Time: 35:31) 

 

Now, let us talk some something on entropy which has relation with respect to 

irreversibility. So, we have mentioned here that there may be infinite number of reversible 

processes that we can view and in each process we can calculate the entropy change.  

What important significance is that we are talking about entropy of two things; one is 

entropy change for the systems and entropy change of the surroundings. And change of 

entropy of system and surrounding will give us the change in the entropy of for the 

universe. 

So, this is exactly what we are going to find out that what is the meaning of the sum of 

these entropy changes or in other words we are going to say that physical meaning of 

entropy and significance of all entropy changes can be estimated. So, for example, if you 

consider a reservoir that absorbs Q amount of heat at temperature T from many systems, 

so, we can say that entropy change is recognized as 
𝑄

𝑇
. We can also say that what happens 

to entropy change of the universe. 



So, if you have a system and we have the surroundings, so, both constitutes this universe. 

So, what we are looking at that for example, we are considering a process which is 

accompanied by flow of heat between a system and a set of reservoirs consisting from Ti 

to Tf. So, we can say that as if we have a system and there are some reservoirs R1, R2, R3 

and so on and all the reservoirs are within the surroundings. 

So, what we do is that system undergoes a change of state from Ti to Tf. Now, the final 

stage happens in a multiple number of steps; that means, first the system interacts with 

reservoir 1, next it interacts with reservoir 2 and next it interacts with reservoir 3 and in 

this process it has Δ𝑆1, Δ𝑆2, Δ𝑆3. So, all these things are entropy change when the system 

is undergoes reservoir 1, 2, 3 and there may be many number of reservoirs like this. And 

through the process what change has happened? 

The system undergoes from Ti to Tf, through this process there are also change in the 

entropy for reservoir 1, 2, 3. So, summing of all these things will talk about the total change 

in the entropy of the inverse. So, we will now calculate how we are going to evaluate it. 
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So, for that we are talking about two situations like in one case system and there is a 

reservoir. So, we will consider only one reservoir in this case. So, here heat is absorbed by 

the system; that means I am taking heat from the reservoir. So, heat is absorbed by this 

system. So, you say 𝑑𝑄𝑅.  



In another situations we can have a reservoir and we have system. So, here heat is rejected 

from the systems. So, we say it is a −𝑑𝑄𝑅. So, from this what we can say? This is nothing 

but (𝑑𝑠)𝑠𝑦𝑠𝑡𝑒𝑚 and this is nothing but (𝑑𝑠)𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟.  

So, one case it is negative. So, in this case when heat is rejected by the system is negative, 

when heat is enters into the system it is positive. So, based on that one can have 

appropriately use the positive and negative signs and finally, we can calculate entropy 

change of the universe in both the cases and it happens to be 0 because all are reversible 

path and it entropy change of the universe is 0. 

So, in a reversible process the change in the entropy is always 0. So, this is the consequence 

that we can make that when a reversible process is performed the entropy of the universe 

remains unchanged. 

(Refer Slide Time: 41:18) 

 

Now, when you say a process undergoes a reversible path, we can say that we can calculate 

this entropy, but there are situations that always reversible path is not possible. So, we 

have to rely on all natural processes and they are mostly irreversible. So, what we can view 

this particular analysis is that, in order to analyze a irreversible path or in order to introduce 

a concept of irreversibility what has been done is that first you write the expressions for 

entropy change that is 𝑆𝑓 − 𝑆𝑖 =  ∫
𝑑𝑄𝑅

𝑇
 

𝑓

𝑖
 that is nothing but your reversible heat transfer. 

Now, same expressions can be used for irreversible path with some change like. So, when 



I say a process goes from a reversible process. So, 1 to 2. Now, if same process if I want 

to have it maintaining initial state and final state same, let us say it is reversible path R1. 

So, in a reversible path initial state and final state are always in equilibrium, at the same 

time all intermediate states are also in thermodynamic equilibrium. 

But what happens? If it is an irreversible path, we can only assume that initial state and 

final state are in equilibrium. So, this continuous curve we normally represented in a dotted 

line. So, that we can say that in a process 1 to 2 we can take either from 1 to 2 and also 

from 2 to 1 we can travel. So, in both way the process can occur, but whereas, in a 

irreversible path the process can occur only in one direction. 

So, if same states I represent 1 and 2, I normally represent in a dotted line and this is 

nothing but your irreversible path. So, it means that process can occur only from 1 to 2 not 

from 2 to 1. So, this is the basic difference, but in terms of end results what we are assuming 

as if this initial states and final states are in equilibrium and what we do is here we can 

calculate the heat transfer from 1 to 2.  

So, we can write it as a dQ, but this is not a reversibility transfers, but the path is as if we 

are calculating this for a reversible process. So, R we are putting it here as if this value is 

calculated for an reversible process. So, already we proved that entropy change for the 

universe is 0 for all the reversible process. Now, we are going to calculate what happens 

for irreversible processes.  

Now these irreversible processes are nothing but your natural processes and they can be 

categorized in four segments. 1: Processes exhibiting external mechanical irreversibility. 

Case 2: Processes that exhibit internal mechanical irreversibility that means external 

means outside of the system or surrounding gets affected. 

Processes that exhibit internal mechanical irreversibility; that means only internal structure 

of the system or internal change of the system happens. Processes that exhibit external 

thermal irreversibility. So, this is a thermal that means, outside only thermal change has 

happened and last one is processes that exhibit chemical irreversibility. So, all these 

processes we are now going to discuss. 
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So, first one is processes that exhibit external mechanical irreversibility. So, there are there 

are two categories of the process. One is isothermal dissipation of work a through a system 

in which the work which remains unchanged that changes into internal change of the 

reservoir. So, here there is no change in the entropy of the systems, because the 

thermodynamic coordinates do not change, but change of entropy for the reservoir. 

So, if you look at this first law, you start with a first law, 𝑑�̶� = 𝑑𝑈 + 𝑑�̶� and we say it is 

a isothermal process. So, 𝑄 = 𝑊 because 𝑑𝑈 = 0 and when 𝑄 = 0 we can write 𝑑𝑄 =

𝑇𝑑𝑠.  

So, we can write (𝛥𝑆)𝑟𝑒𝑠 =
𝑊

𝑇
 and (𝛥𝑆)𝑠𝑦𝑠𝑡𝑒𝑚 = 0 because there is no change in the 

internal change of the system because thermodynamic coordinates do not change. So, that 

(𝛥𝑆)𝑢𝑛𝑖𝑣 =
𝑊

𝑇
. 
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In another case same change of state happens, and we call this as external mechanical 

irreversibility, but the process involves adiabatic dissipation of work. So, the same 

equation can be used, but with a viewpoint that we can calculate because the system 

undergoes an adiabatic change from final states to initial states. 

So, we can calculate this (𝛥𝑆)𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐶𝑝 ln (
𝑇𝑓

𝑇𝑖
). And the (𝛥𝑆)𝑠𝑢𝑟𝑟 = 0 because since 

the process is adiabatic, there is no flow of heat to the surroundings. So, from this we can 

calculate (𝛥𝑆)𝑢𝑛𝑖𝑣 = 𝐶𝑝 ln (
𝑇𝑓

𝑇𝑖
). 

So, typical examples that involved the friction from the rubbing of insulated liquids, 

inelastic deformations, irregular stirring of viscous liquids there are multiple examples in 

this category. 
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In another case that involved the transformation of internal energy of the systems in 

adiabatic wall into mechanical energy and then back to the internal energy again. So, this 

is another example where the processes that occur exhibit internal mechanical 

irreversibility. Other case was the external mechanical irreversibility and this case was 

internal mechanical irreversibility. 

So, they are characterized by the fact that the transformation of internal energy of the 

system is done which are enclosed by closed adiabatic wall. What it means is that, now, 

let us talk about one particular example. Ideal gas rushing to the vacuum and such a process 

we call this as a free expansion. What we have is that we can have an adiabatic enclosure 

one side and there are there is a partition and one side we have vacuum and we have other 

side we have some gas. 

So, what happens here that, when partition is removed the gas suddenly rushes into the 

vacuum. So, what happens here? The volume of the gas changes from initial volume Vi to 

final volume Vf, but in this process what happens to the surroundings; since it is an 

adiabatic enclosure. So, there is no change in the entropy for universe because Q = 0.  

And because of this reason what happens? We can revisit our basic equations 𝑑�̶� = 𝑑𝑈 +

𝑑�̶� and 
𝑑�̶�𝑅

𝑇
=

𝑝

𝑇
𝑑𝑉 because dU is also 0 here. Now, from these equations we can use this 

ideal gas equations and to frame out the entropy change of the systems, then we have 



entropy change of the surrounding is 0 and finally, we can calculate summing it of entropy 

change of the system and surroundings.  

Idealgas: 𝑝𝑉 = 𝑛𝑅𝑇 ⇒
𝑝

𝑇
=

𝑛𝑅

𝑉
; (𝛥𝑆)𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑆𝑓 − 𝑆𝑖 = ∫

𝑑�̶�

𝑇

𝑉𝑓

𝑉𝑖

= 𝑛𝑅 ln (
𝑉𝑓

𝑉𝑖
) ;  (𝛥𝑆)𝑠𝑢𝑟𝑟 = 0; (𝛥𝑆)𝑢𝑛𝑖𝑣 = 𝑛𝑅 ln (

𝑉𝑓

𝑉𝑖
) 

So, from this equation we can say that 𝑉𝑓 > 𝑉𝑖. So, (𝛥𝑆)𝑢𝑛𝑖𝑣 > 0. 
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The third case, which is nothing but the processes that exhibit external thermal 

irreversibility. So, these processes involve the transfer of heat by virtue of finite 

temperature difference. So, typical example is that conduction or radiation of heat from 

the system to a cooler surroundings or conduction or radiation of heat that remain from a 

hot reservoir to a cooler one. 

So, in this case what happens? If you take a particular examples, we have some Q units of 

heat which is conducted from hot reservoir at T1 to a cooler reservoir at T2. So, from this 

case for hot reservoirs, the heat transfer takes place as heat rejection. So, it is −
𝑄

𝑇1
 because 

hot reservoir is at temperature T1. 



And similarly for cold reservoir we can write heat is absorbing; so, it is 
𝑄

𝑇2
 and from this 

we can find out the entropy change of the universe. So, here obviously, we can say it is 

(𝛥𝑆)𝑢𝑛𝑖𝑣 =
𝑄

𝑇2
−

𝑄

𝑇1
. Since 𝑇2 < 𝑇1 ⇒ (𝛥𝑆)𝑢𝑛𝑖𝑣 > 0. 
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And last one is a processes which exhibit chemical irreversibility. So, what happens? Now 

you are moving into entropy change in a chemical process that could be a diffusion process 

that could be a freezing or condensation process that could be a mixing or solutions or 

osmosis process or any chemical reactions. 

And one typical example we can say that diffusion of two dissimilar metals. So, this is just 

a situation for the entropy analysis for case 2 where we said that there is a gas. Now, here 

I can put it as a gas I gas II; there are many gases like this and there is a partition here and 

it is adiabatically closed; that means there is no heat transfer. 

And this side is also vacuum and some chemical reactions has happened because of it 

pressure has changed and all these gases rushes into this. So, that particular things case 1, 

which can be visualize as if it is a multiple number of expansions and that expansion 

happens in an adiabatic enclosure with chambers of equal volume. 

So, likewise we can find out for gas A what happens to entropy change, for gas B what 

happens to the entropy change. So, this is the for total change of the systems, then total 



change of the surrounding is 0 because there is no Q or Q = 0. Then we can find out the 

entropy change of the universe and here also entropy change of the universe it has been 

found there it is always greater than 0. 
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Now, what we have discussed so far? If you can summarize that there are four particular 

cases; cases with external mechanical irreversibility, internal mechanical irreversibility, 

external thermal irreversibility and chemical irreversibility. And for all these cases we 

have summarized what happens to the entropy change of the systems, entropy change of 

the surroundings and summation of these two will give you the entropy change of the 

universe. 

So, for all the cases one important consequence is that (𝛥𝑆)𝑢𝑛𝑖𝑣 > 0 or it is always 

positive. So, this is the first consequence that when you calculate entropy for an 

irreversible process and for universe it is always a positive quantity and but when you talk 

about entropy change of the universe for a reversible process, it is always 0. 
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So, now we are end of this particular lecture. So, I will try to solve one simple problems 

just to give what is our understanding. So, the first problem is about the calculation of 

entropy change and to visualize the concept of a reversible process, how a process can be 

reversibly heated. So, one typical example which is given here that there is a unit mass of 

water which is at 0 C, it is brought to contact with a heat reservoir at 100 C. 

So, what we can see here is that we have a set of water or on this case I can say we have a 

unit mass of water which is available to us at 0 C. And we want to calculate the first case 

that when the water reaches to the reservoir temperature and this case it is 100 C, what will 

be the entropy change of the universe. So, basically your system will be water and there is 

a reservoir. So, water is at 0 C, reservoir is at 100 C. 

So, we can say it is 273 K and it is 373 K. Then the water is in contact with reservoir. So 

obviously, heat will enter from the reservoir to water. So, you can calculate what is the 

heat absorbed by this. We can say 𝑄 = 𝑚𝑐𝑝Δ𝑇 = 1 × 4.187 × 100 = 4187 𝑘𝐽. Now, we 

have to now find out entropy change. So, first we have to find out what is Δ𝑆𝑊? Δ𝑆𝑊 =

∫
𝑑𝑄

𝑇

373

273
= 𝑚𝑐𝑝 ∫

𝑑𝑇

𝑇

373

273
= 𝑚𝑐𝑝|ln 𝑇|273

373 = 1.305
𝑘𝐽

𝐾
. Now, Δ𝑆𝑟𝑒𝑠 = −

𝑄

𝑇
= −

418.7

373
=

−1.122
𝑘𝐽

𝑘𝑔−𝐾
 because the reservoir lost the heat. 

So, finally, we can say what is Δ𝑆𝑢𝑛𝑖𝑣 =  Δ𝑆𝑊 + Δ𝑆𝑟𝑒𝑠 = 0.183
𝑘𝐽

𝑘𝑔−𝐾
. So, you can see this 

Δ𝑆𝑢𝑛𝑖𝑣 > 0. So, this is the first part of the problem. Now, we can move to the second part.  



So, in the second part what happens? This heating takes place in two stages; first with a 

50 C heat reservoir and second with the 100 C of heat reservoir. So, these two stage of 

heatings will change the entropy of the water. How? 

Δ𝑆𝑊 = ∫
𝑑𝑄

𝑇

323

273

+ ∫
𝑑𝑄

𝑇

373

323

= 4.187 (ln (
323

273
) + ln (

373

323
)) = 1.305

𝑘𝐽

𝐾
 

Δ𝑆𝑟𝑒𝑠1 = −
𝑄

𝑇1
= −

4.187(323 − 273)

323
= −0.687

𝑘𝐽

𝐾
; Δ𝑆𝑟𝑒𝑠2 = −

𝑄

𝑇2

= −
4.187(373 − 323)

373
= −0.56

𝑘𝐽

𝐾
 

Δ𝑆𝑢𝑛𝑖𝑣 =  Δ𝑆𝑊 +  Δ𝑆𝑟𝑒𝑠1 +  Δ𝑆𝑟𝑒𝑠2 = 0.098
𝑘𝐽

𝐾
 

 So, what we see is that when we do this heating in step manner that is one with 50 C then 

to 100 C entropy change of the universe is less; in that case it was 0.183 now it is 0.098. 

So, it means if water is reversible heated almost there will not be no change in the entropy. 

So, the third part of the question says that how the water temperature can be reached to 

100 C with almost no change in the entropy of the universe. So, that means, if you make 

this water to be in contact with reservoir with infinitesimally small change in the 

temperatures then we can say the water is reversibly heated. 
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Now, the next problem we will talk about some definition of different thermodynamic 

properties for an adiabatic process. So, the problem statement goes that a fluid undergoes 

a reversible adiabatic compression that from initial state 0.8 MPa and initial volume 0.03 

and final volume 0.05 m3.  

And it follows a laws 𝑝𝑣1.3 = 𝐶. To do this what we can draw first is p-v diagram that 

talks about this path and the process goes from 1 to 2 and it is 𝑝𝑣1.3 = 𝐶. So, we can say  

𝑝1𝑣1
1.3 = 𝑝2𝑣2

1.3 = 𝐶; 𝑝2 = 𝑝1 (
𝑣1

𝑣2
)

1.3

= 4.848 𝑀𝑃𝑎 

Then we have to recall 𝑇𝑑𝑆 = 𝑑𝐻 − 𝑉𝑑𝑃 (𝑇𝑑𝑆 = 0 𝑎𝑠 𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒 𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐); 𝑑𝐻 =

𝑉𝑑𝑃 ⇒ 𝐻2 − 𝐻1 = ∫ 𝑉𝑑𝑃
2

1
= ∫

(𝑝1𝑣1
1.3)

𝑝
𝑑𝑃

2

1
=

𝑛(𝑝2𝑉2−𝑝1𝑉1)

𝑛−1
= 357 𝑘𝐽 

𝑈2 − 𝑈1 = 𝐻2 − 𝐻1 − (𝑝2𝑉2 − 𝑝1𝑉1) = 274.6 𝑘𝐽 

𝑆2 − 𝑆1 = 0 𝑎𝑠 𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒 𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 

𝑄12 = 0 𝑎𝑠 𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 

𝑊12 = 𝑄12 − Δ𝑈 = −274.6 𝑘𝐽 

So, from this problem this gives the basic definition for a given process how this properties 

value can be evaluated. So, with this I conclude this lecture for today. 

Thank you for your attention. 


