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Dear learners, greetings from IIT Guwahati. We are in the course Advanced 

Thermodynamics and Combustion, module 3 that is Thermodynamic Property Relations. 
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In total in this module, there are 5 lectures and already we have covered the first lecture 

that is thermodynamic functions and Maxwell’s equations. In fact, we derived in the last 

class various thermodynamic functions and Maxwell equations based on the understanding 

of differential equations. And, that differential equations were in the form of ordinary or 

partial differential equations. We are now in the lecture number 2.  

Here we are going to apply this Maxwell equations for thermodynamic processes. The first 

part of this is that we are going to derive the property relations for a phase change process. 
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So, in this lecture that is Property Relations for Phase Change Processes, these are the 

some contents. First of all, we will discuss what we derived in our last lectures. What are 

the different property changes that are associated in the form of Maxwell’s equations and 

other relations. And, for phase change processes, two important equations are 

predominantly used. One is Clapeyron equations, other is Clausius - Clapeyron equations. 

In fact, both the equations are more or less same, but with certain approximations different 

concepts were developed. Now, after deriving this Clapeyron equations and Clausius 

Clapeyron equations, we will be discussing its applications with respect to phase diagrams. 

The phase diagrams normally refers to pressure, temperature projections where we 

distinctly decide about fusion curve, sublimation curve and in these curves, we will see 

how these two equations are applicable or vital. 
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Now, let us revisit our previous lectures, where we derived the thermodynamic property 

changes. In total there are 16 property relation, that were obtained by using the concept of 

exact differentials. Then, we introduced Maxwell’s equations and through this Maxwell 

equations it is possible to develop the relations to allow the changes in entropy, internal 

energy and enthalpy. 

And in fact, these properties values can be measured or can be evaluated from the 

measured data, that is most important thing. Normally the measured datas are pressure, 

density and temperatures. Now, through this measured data, we are going to develop 

equations and that equation will give other property values such as changes in the entropy, 

internal energy and enthalpy. 

Now, after having deriving these equations, we are now going to consider the phase 

changes processes and single phase regions. And, basically we are applying these 

equations in two situations. One is for phase change case, other is single phase case. The 

phase change case; it may be solid to vapour or solid to liquid or liquid to vapour and vice 

versa. And, single phase region means either it is in solid or it is in liquid or it is in the 

vapour. 

So, in total there are 16 relations and to summarize these 16 lessons what we can say 

pressure, temperature and specific volume or density these are the measured data. And, 

properties that need to be evaluated are internal energy, enthalpy, then entropy and of 



course, the Gibbs function 𝑔 and Helmholtz function 𝜓. In fact, through this basic 

relations, we have additionally Maxwell relations and some other relations as well. So in 

fact, these relations are very generic and mathematical in nature. And, since they are 

mathematical in nature, they are applicable to all kind of thermodynamic processes. But, 

only thing is that these equations need to be simplified based on the requirement. 
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Now, one such situations or requirement in our case is a phase change process. So, the 

most important equations that allows us; that means, which is derived from all 16 

thermodynamic relations, one of them is the Clapeyron equations. And in fact, it is 

applicable for a phase change processes. And, we will see that how this Clapeyron 

equations help us in simplifying certain analysis. 

Now, when I say phase change processes, it involves three things. One is vaporization, 

second one is sublimation, third in melting. So, solid melts to become liquid. Sublimation 

means the solid goes directly to vapour, vaporization means liquid goes to vapour. So, we 

are going to see that how this Clapeyron equations is useful for this phase change process. 

Even, I am repeatedly telling that the measured data are pressure, specific volume and 

temperature on a p-v-T surface. 

And, the properties that needs to be calculated are typically entropy, specific entropy, 

internal energy and enthalpy. Now, if you look at these equations in fact, this is the Tds 

equations that is 𝑑ℎ = 𝑇𝑑𝑠 + 𝑣𝑑𝑝. We all known that all these numbers are properties; so, 



it is applicable for all the processes whether it is reversible or irreversible. And, if you are 

going to apply for a phase change processes; so, for a phase change processes we can say 

that 𝑑ℎ = 𝑇𝑑𝑠; because in a phase processes normally temperature or pressure do not 

change. 

So, the second term goes to 0. So, this equation now simplifies to 𝑑ℎ = 𝑇𝑑𝑠. From this 

equation, since it is in differential form; so, with finite value we can write or simplify these 

equations taking ds close to Δ𝑠 and Δ𝑠 we are finding out from 𝑠𝑔 − 𝑠𝑓. So, sg stands for 

specific entropy in gas phase and sf stands for specific entropy at the liquid phase and 

corresponding value of enthalpy would be hg and hf. 

And, and since the phase change process happens at a constant temperature T; so, T 

remains constant. So, this expression helps us that from the enthalpy values one can 

calculate entropy values. And in fact, we all know that enthalpy is also 𝑢 + 𝑝𝑣. So, from 

this enthalpy value, one can also calculate the internal energy change 𝑢𝑔 − 𝑢𝑓 =

(ℎ𝑔 − ℎ𝑓) − 𝑝(𝑣𝑔 − 𝑣𝑓). So, this is the significance of equations. 
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Now, let us see how we can come back to the Clapeyron equations. So, just refer to our 

figure that is pressure temperature plot for a pure substance. What we have here is that this 

plot talks about two important points. One is the triple point, we normally call this as a TP, 

other is the critical point; CP. So, there is a continuous curve and we call this as a locus of 



the saturation states. So, it means that across the line the state of the system is liquid and 

vapour. 

Now, since it connects to triple point to critical point if you go along this line, we say we 

are now moving in the constant volume line and that is nothing but the critical volume. 

And, towards the left side of this curve your 𝑣 < 𝑣𝑐 and towards the right side of the curve 

𝑣 > 𝑣𝑐. So, we are trying to find out here is that what happens to the slope of the curve. 

So, on the saturation line we say this (
𝜕𝑝

𝜕𝑇
)

𝑣
= (

𝑑𝑝

𝑑𝑇
)

𝑠𝑎𝑡
. Because, at this point there is no 

role of specific volume, because it is a saturation line. And, left side of this curve we say 

(
𝜕𝑝

𝜕𝑇
)

𝑣
> 0 . So, basically the role of 

𝑑𝑝

𝑑𝑇
 is very important in deriving this Clapeyron 

equations. 

So, in our earlier relations we know that 𝑠𝑔 − 𝑠𝑓 =
ℎ𝑔−ℎ𝑓

𝑇
. Now, we can recall one of the 

Maxwell equations (
𝜕𝑠

𝜕𝑣
)

𝑇
= (

𝜕𝑝

𝜕𝑇
)

𝑣
. Now, here we will apply the simplifications. Since, 

the specific volume has no role along this saturation line; so, we can write this partial 

differential equation (
𝜕𝑝

𝜕𝑇
)

𝑣
= (

𝑑𝑝

𝑑𝑇
)

𝑠𝑎𝑡
. This is a ordinary differential equation of the 

saturated line. 

Now, here the significant point is that if we can find the slope and this slope will give you 

the change in the entropy with respect to change in the specific volume. So, further this 

equation is simplified to this form in a finite part 𝑠𝑔 − 𝑠𝑓 = (
𝑑𝑝

𝑑𝑇
)

𝑠𝑎𝑡
(𝑣𝑔 − 𝑣𝑓). And, when 

you equate both these two equations, we get this Clapeyron equations like 

(
𝑑𝑝

𝑑𝑇
)

𝑠𝑎𝑡
(𝑣𝑔 − 𝑣𝑓) =

ℎ𝑔−ℎ𝑓

𝑇
. 

And finally, we arrive at a very fundamental relations that is (
𝑑𝑝

𝑑𝑇
)

𝑠𝑎𝑡
=

ℎ𝑔−ℎ𝑓

𝑇(𝑣𝑔−𝑣𝑓)
; that 

means, if you want to calculate this value on this particular curve; we can easily find out 

from the values of enthalpy changes and the gas phase and liquid phase and specific 

volume in the gas phase and liquid phase. And, since this phase change occurs at constant 

temperature, at that temperatures we have to take this value; that means, slope can be easily 

calculated. 
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And of course, this Clapeyron equations has a many significance. But, apart from that there 

are some other kind of analytical representations people have made correlations; that 

means, people have developed the analytical representations in a logarithmic form. That 

means, we have assumed that if you want to give more accurate results; that means, if you 

want to increase your accuracy level then you can involve multiple constants that is A, B, 

C, D. 

And; that means, each stage we have to calculate these constant values and try to implicate 

what is the relation between saturated pressure and temperature regions. So, basically this 

involves the constants that need to be determined empirically. But however, we will stick 

to the Clapeyron equations for our study only by this calculations that is (
𝑑𝑝

𝑑𝑇
)

𝑠𝑎𝑡
=

ℎ𝑔−ℎ𝑓

𝑇(𝑣𝑔−𝑣𝑓)
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Now, moving further we are now going to get more information; that means, if you want 

to include more approximations on to the Clapeyron equations, then how it is going to 

change. So, basically Clapeyron’s equations was suitably modified with two 

approximations. First is specific volume in the liquid phase is negligible in comparison to 

specific volume in the gaseous phase. 

In fact, if you recall our steam table data; that means, if you have solved at UG level the 

data from the steam table, you will find that; when you look at the data, we will see that 

gas phase has higher specific volume than the liquid phase. So, what this Clausius 

Clapeyron equation assumes that the specific volume on the liquid phase will be negligible. 

And in fact, if you recall this pressure volume diagram for a pure substance and if you look 

at this particular dome and we have this critical point. And, here we have liquid region and 

we have vapour region and during phase change; that means, we are going inside the dome 

where both pressure and temperature is constants. And, along the line you do (
𝜕𝑝

𝜕𝑣
)

𝑇
= 0 

and beyond this line, this value is less than 0. 

So, what we are trying to say here is that if you go towards the higher pressure and in fact, 

these are the constant temperature line which you called as isotherms. So, if you are talking 

about 𝑇 = 𝑇𝑐 𝑜𝑟 𝑇 < 𝑇𝑐 𝑜𝑟 𝑇 > 𝑇𝑐, these are the plots. 



So, these are basically the isotherms. So in fact, what we have drawn is this constant 

temperature lines on a p-v diagram. And, accordingly the slopes also we can find out at 

the slope that is (
𝜕𝑝

𝜕𝑣
)

𝑇
= 0  at critical point and above that it is less than 0. Then, what this 

Clausius Clapeyron equation assumes that specific volume in the liquid phase is negligible. 

So, basically if you drop a vertical and find out the value, we have vf and we have vg and 

it says that 𝑣𝑔 >>> 𝑣𝑓. And, if you are going for higher pressure side; that means, if you 

are somewhere in this zone where 𝑣𝑔 >>> 𝑣𝑓which means that we are approaching to a 

gas side. 

So, whatever gas phase, now it can be approximated as an ideal gas model. So, when you 

have ideal gas model, we can write 𝑝𝑣 = 𝑅𝑇. So, as if we are saying the specific volume 

we are getting in terms of vg; that means, gas phase specific volume is represented in terms 

of temperature and pressures with an ideal gas constant value R. This R value has to be 

chosen for water vapour. 

So, now when you make this approximations, we find the Clapeyron equations gets 

modified to a another expression. We call this as Clausius Clapeyron equations. We says 

that (
𝑑𝑝

𝑑𝑇
)

𝑠𝑎𝑡
=

ℎ𝑔−ℎ𝑓

𝑇𝑣𝑔
=

ℎ𝑔−ℎ𝑓

(
𝑅𝑇2

𝑝
)

. So, ultimately we get two expressions.  

One is (
𝑑𝑝

𝑑𝑇
)

𝑠𝑎𝑡
=

ℎ𝑔−ℎ𝑓

𝑇𝑣𝑔
=

ℎ𝑔−ℎ𝑓

(
𝑅𝑇2

𝑝
)

. This is one expression. And, if you rearrange this 

equations then we can say [
𝑑(ln 𝑝)

𝑑𝑇
]

𝑠𝑎𝑡
=

ℎ𝑔−ℎ𝑓

𝑅𝑇2 . And, we have basically taken p to the other 

side. So, this is all about the Clausius Clapeyron equations. 
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Now, let us see that how this Clausius Clapeyron equation will be useful to study the phase 

diagram. So, the name indicates the phase diagram means it is pressure temperature 

projections. And in this projections, we have two distinct line. One is fusion curve, other 

is vapourization curve, third is sublimation curve. 

Fusion curve separates solid to liquid, sublimation curves separates solid to vapour and 

vapourization curve separates liquid to vapour. And, the most important point is the triple 

point. So, wherever all these curves meet at one particular point that point we called as a 

triple point. Now, let us see that how our Clapeyron equations is useful to study this phase 

diagram. So, let us first concentrate or locate point a on the solid regions and this curve is 

for water. 

So, I can say we can imagine some kind of ice which exists at point a for which the 

temperature we can drop this point. And, now if you heat this piece of ice at constant 

pressure; that means, at constant pressure let us say I am doing heat at atmospheric 

pressure. So, 101325 Pa. So, if you keep on heating this ice at certain temperature Ta and 

keep on heating, slowly will be moving towards the fusion curve. 

And, will arrive at a point which is called as a melting point and here I will refer as the 

NMP that is Normal Melting Point. So, why I am saying this as normal melting point, I 

will give its significance later. And, this normal melting part we means that this is at 

constant pressure. So, that is the word which is refer as normal melting point at constant 



pressure. So, basically when ice is heated, its temperature is increasing and this heating 

takes place at constant atmospheric pressure. 

So, we reach this fusion curve and the further heat is added, the ice becomes liquid and 

when ice become liquid at that point of time there will be no change in the temperature. 

But, when the ice melts completely to liquid then the liquid with addition of heat, liquid 

temperature further increases and we move to the point b. So, the final point will be Tb. 

So, basically in one way I am saying that the constant pressure heating changes the state 

of the ice from point a to point b. 
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And at that point of time we say that we are reaching this normal melting point which is 

called as T NMP. And, ultimately what we can say is that when enough heat is added and 

ice melts completely, the state of the systems moves from fusion curve to the vaporization 

curve. In other words, we can say that this normal melting point whatever we have defined; 

that means, the sample of ice at normal melting point coexist with water which is in the 

liquid state, air which is at standard atmospheric pressure. 
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Now, imagine a situation that I am doing heating with change of pressure as well. So, the 

same situation was modified little bit and try to see how we are going to show it in the 

phase diagram. That means, when a sample piece of ice is placed in a chamber and the air 

pressure is lowered; that means, that chamber is designed in such a way that we can control 

its pressure. And when the air pressure is lowered, the state of the system will no longer 

be fusion curve. 

Ideally, point a would have gone towards the fusion curve, but since I am changing this 

pressure, so, not necessarily that I will be moving to that. So, basically as a result of the 

change in pressure, the temperature also will change by Δ𝑇. 

Δ𝑝 is in our control and we can see that when there is a drop in pressure, the slope of the 

fusion curve will be negative. Because, the decrease in the temperature will result in the 

increase in the melting temperatures and the slope of the fusion curve is negative. This is 

specifically for water or substances like graphite and bismuth which expands during 

freezing. 

But, for all other substances the slope is positive; that means, for which the decrease in 

temperature results in the decrease in the melting temperatures. So, although we know this 

fact in our earlier thermodynamics course, but here we try to link of that how this property 

relations helps to justify our stands or whatever you have observed that is true. 



So, we can recall to study this Clapeyron equation here because all these things that we 

need is the change in the pressure and change in the temperatures and it is happening on 

the saturated line. So, we can use this Clapeyron equations (
𝑑𝑝

𝑑𝑇
)

𝑠𝑎𝑡
=

(ℎ𝑔−ℎ𝑓)

𝑇(𝑣𝑔−𝑣𝑓)
 

So, we can also write 𝛥𝑇 =
𝛥𝑝

(
𝑑𝑝

𝑑𝑇
)
. 𝛥𝑇 =

𝑇(𝑣𝑔−𝑣𝑓)

(ℎ𝑔−ℎ𝑓)
𝛥𝑝;  𝛥𝑠 =

𝛥ℎ

𝑇
 And, this change in the 

temperature of 𝛥𝑇 which is a function of the specific volume difference and the enthalpy 

difference. And, this occurs at the temperature T because this phase change process is 

occurring at particular temperature. 
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So, ultimately the conclusion that we derive from our analysis for a phase diagram is that 

the negative slope of the fusion curve of water emphasizes that the triple point of water 

which is 273.16 K is higher than the normal melting temperature that is 273.15 K. Now, 

what is the significance at normal melting point and triple point? 

That normal melting point we say that ice, water are in equilibrium with air at pressure 

101325 Pa. While, at triple point ice and water are in equilibrium with water vapour which 

has a vapour pressure of 612 Pa. So, you can see that how a drastic reduction of pressure 

happens at the triple point and because of this there is a depression in the triple point value. 

So, we call this depression as a phenomena we call it as regelation, which means it is 

defined as the phenomena for any pure substance. In fact, with those pure substance that 



expands on freezing, this pure substance melts under pressure. So, these substances melt 

under pressures and freezes again when the pressure is released. So, as if they behave as 

an elastic situations where they melts first and again freezes again when the pressure is 

released. So, such a phenomena we call as regelation. 
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Now, the other significant part for this pressure temperature diagram is nothing but we 

have this sublimation curve and vaporization curve. And, for both the curves the 

characteristic features are typically not complicated. So, here it is not like fusion curve and 

in this sublimation and vaporization curve, the slope is always positive because the molar 

volume of vapour is always larger than the molar volume of liquid. 

And of course, we all know that increase in the volume of sublimation suggest that vapour 

has more disorder than the solid or liquid. So, means that entropy plays a role. So, the 

entropy transition from solid or liquid to vapour is always positive. And, this entropy 

calculations we can calculate from the Clausius Clapeyron equations which is derived 

earlier and through Maxwell equations and Clapeyron equations. So, this is all about the 

concept of phase diagrams based on the thermodynamic properties relations. 

Now, with this background let us try to solve some numerical problems. And this 

numerical problem is nothing but we need to justify the property data from the pressure, 

specific volume and temperature data for pure substances. And, in particular we will recall 



with water. In the basic thermodynamic course the steam table datas has been exhaustively 

used. But, here we will try to link of how these data were generated. 

And, when you say for a given pressure temperatures we find sf, sg, vf, vg, enthalpy, internal 

energy; how they are calculated? They are actually derived data. And in fact, 

thermodynamic property relations helps us to derive this data. Now, in this numerical 

problem we try to see that what is the significance or role of this thermodynamic relations 

in the formation of steam table in or any property data for pure substances. 
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So, with this background the first problem talks about the saturated water which is 

available at 100 C. Now, it is very clear that when we say saturated water at 100 C; so, we 

can use this steam table or the property data for water and from this we can easily find out 

the enthalpy, internal energy and entropy. 

So, let us recall that these values at 100 C, we require the change in the enthalpy; that 

means, ℎ𝑔 − ℎ𝑓 = 2257
𝑘𝐽

𝑘𝑔
; 𝑢𝑔 − 𝑢𝑓 = 2087.6

𝑘𝐽

𝑘𝑔
; 𝑠𝑔 − 𝑠𝑓 = 6.048

𝑘𝐽

𝑘𝑔−𝐾
. Nothing to 

worry because any steam table data will give you this value or any thermodynamic book 

will give this value. 

There is nothing new in it. But, what is new in it is that whatever equations we have derived 

so far, how those equations can be used to find this value. And, here we will see one thing 



that we require information is these are actually the calculated data. And, the measured 

data we can say that we can also find out 𝑣𝑔 = 1.673
𝑚3

𝑘𝑔
; 𝑣𝑓 = 1.0435 × 10−3𝑚3/𝑘𝑔 . 

Since, it is the specific volume, we can say it is a measured data. Why I say measured data? 

Because normally pressure, temperature, density or specific volume are considered as a 

measured data. Now, we need to recall this Clapeyron equation which says that ℎ𝑔 − ℎ𝑓 =

(
𝑑𝑝

𝑑𝑇
)

𝑠𝑎𝑡
𝑇(𝑣𝑔 − 𝑣𝑓). So, we do not know is (

𝑑𝑝

𝑑𝑇
)

𝑠𝑎𝑡
, slope of this (

𝑑𝑝

𝑑𝑇
) curve. 

So, to do that we can take some data sheet like we can say saturated pressure and saturated 

temperature or I will say p saturated in bar, T saturated in degree centigrades. So, we can 

get the data or we can measure the data at different temperatures. Since, we require at 100 

C, let us start some value from may be starting from 50 60 70 80 90 100 110 120 130. I 

think this would be sufficient to get a set of data. 

And, corresponding pressure value we can again refer the steam table likefor 50C, we have 

0.1235, then 60 degree centigrade we have 0.1994, 70 degree we have 0.3119, 80 degree 

0.4739, 90 degree 0.7014, 100 degree we have 1.014, 110 degree we have 1.433 and 120 

degree we have 1.985, 130 degree we have 2.701. So, basically dp by dT can be calculated 

from any these states. And, one way to do this is that we can plot it graphically, p saturated 

T saturated. We can start with maybe 50 and end with 130. 

And, with different intervals 60 70 80 90 100 like this and accordingly we have pressure 

values. So, a plot can be done, upper limit of pressure is 2.701 and at 100 C somewhere 

here, if you drop a vertical it touches this curve and at that point we can draw a tangent. 

And, at this point we can find out (
𝑑𝑝

𝑑𝑇
)

𝑠𝑎𝑡
 and from these calculations we can find out this 

number as 3570
𝑁

𝑚2𝐾
. 

Now, once I know this and; obviously, we can go do calculation one by one that ℎ𝑔 − ℎ𝑓 =

373(1.673 − 1.0435 × 10−3) × 3570 = 2227 𝑘𝐽/𝑘𝑔. So, we recall this is 2227 what 

actual value is steam table data is 2257. So that means, Clapeyron equation is accurate by 

1 percent less. 



And once you know enthalpy, we can find out internal energy 𝑢𝑔 − 𝑢𝑓 = (ℎ𝑔 − ℎ𝑓) −

𝑝(𝑣𝑔 − 𝑣𝑓) = 2227 − 1.014 × 105(1.673 − 1.0435 × 10−3) = 2086.5 𝑘𝐽/𝑘𝑔. But, 

steam table data is 2087.6 kJ/kg and last part is entropy. 𝑠𝑔 − 𝑠𝑓 =
ℎ𝑔−ℎ𝑓

𝑇
=

2227

373
=

6.046𝑘𝐽

𝑘𝑔−𝐾
 

So, of course, this value is close to 6.408 from the steam table data. So, this demonstrates 

how this Clapeyron equation is useful to get the thermodynamic properties value. And, in 

particular we have validated it with respect to the steam table data. 
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Now, another important significant point that I need to emphasize in the second problem 

is the phase diagram. So, basically I have been talking about the change in the pressure Δ𝑝 

with respect to Δ𝑇 on a phase diagram, when we are moving along a fusion curve and the 

pressure and temperature changes simultaneously; then what happens? 

So, calculate the change in the temperature when pressure is increased from vacuum, 

vacuum means it is initially at 0 pressure, for triple point to atmospheric pressure at normal 

melting point. So, data that is given is at 273 K, because 273 K is 0 C. The specific volumes 

of liquid and vapour are represented in 𝑚3/𝑚𝑜𝑙  and enthalpy changes are also noted down 

6.1 𝑘𝐽/𝑚𝑜𝑙. 



So, just want to signify that if you recall the Clapeyron equation which says that (
𝑑𝑝

𝑑𝑇
)

𝑠𝑎𝑡
=

ℎ𝑔−ℎ𝑓

𝑇(𝑣𝑔−𝑣𝑓)
. Now, here we will be trying to represent in terms of dp and dT. So, I will rewrite 

this equation as 𝛥𝑇 =
𝑇(𝑣𝑔−𝑣𝑓)

(ℎ𝑔−ℎ𝑓)
𝛥𝑝. Now, data that is given the phase change occurs at 

273K. 

And, that point we have data 𝑣𝑔 = 19.64 × 10−6 𝑚3

𝑚𝑜𝑙
; 𝑣𝑓 = 18.02 × 10−6 𝑚3

𝑚𝑜𝑙
. And the 

enthalpy change ℎ𝑔 − ℎ𝑓 = 6.10
𝑘𝐽

𝑚𝑜𝑙
. Now, this value would be liquid and this is vapour, 

there is a correction. So, I think since the slope is negative, I think that data was interpreted 

wrongly. So, 𝛥𝑇 =
273(18.02−19.64)×10−6×101325

6.10×103 = −0.0073𝐾. So, what is the significance 

of this number, means that the increase in pressure depresses the triple point of ice by 

0.0073 K.  

And, this happens because, one is we have normal melting point and other is triple point. 

Ideally, it should have located at this point, but due to this pressure change, it is getting 

located little bit lower than the normal melting point this fusion curve. And, this difference 

is 0.0073 kelvin for this data. So, with this let us close this lecture today. 

Thank you for your attention. 


