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Lecture-08
Strength Failure Criteria-Part 11

Hello and welcome to the second lecture of this fourth module.
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FOCUS of Module 4

Macromechanics of Lamina

» Strength Failure Theories/Criteria of Lamina
* Independent Theories/Criteria
* Maximum Stress Criteria .—
* Maximum Strain Criteria
* Interactive Theories/Criteria
* Tsai-Hill Criterion
* Hoffman Criterion
* Tsai-Wu Criterion
* Comparisons of different Theories
* Hygrothermal Stresses in Lamina

In this module, we have been discussing the strength failure theories of lamina and in the last
lecture, we discussed that the philosophy of strength failure theories in lamina is same as those
for isotropic materials. But the fact that in orthotropic lamina the strength and stiffnesses are
direction dependent are actually taken into account in developing the failure theories in
orthotropic lamina. A major difference in applying failure theories in orthotropic lamina
compared to the failure theories in isotropic materials is that, in orthotropic lamina, instead of
finding out the principal stresses and maximum shear stress, the stresses with reference to the
principal material directions are determined since the strengths and stiffnesses of orthotropic
lamina are specified with reference to the principal material axis.

Therefore, for any state of stress the stresses with reference to the principal material axis are
determined and those are compared with the corresponding strengths to assess the safety or

failure of a lamina. There are two types of failure criteria viz. independent criteria and
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interactive criteria. In the last lecture the maximum stress criteria was discussed. In today’s
lecture we shall discuss the maximum strain criteria and then few of the interactive criteria for

the strength failure theories of a lamina.

(Refer Slide Time: 02:43)

Strength Failure Theories of Lamina - Maximum Strain Theory

Maximum strain theory :
Failure occurs if any of the strains in the principal material axes exceeds the [Ui:]
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Maximum Strain Theory
This is also an independent or non-interactive theory. Analogous to the maximum stress

criteria, in maximum strain criteria, the material axes strains are determined and are compared
with the corresponding ultimate strains and the failure is said to have occurred if any of the
strains in the principal material axis exceeds the corresponding allowable strains.

Mathematically,
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Given the state of stress with respect to the x-y axes, “x, ©y and ", the state of stress with

respect to the material axes (1-2) ©1, Y2 and “2are determined as discussed earlier using the

stress transformation as

o, ¢? s 2sc ||o,

o,p=| s° ¢ -2s¢c <o,
2 2

7,] |-sc sc c’-s ||z,

And then corresponding material axes strains are determined by multiplying the material axes

stresses by the compliance matrix as

These material axes strains are then compared with the corresponding allowable strains as the

conditions of safety

—(gf )u <g < (ng )u

—(gf )u <g < (ng )u

(1), <72 <(2),
As shown in the Fig., from the stress strain curves of the lamina loaded in along its material
axes an noting the ultimate stresses (failure point) and the modulus (slope), the allowable

strains are obtained by dividing the strengths by the corresponding moduli as follows, with the

assumptions that the lamina is linearly elastic till its failure.

( T)u:(o'lT)u; ( C)u:(af)u

(&), = (GFi)” ;(65) = (JEZCZ)U
), = 2

G12

Again like maximum stress theory, while comparing the strains, proper care should be taken to
decide the corresponding allowable strains depending upon the sign. For shear stress it is

independent of sign in the material axis.
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A lamina is loaded in tension along 1 and the allowable longitudinal tensile strain (e1) v is

.
nothing but the ultimate longitudinal tensile stress (01 )u divided by Ei. Similarly, a lamina is

loaded in tension along 2 and the allowable longitudinal tensile strain (g27) u is nothing but the

.
ultimate longitudinal tensile stress <02 )u divided by E2. In the same way loading the lamina

in compression (£1%) v and (£2%) v could also be obtained from the stress strain plot. From the
shear loading of the lamina in the 1-2 plane from the stress strain plot, noting the failure point
and the slope, the corresponding allowable shear strain is (y12) u could be obtained by dividing
the ultimate shear stress (t12) u by Gi2

Again, like the maximum stress theory, maximum strain theory also consists of five different
criteria. To understand the maximum strain theory, we shall solve the same problem of

determination of off-axis tensile strength of a lamina maximum strain theory.

(Refer Slide Time: 09:37)

Strength Failure Theories of Lamina -
Off-axis tensile strength using Maximum Strain Theory
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We have already determined the off-axis tensile strength using maximum stress theory, so we

would like to do the same exercise using maximum strain theory.

Oy

0

0

As shown in the Fig., the state of stress with reference to x-y is . Therefore, with reference

to the material axes the stresses are obtained using the transformation as
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Then the strains with reference to the material axes are determined as
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So, once we have these strains in the material axis, now we can apply the maximum strain

theory. Using the maximum strain theory the conditions for safety are

— c T
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Strength Failure Theories of Lamina -
Off-axis tensile strength using Maximum Strain Theory

Mmﬂ?gj;@rj/&.mg/

7(192) <€2<({;‘7) =
_(7’12),( <rn <(}’12)ﬂ
Only difference with

maximum stress theory
is due to inclusion of
Poisson’s ratio

(o),

Lra . @y &),
<—(¢c"—v,5 o<
_Fi i e g
C (=1
(O; )” <—(s fvzlcz)a
A 2
T12)1(<7L(5c)€1 (’1'12)
G, G,

GG
(02 —VHS2) e (02 —vusz)
~ —_— £

157




Now in this case since we are considering tensile stress, therefore ox is positive. Therefore,

there are three conditions for safety instead of five (conditions corresponding to negative ¢

and %2 are omitted) So, the conditions are

Similar to what we did in maximum stress theory, here also we could plot ox with 6 to

understand the influence of 6 on the off-axis tensile strength of a lamina as shown in the Fig.

and we could see the different modes of failure (longitudinal tensile near 6 = 0°, shear away

from 6 = 0° till certain angle and transverse tensile beyond 45° and near 90°). Only difference
with maximum stress theory is due to the Poisson’s effect as could be seen from the plot. If we
put Poisson’s ratio as zero, there is no difference between the maximum stress theory and the

maximum strain theory.

(Refer Slide Time: 15:20)

Strength Failure Theories of Lamina - Tsai-Hill Theory
_gym;s Jhervies

T'sai-Hill Failure theory :
Condition for safety for orthotropic material

‘ (G, JrGa)ol2 +HG *G3)J§ +HG +G2)0'32 —2G,0,0, —2Gio,0; —2G,050; +2G47223 +2G57123 +2G57122 <1 ‘

rie 4 =
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z
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— B — T e

* In orthotropic materials, distortion cannot be separated from dilatation ;vﬂ ’ﬁMB“W

+
* Thisis not related to distortion energy ay = @T Ju

* Single function to predict the strength U‘Tﬁpo—l
0\_,‘.‘

* Incorporates interaction between strengths .~
el -
— which was NOT there in Max Stress and Max Strain criteria 4 @

* Predicts slightly lower strength compared to that by Max Stress criterion
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After discussin the non-interactive theories, we shall now discuss some of the interactive
theories.
Tsai-Hill failure theory

Hill proposed a kind of distortion energy theory or the von Misses criterion for anisotropic
material and Tsai adopted that for an orthotropic lamina therefore it is Tsai-Hill theory. This

states that the condition for safety for an orthotropic material is given by this.
(G, +G;) o, +(G,+G;)o; + (G, +G,) o? —2G,0,0, — 2G,0,0, - 2G,0,0, + 2G,15, + 2G 1t} + 2G,r5, <1

This is a kind of extension of the von-Misses criterion. We know that von Misses criterion
actually represents the distortion energy in an isotropic material. Now, for any given state of
stress the state of stress and the corresponding strains are split into hydrostatic and deviatoric
parts. Hydrostatic is actually responsible for the volume change and the deviatoric part is
actually responsible for distortion and the energy corresponding to distortion is the distortion
energy. Using the distortion energy the von Misses equivalent stresses are obtained. Therefore,
this actually represents the distortion energy. But unlike isotropic materials, in orthotropic
materials, distortion cannot be separated from dilatation. While in an isotropic materials we
can actually separate the two stresses and the corresponding strains but in orthotropic it may
not be possible because of the existence of shear extension coupling. Since it is not possible to
separate the distortion energy from the dilatation energy and therefore, in true sense it is not
related to distortion even though it is adapted in the same line but this is not distortion energy
theory. Unlike the non-interactive criteria like maximum stress and maximum strain criteria
where there are five different sub criteria, here a single function predicts the strength. More
importantly it incorporates interactions between the strengths which were not there in
maximum stress and maximum strain criteria. However, the predicted strength is slightly lower
compared to that by maximum stress and strain criterion.

(Refer Slide Time: 18:32)
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Strength Failure Theories of Lamina - Tsai-Hill Theory

Failure strength parameters G, G,.G,.G,.G,, G, were related to lamina failure strength as follows.

Casel: o, = ( ) (represents failure)

(G,+G,)(o7 ) =1}~ ZJ?«
Case2: o, ( ) (represents failure), - ‘j/Lk _ G = ;{ (U?)i . (J;, )?} |
:’(GﬁrGa)(O'z )“:1 1 1
: ; =G, = 7G5 = 7|
Case 3: o; = (({T ) (assuming strengths in 2 and 3 are same) Z(O’IT )H 2(01lr )“
=(6106)(eF] .
Case 4: 1, = (rn )“ (represents failure) 2(2—‘2 )u

2

=2G,(7,) =1

So, let us see that how these parameters Gi, G2, Gs, G4, Gs, Gs in this are calculated? These are
kind of parameters related to the strengths. These are determined by loading the lamina along

the material axes till failure and then obtaining relations for determination of these parameters

as follows.
Casel: o, = (o )u (represents failure)
G G
+6:)(e]), =1 1 2 1
Case 2: 5, =(o; ) (represents failure) G=7 (o )2 —W
2 u 1 u

=(G,+G,)(o3 ). =1 R P T
Case 3: o, =(o; ) (assuming strengths in 2 and 3 are same) 2 2(a] )j T 2(o; )j

=(G,+G,)(0} ). =1 G-t
Case 4: 7,, = (7, ) (represents failure) 2(7a),

= 2G (112) =1

For example, if we put only o1 = (61") v and all other stress are 0, and this represents a failure

condition and putting the expression

G,+G; +(G,+G, +(G,+G,)0?-2G.0,0,—2G,0,0.—2G,0.0, + 2G, 7% + 2G.t% + 2G, 72 <1
1 2)Y3 3Y1Y 2 1~ 2¥3 2¥3%¥1 4% 23 5%13 6°12

T\ _
equal to 1, we get (G, +G3)(01 )u _l. Similarly by putting other failure conditions, we get

three more relations as shown and we could solve for G1, G2, G3, Ge as shown.

(Refer Slide Time: 22:42)
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Strength Failure Theories of Lamina - Tsai-Hill Theory

Since the lamina 1s in the plane stress,

M ) - [

&' X, =(o{)u ifo, =0
where|  =( f)" ife, <0
)

=0 7,,=0 2'13:0)

Considering a lamina in plane stress (03 and putting these values of G,

G2, Gs, G the Tsai-Hill Theory for a 2D lamina becomes-
Since the lamina is in the plane stress,

2 2 2
0, 0,0y o, 710

+ + <1
(o), (o), (2], (=),

However, since it does not consider the sign of the stresses, it actually underestimates the

(0,=0 7,=017,=0) >

strength. It could be clearly seen that since o1 and o2 are squared, the influence of +ve or —ve
stress is lost and we know that the strengths are different depending upon whether the normal

stress is +ve or —ve. This is modified to take care of the signs as follows..
X,=(o]) ifo,>0
ifo, <0

ifo, >0

if o, >0

(] e e feT ) |, b

So, this is how the Tsai-Hill theory is slightly modified to take care of the sign of the stresses.
(Refer Slide Time: 25:14)
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)
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Strength Failure Theories of Lamina -
Off-axis tensile strength using Tsai-Hill Theory
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So, now suppose we want to do the same exercise what we have done for maximum stress and
maximum strain theory. That means we would like to determine the off-axis tensile strength of
a lamina using Tsai-Hill theory. As shown in the Fig., the lamina is subjected to tensile strength
ox, and we would like to know what is the ox at failure? From the given state of stress with

respect to the x-y axes, we determine the material axes stresses as follows.

o,#20,0,=7,=0

o, ¢ s 2sc |[o, o,c’
o,r=| ¢ ¢ -2sc |« 0 =4 o5
r,] |-sc sc c-s’|| 0 ~0,SC

Here, ¢ stands for cosé, s stands for siné.
By putting these expressions of material axes stresses in the Tsai-Hill theory, the condition for

failure is

c* 1 1 22 s 1

(e =) ]

> |C°8" + = >
{(e7),} (),f (=)

So, if we plot ox with 6 say for a typical glass/epoxy and graphite/epoxy lamina we get the
plots as shown for the following properties
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: \ | (of), =1350MPa
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b \\ 400 \\
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As could be seen, it is a continuous curve and a single function predicts the strength. Unlike in
the case of maximum stress and maximum strain, there were actually three curves.

Here also, at 8 = 0°, at failure ox = (o1') u, and at 8 = 90°, at failure, ox = (02") u, as expected
for the cases.

(Refer Slide Time: 30:52)

Strength Failure Theories of Lamina -
Off-axis tensile strength using Tsai-Hjll Theory
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Here, the mode of failure cannot be determined. We can of course have a deeper look into all

the terms and make out but it is not visible looking at the expression straight away.
(Refer Slide Time: 31:50)
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Strength Failure Theories of Lamina - Tsai-Hill Theory

Example :

A 60° GR/E lamina subjected to |O’_\_ = dp.o.= —=bp. T = §p|;

Using Tsai-Hill theory, determine max. value of p > 0,

so that the lamina 1s safe.

Given.

(¢7) =40MPa,

(07) =1725MPa. (o) =1350MPa

(r12), =95MPa

(¢7) =275MPa

C%

Z
-
-
N v /w9=ﬁu‘
s P
X P

Now let us take the same example we have solved using maximum stress theory, just to have

a comparison of the strength prediction by maximum stress theory and by Tsai-Hill theory.

Example:

A 60° GR/E lamina subjected to

Using Tsai-Hill theory, determine max. value of p > 0,

so that the lamina is safe.

o= 4p,o,= —-6p,7,

8p|;

Given,

(o7 ), =1725MPa, (o7 ) =1350MPa
(07) =40MPa, (o) =275MPa

(72,), =95MPa

Solution:

We follow the same steps as discussed earlier that is we determine the material axes stresses

and then put those material axes stresses in the failure theory (in this case the Tsai-Hill theory)

to obtain the value of p at failure.

o, ¢’ s
o,r=| ¢ ¢
r,] |-sc sc

-25C
2sc
c’-s®

4p O,
—6pr—> |10,
8p T

3.4
—-5.4:p
-8.3

(Refer Slide Time: 33:22)
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Strength Failure Theories of Lamina - Tsai-Hill Theory

Solution: % ; -
~1350x10° < 0, <1725x10° 3 7
Condition for safety : | -275x10° <o, <40x10° <, //WB%O‘

95%10° <7, <95x10°

o, & st 2sc |[4p o, 34 { C;; } —> wrk oy
o,r=| s ¢ 2sc |{-6pp—>[jo,r=¢54:p i
Tis —sc sc c*-s'|| 8p T —8.3
b S m-—
a [
wrt 12 9:{0"

Now given the strength properties as
(o7 ), =1725MPa, (o ) =1350MPa
(o3 ), =40MPa, (o7 ) =275MPa
(7:,), =95MPa

The material axes stresses as

o, 3.4
o,r=9-94:p
75, -8.3

Depending upon the sign of the stresses, we get the following as the strength parameters

— X, =1725MPa
if o, <0

ifo, >0
’ = X, =1350MPa

)
)
of ), ifo, <0
)
)

ifo,>0
’ =Y =27/5MPa
ifo, <0

S =(z,), =95MPa

And putting in the Tsai-Hill theory as
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G

-5.4

T2

T H <1J

—-8.3
+

72

1725 1350x1350

= p® <124.69
= p<11.16x10°

275

(Refer Slide Time: 34:35)
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Strength Failure Theories of Lamina - Tsai-Hill Theory

o

(e7) =1725MPa, (of ) =1350MPa

dl
(67), =40MPa. (of) =275MPa  |}o b=1-5.4}p
(7). =95MPa ' ) |-83
where,

3.4x(5.

= p* <124.69
= p<11.16x10°

We get that p should be less than 11.16 x 10° and

Y

X, =(e]) ife,>0 |
. = X, =1725MPa |

=(af), ife, <0
X,=(e]) ife.=0 |
i = X, = 1350MPa |
=(ef) ife, <0 -
¥ =(e]) ife,>0 |
" ' =¥ =275MPa |
—[fr‘] ifer, <0 — |
/

|5 =(r,), =95MPa

using maximum stress theory we got

something like p = 11.4x 106, So, this predicts slightly less than that what is predicted by

maximum stress theory.

(Refer Slide Time: 36:17)
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Strength Failure Theories of Lamina - Hoffman Failure Theory

Hoffman Failure theory :

To account for different strengths i

n tension and compression—

Hoffman added linear terms to the Hill’s equation as

Glo-0,) +G (5 -0) +G(01-0) HOaWGo ooy G+ Gra + G <1

LS

i planel-2—(o; =0 7,,=0 7,

RN
5=0 7,=07,=0) /é/

transverseisotmpyin?_{%a((zf) ( 2) ,(3-3(")“ :(ff)”,ff:iz

C;s (i=1,2,3,...,9) could be determ

¢ Interaction between failure modes

* Takes care of the sign of stresses

Hoffman theory

1

u \_“Ju

ined from 9 strengths wrt principal material axes
o ﬁ(UTT)W a7 =«(07%)4
I = CC’;7)w a;':@:i)“
o = @J—T)u’ G5 = @?)u
Gz = @2.)&: ; e tfz;) ", e :@?)“'

One of the drawbacks of the Tsai-Hill theory in its general form is that it does not take care of

the sign of the stresses. So, to account for different strengths in tension and compression,

Hoffman actually added few linear terms in the Hill’s equation and put forward the Hoffman

theory as

2 2 2
Cl(az—as) +C2(O'3—c71) +C3(c71—0'2) +C,0,+C.0,+Cy0, +C,75, +CyrZ +Cyr} <1

inplanel-2—(0,=0 7,,=0 7,=0)

transverse isotropy in 2-3— (a3 ) =(03 ) ,(05) =(07 )., S: =Sy,

This takes care of the sign in additio

n to the interactions among different stresses. The

parameters Ci, C2, etc are determined by putting certain failure conditions as follows

Casel:o, = (o} ) ;Case2:0, = (o7 ).
Case3:0, =(o3 ) ;
Caseb: o, = (63 )

Case7 7, =(z,,) ;Case8:z,, = (2'13)u ;

u

Case9:7, = (le )u

For plane stress in 1-2 plane ie. o,=t,,=1,,=0 and with 2-3 as the plane of transverse isotropy

ie (a; )u :(a; )u and (05 )u =(O'§ )u ’(Tls)u =(T12)u
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Now we obtain these C1, C2 all these are actually in terms of this 5 strength parameters of the

lamina and using these and putting these conditions we get the Hoffman's failure theory as the

condition for safety as

2

O 0,0,

2
0,

(oF), +(e7),

(

C T

) Hler), =

(o5), (1), (0), (o), (o%), (o).

+

(o).

T

0

o, +

),

T
12
<2 <1

12

o, +t

(%),

0, o,

),

So, here it is important to note that there are interactions between the stresses and it actually

takes care of the sign. Because there is a linear term it actually recognizes the sign of the stress

unlike in Tsai-Hill theory.
(Refer Slide Time: 40:01)

Strength Failure Theories of Lamina - Hoffman Failure Theory

Casel: o,=(0[) : Case2
Case3: o, = (o{ )” . Case4d
Case5: o, = (0;r )“ . Caseb
Casel: 7,; = (TB )n . Case8
Cased: 5, =),

o,
Do,
e
5 g

(o
(

2
&
0-3

(
()

)
),
).

(a7

ij s @ngq

For plane stress in 1-2 plane 1.e. 6,=7,,=1,,=0 and with 2-3 as the plane of transverse isotropy

ic. (o7), = (o7),and (o7), = (07), (), = (%),

=

o), = o
— O-l2 0_10_2 _ O_Z2 (O-IC )u = (O-;T )u (O-EC )u i (O{ )u ri; 1
(o7),(7), (6),(e7), (@9).(c),” (o) (o7), " (0%),(0F), 82"
- —

(Refer Slide Time: 41:31)
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Strength Failure Theories of Lamina - Tsai-Wu Failure Criterion
Tsai-W fail Criteri
= All the criteria discussed - inadequate in representing experimental data
* To improve the correlation — increase the number of terms in the prediction equation
— better curve fitting

— more interaction

» Postulated that the condition for safety is

F}Gi+P'iijGj<lw iaj=132a6

e “-—_.gn-'_ R N . i
g For a 2D lamina with plane stress in 1-2 and transverse isotropy in 2-3,

2 B 2 _ Fro Lo
Fo,+F,0, + Fet,, + F,07 + F,,0;, + F1), + 2F,0,0, <1| =1 2t

Every time a criterion is put forward, they are actually correlated with the experimental
observations and it was observed that all these are actually inadequate in representing the
experimental data. Therefore, to obtain a better correlation with the experimental data Tsai-Wu
failure theory was proposed with increasing number of terms in the equation so that it gives
better fit with the experimental data and there will be more interactions among the stress
parameters.

So, Tsai-Wu actually postulated the condition for safety as

Fo,+Fjo0, <1 i,j=12,6

where i, j = 1, 2, 6 means that among the 6 strengths, o1, 02, 03, T12, T23, T13, all the possible
interactions are taken an on expanding this, will have 36 terms. However this is simplified for
a two-dimensional lamina with plane stresses 1-2 and transverse isotropy in 2-3 and

For a 2D lamina with plane stress in 1-2 and transverse isotropy in 2-3,

2 2 2
Fo,+Fo,+Fr1,+F,0f +F,,0, +Fr, +2F 00, <1

Still we have seven constants which need to be determined in terms of the strength parameters.
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Strength Failure Theories of Lamina - Tsai-Wu Failure Theory

Putting different failure conditions of the lamina in the material axes 1-2, we get some relations

as follows from which these constants F1, Fi1, F2, F22, Fs, Fes are determined as shown.

1 1
F = _
61=(01T)u, o,=17,=0 —)Fl(alT)quFll(O'lT)j:l ! (alT)u (O'f)u
=—(o7) , =0—>-F(o°) +F 2—1 E - 1
0y (0-1) 0,=1p 1(0-1) 11(0-1 )u 1 (O_lc)u(o_lT)u
F - 1 1
) =
0'2—(0';)u, o,=1,=0 —)FZ(O';) +F22(0'2 )uzl ? (Gg)u (O'ZC)U
62——(65) ,0'1=rlz=0—>—F2(0'§)U+F22(026)j=1 F, = 1
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Strength Failure Theories of Lamina—Tsai-Wu Failure Theory

For equal strength in tension and compression — F, = 0,F, = 0,F, = = JE, =

J’:,+2F,o-o-+ 532,+L:,=1
(o), == (of)) (m) 7

This equation is similar to Tsai-Hill failure criterion except £, for which a biaxial test needs to be conducted.

4Tz
I
——
— e
M e—— a;, 0, =77
+ o= o 2
T Y ?m,r‘wr

For equal strength in tension and compression - F, =0,F, =0,F, =

2 2 2
9 _ioF +-2 =1
120105 2 =

(o7); (o7), ()]

=

Now still we did not get Fi2 which is associated with o102 and to determine Fi2 we need to
apply biaxial stress and need to observe where it fails. That means we take a lamina and apply
o1 and o2 and find out what is the combination of o1 and o2 at failure. And from that we can
get F12 but there may be large number of combinations. One condition is only o1 and no o2,

another condition is only o2, and no o1. So, in between there could be infinite combinations

between o1 and oo.
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Strength Failure Theories of Lamina—Tsai-Wu Failure Theory

Thus, by conducting a biaxial test considering g, =0, =& and all other stresses are zero

(R+5)o +(F11_F23+2F1:}G: =1~

1 1 1 1 ] 1 | .
= |k, = 3 1- + + .8 o+ " o
= 2| (7)o (o) (1)~ (o)) (et (o), (oF), (o),
IL_—_j:I:'_TL_‘_\J > O = T al Gﬁmﬁa).ﬂ_x
& t—— =
irU_

For that a biaxial test is conducted with equal stress o1 = 62 = o and all other stresses are zero

and when putting this we get
(F+F,)o +(F,+F,+2F,)o’ =1

And when we put the expressions for F1, Fi1, F2, F22, we get

Here o is the stress at failure for the conducted biaxial stress 61 = 62=0 . So, once we know
this F12 then we can write the complete the Tsai-Wu theory. It is seen that especially for glass
epoxy, it correlates better compared to other interactive theories.

In summary like we have discussed the failure theories for orthotropic lamina. First, we
understood how they are different compared to the isotropic materials. The main difference is
that here the stresses in the material direction is more important as the strengths of orthotropic
lamina are defined with reference to material axis. Therefore, unlike isotropic material we do
not determine the principal stresses but we find out the material axis stresses.

Then those material axis stresses are compared to the corresponding strengths. In case of
independent non-interactive theories each of these strengths is compared independently and
then the failure or safety is assessed. In case of interactive theories, the combined effects of the
strengths are actually taken into account by the interaction terms and a single equation predicts

whether the failure will occur or not.
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