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Hello and welcome to the second lecture of this fourth module. 

 

(Refer Slide Time: 00:43) 

 
In this module, we have been discussing the strength failure theories of lamina and in the last 

lecture, we discussed that the philosophy of strength failure theories in lamina is same as those 

for isotropic materials. But the fact that in orthotropic lamina the strength and stiffnesses are 

direction dependent are actually taken into account in developing the failure theories in 

orthotropic lamina. A major difference in applying failure theories in orthotropic lamina 

compared to the failure theories in isotropic materials is that, in orthotropic lamina, instead of 

finding out the principal stresses and maximum shear stress, the stresses with reference to the 

principal material directions are determined since the strengths and stiffnesses of orthotropic 

lamina are specified with reference to the principal material axis. 

Therefore, for any state of stress the stresses with reference to the principal material axis are 

determined and those are compared with the corresponding strengths to assess the safety or 

failure of a lamina. There are two types of failure criteria viz. independent criteria and 
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interactive criteria. In the last lecture the maximum stress criteria was discussed. In today’s 

lecture we shall discuss the maximum strain criteria and then few of the interactive criteria for 

the strength failure theories of a lamina. 

 

(Refer Slide Time: 02:43) 

 
 

Maximum Strain Theory 

This is also an independent or non-interactive theory. Analogous to the maximum stress 

criteria, in maximum strain criteria, the material axes strains are determined and are compared 

with the corresponding ultimate strains and the failure is said to have occurred if any of the 

strains in the principal material axis exceeds the corresponding allowable strains. 

Mathematically,  
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Given the state of stress with respect to the x-y axes, xσ , yσ  and xyτ , the state of stress with 

respect to the material axes (1-2) 1σ , 2σ  and 12τ are determined as discussed earlier using the 

stress transformation as 
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And then corresponding material axes strains are determined by multiplying the material axes 

stresses by the compliance matrix as 
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These material axes strains are then compared with the corresponding allowable strains as the 

conditions of safety 
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As shown in the Fig., from the stress strain curves of the lamina loaded in along its material 

axes an noting the ultimate stresses (failure point) and the modulus (slope), the allowable 

strains are obtained by dividing the strengths by the corresponding moduli as follows, with the 

assumptions that the lamina is linearly elastic till its failure. 
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Again like maximum stress theory, while comparing the strains, proper care should be taken to 

decide the corresponding allowable strains depending upon the sign. For shear stress it is 

independent of sign in the material axis. 
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A lamina is loaded in tension along 1 and the allowable longitudinal tensile strain (ε1T) u is 

nothing but the ultimate longitudinal tensile stress ( )1
T

u
σ  divided by E1. Similarly, a lamina is 

loaded in tension along 2 and the allowable longitudinal tensile strain (ε2T) u is nothing but the 

ultimate longitudinal tensile stress ( )2
T

u
σ  divided by E2. In the same way loading the lamina 

in compression (ε1C) u and (ε2C) u could also be obtained from the stress strain plot. From the 

shear loading of the lamina in the 1-2 plane from the stress strain plot, noting the failure point 

and the slope, the corresponding allowable shear strain is (γ12) u could be obtained by dividing 

the ultimate shear stress (τ12) u by G12 

Again, like the maximum stress theory, maximum strain theory also consists of five different 

criteria. To understand the maximum strain theory, we shall solve the same problem of 

determination of off-axis tensile strength of a lamina maximum strain theory. 

 

(Refer Slide Time: 09:37) 

 
We have already determined the off-axis tensile strength using maximum stress theory, so we 

would like to do the same exercise using maximum strain theory. 

As shown in the Fig., the state of stress with reference to x-y is 

0
0

xσ 
 
 
 
  . Therefore, with reference 

to the material axes the stresses are obtained using the transformation as 
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Then the strains with reference to the material axes are determined as 
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So, once we have these strains in the material axis, now we can apply the maximum strain 

theory. Using the maximum strain theory the conditions for safety are 
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Now in this case since we are considering tensile stress, therefore σx is positive. Therefore, 

there are three conditions for safety instead of five (conditions corresponding to negative 1ε  

and 2ε  are omitted) So, the conditions are 
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Similar to what we did in maximum stress theory, here also we could plot σx with θ to 

understand the influence of θ on the off-axis tensile strength of a lamina as shown in the Fig. 

and we could see the different modes of failure (longitudinal tensile near θ = 0⁰,  shear away 

from θ = 0⁰ till certain angle and transverse tensile beyond 45⁰ and near 90⁰). Only difference 

with maximum stress theory is due to the Poisson’s effect as could be seen from the plot. If we 

put Poisson’s ratio as zero, there is no difference between the maximum stress theory and the 

maximum strain theory. 

 

 (Refer Slide Time: 15:20) 
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After discussin the non-interactive theories, we shall now discuss some of the interactive 

theories.  

Tsai-Hill failure theory 

Hill proposed a kind of distortion energy theory or the von Misses criterion for anisotropic 

material and Tsai adopted that for an orthotropic lamina therefore it is Tsai-Hill theory. This 

states that the condition for safety for an orthotropic material is given by this. 
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2 3 1 1 3 2 1 2 3 3 1 2 1 2 3 2 3 1 4 23 5 13 6 122 2 2 2 2 2 1G G G G G G G G G G G Gσ σ σ σ σ σ σ σ σ τ τ τ+ + + + + − − − + + + <  

This is a kind of extension of the von-Misses criterion. We know that von Misses criterion 

actually represents the distortion energy in an isotropic material. Now, for any given state of 

stress the state of stress and the corresponding strains are split into hydrostatic and deviatoric 

parts. Hydrostatic is actually responsible for the volume change and the deviatoric part is 

actually responsible for distortion and the energy corresponding to distortion is the distortion 

energy. Using the distortion energy the von Misses equivalent stresses are obtained. Therefore, 

this actually represents the distortion energy.  But unlike isotropic materials, in orthotropic 

materials, distortion cannot be separated from dilatation. While in an isotropic materials we 

can actually separate the two stresses and the corresponding strains but in orthotropic it may 

not be possible because of the existence of shear extension coupling. Since it is not possible to 

separate the distortion energy from the dilatation energy and therefore, in true sense it is not 

related to distortion even though it is adapted in the same line but this is not distortion energy 

theory. Unlike the non-interactive criteria like maximum stress and maximum strain criteria 

where there are five different sub criteria, here a single function predicts the strength. More 

importantly it incorporates interactions between the strengths which were not there in 

maximum stress and maximum strain criteria. However, the predicted strength is slightly lower 

compared to that by maximum stress and strain criterion. 

(Refer Slide Time: 18:32) 
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So, let us see that how these parameters G1, G2, G3, G4, G5, G6 in this are calculated? These are 

kind of parameters related to the strengths. These are determined by loading the lamina along 

the material axes till failure and then obtaining relations for determination of these parameters 

as follows. 
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For example, if we put only σ1 = (σ1T) u and all other stress are 0, and this represents a failure 

condition and putting the expression  
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equal to 1, we get ( )( )2
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u
G G σ+ = . Similarly by putting other failure conditions, we get 

three more relations as shown and we could solve for G1, G2, G3, G6 as shown. 

 

 (Refer Slide Time: 22:42) 
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Considering a lamina in plane stress ( )233 130 0 0τσ τ= ==  and putting these values of G1, 

G2, G3, G6 the Tsai-Hill Theory for a 2D lamina becomes- 
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However, since it does not consider the sign of the stresses, it actually underestimates the 

strength. It could be clearly seen that since σ1 and σ2  are squared, the influence of +ve or –ve 

stress is lost and we know that the strengths are different depending upon whether the normal 

stress is +ve or –ve. This is modified to take care of the signs as follows.. 
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So, this is how the Tsai-Hill theory is slightly modified to take care of the sign of the stresses. 

(Refer Slide Time: 25:14) 
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So, now suppose we want to do the same exercise what we have done for maximum stress and 

maximum strain theory. That means we would like to determine the off-axis tensile strength of 

a lamina using Tsai-Hill theory. As shown in the Fig., the lamina is subjected to tensile strength 

σx, and we would like to know what is the σx at failure? From the given state of stress with 

respect to the x-y axes, we determine the material axes stresses as follows. 
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Here, c stands for cosθ, s stands for sinθ. 

By putting these expressions of material axes stresses in the Tsai-Hill theory, the condition for 

failure is 
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So, if we plot σx with θ say for a typical glass/epoxy and graphite/epoxy lamina we get the 

plots as shown for the following properties 
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As could be seen, it is a continuous curve and a single function predicts the strength. Unlike in 

the case of maximum stress and maximum strain, there were actually three curves.  

Here also, at θ = 0°, at failure σx = (σ1T) u, and at θ = 90°, at failure, σx = (σ2T) u, as expected 

for the cases. 

(Refer Slide Time: 30:52) 

 
Here, the mode of failure cannot be determined. We can of course have a deeper look into all 

the terms and make out but it is not visible looking at the expression straight away. 

(Refer Slide Time: 31:50) 
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Now let us take the same example we have solved using maximum stress theory, just to have 

a comparison of the strength prediction by maximum stress theory and by Tsai-Hill theory.  
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Solution: 

We follow the same steps as discussed earlier that is we determine the material axes stresses 

and then put those material axes stresses in the failure theory (in this case the Tsai-Hill theory) 

to obtain the value of p at failure. 
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(Refer Slide Time: 33:22) 
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Now given the strength properties as 
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Depending upon the sign of the stresses, we get the following as the strength parameters  
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And putting in the Tsai-Hill theory as 
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We get that p should be less than 11.16 × 106 and using maximum stress theory we got 

something like p = 11.4× 106. So, this predicts slightly less than that what is predicted by 

maximum stress theory. 
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Hoffman theory  

One of the drawbacks of the Tsai-Hill theory in its general form is that it does not take care of 

the sign of the stresses. So, to account for different strengths in tension and compression, 

Hoffman actually added few linear terms in the Hill’s equation and put forward the Hoffman 

theory as 
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This takes care of the sign in addition to the interactions among different stresses. The 

parameters C1, C2 , etc are determined by putting certain failure conditions as follows 
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Now we obtain these C1, C2 all these are actually in terms of this 5 strength parameters of the 

lamina and using these and putting these conditions we get the Hoffman's failure theory as the 

condition for safety as 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
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1 2 2
121 1 1 1 2 2 1 1 2 2

1
C T C T

u u u u
C T C T C T C T C T

u u u u u u u u u u
S

σ σ σ σσ σ σ σ τσ σ
σ σ σ σ σ σ σ σ σ σ

+ +
⇒ − + − + + + <

 

So, here it is important to note that there are interactions between the stresses and it actually 

takes care of the sign. Because there is a linear term it actually recognizes the sign of the stress 

unlike in Tsai-Hill theory. 
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Every time a criterion is put forward, they are actually correlated with the experimental 

observations and it was observed that all these are actually inadequate in representing the 

experimental data. Therefore, to obtain a better correlation with the experimental data Tsai-Wu 

failure theory was proposed with increasing number of terms in the equation so that it gives 

better fit with the experimental data and there will be more interactions among the stress 

parameters.  

So, Tsai-Wu actually postulated the condition for safety as  

1 , 1, 2,6i i ij i jF F i jσ σ σ+ < =
, 

where i, j = 1, 2, 6 means that among the 6 strengths, σ1, σ2, σ3, τ12, τ23, τ13, all the possible 

interactions are taken an on expanding this, will have 36 terms. However this is simplified for 

a two-dimensional lamina with plane stresses 1-2 and transverse isotropy in 2-3 and  

2 2 2
1 1 2 2 6 12 11 1 22 2 66 12 12 1 2

For a 2D lamina with plane stress in 1-2 and transverse isotropy in 2-3,

2 1F F F F F F Fσ σ τ σ σ τ σ σ+ + + + + + <  

Still we have seven constants which need to be determined in terms of the strength parameters. 
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Putting different failure conditions of the lamina in the material  axes 1-2, we get some relations 

as follows from which these constants F1, F11, F2, F22, F6, F66 are determined as shown. 
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Now still we did not get F12 which is associated with σ1σ2 and to determine F12 we need to 

apply biaxial stress and need to observe where it fails. That means we take a lamina and apply 

σ1 and σ2 and find out what is the combination of σ1 and σ2 at failure. And from that we can 

get F12 but there may be large number of combinations. One condition is only σ1 and no σ2, 

another condition is only σ2, and no σ1. So, in between there could be infinite combinations 

between σ1 and σ2. 
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For that a biaxial test is conducted with equal stress σ1 = σ2 = σ and all other stresses are zero 

and when putting this we get  

( ) ( ) 2
1 2 11 22 122 1F F F F Fσ σ+ + + + =  

And when we put the expressions for F1, F11, F2, F22, we get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

12 2

1 1 2 2 1 1 2 2

1 1 1 1 1 1 11
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    = − + + + + +
    
       

 

Here σ  is the stress at failure for the conducted biaxial stress σ1 = σ2 = σ   .  So, once we know 

this F12 then we can write the complete the Tsai-Wu theory. It is seen that especially for glass 

epoxy, it correlates better compared to other interactive theories.  

In summary like we have discussed the failure theories for orthotropic lamina. First, we 

understood how they are different compared to the isotropic materials. The main difference is 

that here the stresses in the material direction is more important as the strengths of orthotropic 

lamina are defined with reference to material axis. Therefore, unlike isotropic material we do 

not determine the principal stresses but we find out the material axis stresses. 

Then those material axis stresses are compared to the corresponding strengths. In case of 

independent non-interactive theories each of these strengths is compared independently and 

then the failure or safety is assessed. In case of interactive theories, the combined effects of the 

strengths are actually taken into account by the interaction terms and a single equation predicts 

whether the failure will occur or not.  
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