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Hello and welcome to the second lecture of this third module, where we have been discussing 

Macromechanics of lamina.  

(Refer Slide Time: 00:39) 

 
The objectives of this module 3 has been first to understand the stress-strain relationship for a 

2-dimensional unidirectional lamina and then to develop the stiffness and compliance matrices 

for specially orthotropic lamina (where the material axes 1-2-3 coincide with the analysis axes 

X-Y-Z) as well as for generally orthotropic lamina (where material axes 1-2-3 do not coincide 

with the analysis axes X-Y-Z). Finally to develop the relationship between the elements of 

stiffness and compliance matrices and the engineering constants for specially orthotropic 

lamina as well as for generally orthotropic lamina.  

In our last lecture, we discussed Hooke's law and we understood how 3-dimensional 

generalised Hooke's law could actually be reduced for a 2-dimensional unidirectional lamina. 

Then the stiffness and compliance matrix both for specially orthotropic lamina as well as for 

generally orthotropic lamina were developed. Engineering constants for specially orthotropic 

lamina were also discussed. So, in this lecture the engineering constants for generally 
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orthotropic lamina will be discussed along with the influence of fiber angle on engineering 

constants.  

(Refer Slide Time: 02:02) 

 
So, just a quick revisit that we understood that there are, suppose parallel to the fiber direction 

is 1, which is also called the longitudinal direction, and perpendicular to the fiber direction is 

actually 2, is also known as transverse direction; so, this 1-2 is known as local axes or material 

axes. And x-y which is actually the global axes; or, the axis which is actually convenient for 

our analysis is termed as global axes; and the angle the material axes makes with the global 

axes, say the angle between x and 1, θ is the fiber orientation angle.  

Say, this shows a typical lamina where the fibers are oriented at an angle of θ with the x-axis. 

Now, the Young's modulus; we understood in the last class that we can actually determine the 

engineering constants, like Young's modulus along direction 1 is known as longitudinal 

Young's modulus; similarly, Young's modulus along direction 2 is the transverse Young's 

modulus.  

Then, the Poisson's ratio ν12 which is nothing but the ratio of the strain along direction 2 to the 

strain along direction 1 when the stress is applied along direction 1 is the major Poisson's ratio 

ν12. Similarly, we can define the minor Poisson's ratio ν21. That means, when a stress is applied 

along direction 2 and the ratio of the strain along direction 1 to the strain along direction 2 is 

ν21.  

 

And then, we have the G12 as the shear modulus in plane 1-2. So, these are the engineering 

constants, E1, E2, ν12 and G12 are the engineering constants for a lamina with respect to the 

material axes; of course, ν12 and ν21 related; therefore, there are actually, ν12 by E1 is equal to; 
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we have seen that in our last class; therefore, there are actually 4 independent engineering 

constants, E1, E2, ν12 and G12, for a lamina in the material axis.  

(Refer Slide Time: 04:29) 

 
Then, we have developed the stress-strain relationship wherein suppose the stresses in the 

material axes are related to the corresponding strains and this is the compliance matrix and this 

is the reduced stiffness matrix; I think we have discussed these things in details in the last class. 

And then, we could relate the engineering constants in terms of, we could write engineering 

constant in terms of the elements of the compliance matrix and stiffness matrix like this; that 

we understood.  

That means, here, when we say the stress-strain relationship in material axes, that means, 

stresses are with respect to the axes 1-2 and the corresponding strains are also with reference 

to 1-2. And this is how the stress-strains are related.  

(Refer Slide Time: 05:29) 
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Then, we have also used our knowledge of stress and strain transformation and we could 

actually obtain the relations between the stresses and strains in the global axes. That means, 

the stresses and strains with respect to x-y. This stress is with respect to the Cartesian coordinate 

axes x-y; and similarly, the corresponding strains, εx, εy, γxy. And we have obtained the 

relationship; how did we do so?  

Because we have already obtained, we have the relationship between the stresses and strains 

in material axes. By using the knowledge of stress and strain transformation, we could actually 

obtain this, and where this �𝑄𝑄� is called reduced transformed stiffness; [Q] was reduced 

stiffness and this is transformed reduced stiffness.  

(Refer Slide Time: 07:04) 
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And we have also seen that this�𝑄𝑄�, that means, the reduced transformed stiffness could 

actually be expressed, the elements of this �𝑄𝑄� matrix could actually be expressed in terms of 

the elements of [Q] matrix, that means the reduced stiffness matrix and sinθ and cosθ. So, we 

have seen here that this �𝑄𝑄�, elements of �𝑄𝑄� is actually function of elements of [Q] and θ.  

Here, actually s stands for sinθ and c is cosθ. Just for reference, this is 1-2 axes of a lamina and 

this is the global axis, and this is what is θ. So, we have also established the relationship 

between the elements of the reduced transformed stiffness matrix to the elements of the 

stiffness matrix as a function of θ. And we understood that even though there are 6 elements in 

the reduced transformed stiffness matrix, but they are actually functions of the 4 independent 

constants, Q 11, Q 12, Q 22, Q 66. They are actually functions of these 4 independent constants 

and θ.  

(Refer Slide Time: 08:57) 

 

Similarly, since we have the expressions for �𝑄𝑄�, and if you remember that �𝑄𝑄� was actually 

using the stress and strain transformation; actually, �𝑄𝑄� was this, where T is nothing but the 

stress transformation matrix and [Q] is the reduced stiffness, [R] is just a matrix containing 0, 

1 and 1
2
. And therefore, we can take inverse of this and that will be nothing but �𝑆𝑆� matrix.  

So, therefore, we could also obtain the relationship between �𝑆𝑆�, elements of �𝑆𝑆� as a function 

of elements of S and θ, similar to that of �𝑄𝑄�. So, here also there are 6 elements, 𝑆𝑆11, 𝑆𝑆12, 𝑆𝑆22, 

𝑆𝑆16, 𝑆𝑆26, 𝑆𝑆66, but actually they are functions of 4 independent constants, S11, S12, S22, S66 and 

θ.  
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(Refer Slide Time: 10:09) 

 
So, now, this reduced transformed stiffness could actually be expressed as in the invariant 

forms, like we have seen how 𝑄𝑄11 is actually expressed in terms of the 4 independent constants 

Q11, Q12, Q22 and Q66. So, this could be actually written in terms of, in invariant forms. This 

is the invariant form, where this U1, U2, U3, U4 and U5 are actually invariants. When we say 

invariants, what does it mean?  

That means, these are independent of θ. You can see that these are actually the elements of the 

reduced stiffness matrix in the material axes; therefore, they are independent of θ. Now, 

expressing this in such invariant form many a times is advantages, because many a times, 

actually in laminate analysis, we need to perform integration of the stiffness terms. Therefore, 

if we write in terms of these invariants, it becomes simplified, the analysis becomes simplified.  

Also, this gives us at first hand idea of how; I mean, we can clearly see how these elements of 

this reduced transformed stiffness matrix actually vary with θ. We can see; suppose, we want 

to find out at what angle this 𝑄𝑄66 will be maximum? We can actually find out by taking first 

derivative with respect to θ and putting it to 0, we can find out for what θ. Similarly, we can 

see how these variations of this reduced transformed stiffness matrix with θ could be clearly 

understood by expressing this in the invariant forms.  

(Refer Slide Time: 12:16) 
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Now, just before we actually go to the engineering constants for a generally orthotropic lamina, 

just a note that many a times this question comes, the reduced stiffness matrix is actually, or 

reduced transformed stiffness matrix is actually denoted by Q, not by C; whereas the 

compliance is S. If you remember, for an orthotropic or in general, for 3-dimensional, the 

compliance matrix is always denoted by S and the stiffness is by C.  

So, when we actually reduce this for a 2-dimensional lamina, the [S] remains still same, we 

still keep this [S], but this stiffness is made [Q]. The reason is that, actually, these Sij terms, 

S11, S12, S22, S66 could be straightaway taken from this matrix without any change. But the 

stiffness terms; if you remember how we have actually obtained this [Q], elements of this [Q] 

matrix, they cannot be taken from this. In fact, they are related like this.  

The elements of stiffness matrix are related to the elements of this [C] matrix like this, by this 

formula. Therefore, it is actually divided by [Q], not by [C], and the reason is that, if you take 

the inverse of this 3×3 [S] matrix, it will not be same as the inverse of; the elements will get 

changed when we take the inverse of 6×6 [S] matrix; therefore, they are not same. So, this is 

just a; I mean, why the reduced stiffness matrix or reduced transformed stiffness matrix is 

actually denoted by [Q], not by [C], whereas, the compliance matrix is always denoted by [S].  

(Refer Slide Time: 14:13) 
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Now, having understood this stress-strain relationship using reduced transformed stiffness and 

transformed compliance matrix, let us try to understand the the engineering constants with 

reference to x-y axes for a generally orthotropic angle lamina.  

First, in case 1, we apply only σx and if we apply this stress-strain relationship, this leads to a 

normal strain along x, this εx, a normal strain along y, εy.  
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As could be seen that in addition to the normal strains, it also leads to a shear strain γxy, 

(because of non-zero S16 and S26 terms). Therefore, going by definition,  
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Now, because a normal stress causes a shear strain, that must also be characterized. This is 

called shear coupling coefficient, denoted as ,xy xη  which decides that if we apply a normal 

stress along x, what will be the shear strain along x-y. This is as follows: 
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So, in general, the shear coupling coefficient is 
,i j i

i

ijη
γ
ε

=
. Where, i,j could be 1, 2 and 6. Thus 

we have established the Young's modulus along x, Poisson's ratio xyν  and in addition, we have 

also obtained the shear coupling coefficient in the x-y plane, ,xy xη .  

(Refer Slide Time: 54:46) 

 
Next, in case 2, we apply only σy 
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So, going by definition, again Young's modulus along y  
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Again, we have the shear coupling, now it is ,xy yη  defined as  

26 26
,

22 22

,
26

y
xy y

y y

xy y

y

xy S S
S S

S
E

σ
η

ε σ

η

γ
= = =

=
 

We could also see that 

xy yx

x yE E
ν ν

=
is also true for generally orthotropic lamina with reference to 

x-y.  

(Refer Slide Time: 57:34) 

 
And in case 3, we apply a pure shear τ xy and naturally because the shear coupling coefficient 

is there, therefore, it leads to a normal strain along x, normal strain along y in addition to the 

direct shear strain, because of the shear stress. Going by the definition of shear modulus we get  
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So, in general, the stress-strain relationship in terms of engineering constants for a generally 

orthotropic angle lamina (where 1-2 do not coincide with x-y are 
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Again Ex, Ey, xyν , Gxy and ,xy xη  and ,xy yη could actually be related to Ex, Ey, xyν , Gxy and θ as 
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So, even though there are 6 engineering constants, but actually these 6 engineering constants 

are nothing but functions of the 4 independent engineering constants and θ. Therefore, even 

though there is a shear coefficient, it is still orthotropic, but the axes of orthotropy do not 

coincide with the direction of loading. If we apply load along the direction of orthotropy, it 

will still show no shear-extension coupling. 

So, what we have learnt in this lecture is that, we have obtained the stress-strain relationship 

for lamina, both with reference to the material axes 1-2 as well as with reference to the analysis 

axes x-y which may not coincide with the material axes.  

We understood that, 4 independent engineering elastic constants are required to characterise a 

lamina and those could be related to the measurable engineering constants like E1, E2, 12ν , G12. 

While the stress-strain relationship for a generally orthotropic lamina, (where the analysis axes 

or loading axes do not coincide with the material axes), there are 6 constants in the compliance 

and reduced transformed stiffness matrix. However, those 6 constants are actually functions of 

the 4 independent elastic constants for a specially orthotropic lamina and θ. 

Now, if you put θ=0, we will get back the same; like, if we put theta is equal to 0, this Ex, Ey, 

xyν , Gxy and ,xy xη  and ,xy yη will be nothing but E1, E2, 12ν , G12 and 0. So, basically, for an 

orthotropic lamina, we need 4 independent elastic constants and that there are 4 engineering 

constants.  
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Now, for a given E1, E2, 12ν , G12 , for a general lamina, these engineering constants (in x-y) 

vary with θ in the global axes. It is important to understand say for example what will be the 

value of Ex at a particular θ.  We have discussed that if θ = 0, then Ex = E1 and when θ = 90˚, 

Ex= E2  and when θ varies between 0˚ to 90˚, there will be different values of Ex.  

So, these engineering constants vary with θ, and how they will vary, of course, decided by the 

values of E1, E2, G12, ν12. Therefore, the nature of variation depends on the values of the 

engineering constants in material axes. Now, in order to understand the variation of these 

engineering constants with θ, they could actually be plotted with θ to see how they actually 

vary. First let us see how Ex varies.  

(Refer Slide Time: 43:51) 

 
Using the expression of  Ex in terms of E1, E2, G12, ν12 and θ,  Ex  has been plotted for different 

values of θ between 0˚ to 90˚ , for  two kinds of lamina viz. glass epoxy for a volume fraction 

of 45%  and a graphite epoxy for a volume fraction of 75% as shown in Fig. 

It could be clearly seen from these figures that at θ = 0˚, the Ex is nothing but E1. At θ = 90˚, 

this Ex is nothing but E2. Now, naturally, Ex is maximum when θ is equal to 0˚. It is understood, 

because, if we take a lamina and load it in the longitudinal direction, the load is actually borne 

by the fibers which are very stiff in the longitudinal direction.  Therefore, the stiffness is 

maximum. On the other hand, if we load it in the transverse direction, the fibers do not carry 

the load, it is actually the matrix, therefore, it is minimum. So, E2 is much less compared to E1 

and between θ = 0˚ and θ = 90˚ the value of Ex varies between E1 is and E2.  
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This is due to the fact that for any other angle say for θ = 45˚ maybe the fibers take a part of 

the load and not the full and the matrix takes a part of it and therefore, it is in between.  

 (Refer Slide Time: 47:15) 

 
Similarly, we can see the variation of Ey, at θ = 0˚, Ey = E2, at θ = 90˚, Ey = E1; and in between, 

it varies. Figure shows the variation of Ey for glass epoxy and graphite epoxy.  

(Refer Slide Time: 47:44) 

 
Similarly, using the expression for νxy in terms of E1, E2, G12, ν12 and θ, the variation of νxy, the 

Poisson's ratio (in x-y) with θ could be plotted as shown. It could be clearly seen that θ = 0⁰, 

νxy= ν12 and at θ = 90˚, νxy= ν21. We could check this using the relation ν12 / E1 = ν21 / E2; 

therefore, you can find out ν21 is equal to ν12 E2 by E1. As shown in the Fig., the variation of 

ν12 with θ is more pronounced for graphite epoxy and it is maximum at around 35⁰,  whereas 
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for glass epoxy, it is monotonically decreasing, the nature of variation is decided by the values 

of E1, E2, ν12 and G12.  

(Refer Slide Time: 48:53) 

 
In the same way, using the expression for Gxy in terms of E1, E2, G12, ν12 and θ, the same trend 

for both glass epoxy and graphite epoxy has been obtained. Here also, it could be clearly seen 

that θ = 0⁰, Gxy= G12 and at θ = 90˚, Gxy= G21 and it varies at intermediate angles between 0⁰ 

and 90˚. In both the cases of glass epoxy and graphite epoxy, Gxy is maximum at 45˚. Gxy being 

the shear modulus in the x-y plane, it actually quantifies the resistance to shear. Now, it is 

important to note that Gxy is always greater than G12 and is maximum at 45˚. This could be 

explained as follows. Suppose in a lamina, subjected to pure shear τxy in x-y which is equivalent 

to equal and opposite normal stresses at an angle of 45˚. Therefore in a 45˚lamina, the fibers 

along the 45˚direction carries the normal stress and hence provides maximum resistance to 

shear. On the other hand, in 0˚ lamina subjected to pure shear τ12 the normal stress along the 

45˚ direction is actually resisted by the matrix and hence shear resistance is minimum  That is 

why Gxy is maximum at 45˚.Therefore, Gxy is greater than G12; this is the reason.  

(Refer Slide Time: 52:18) 
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Similarly, using the expression for ηxy,x in terms of E1, E2, G12, ν12 and θ, we could plot the 

variation of shear coupling coefficient with. It is clear that that at θ = 0˚, ηxy,x = 0 and  at θ = 

90˚ also, ηxy,x = 0. This is because there is no shear-extension coupling in the material axes ie. 

at θ = 0˚ and θ = 90˚. But in between, for glass epoxy, it is maximum somewhere maybe around 

20˚, again, the nature of the trend will be decided by what are the values of the E1, E2, G12, ν12. 

In the present case the variation is plotted for glass epoxy and graphite epoxy. 

So, having understood these variations, we can clearly see that in case of engineering constants 

in global axes, in addition to Ex, Ey, Gxy and νxy, there is also a shear-extension coupling 

coefficient ηxy,x which needs to be defined because there is shear-extension coupling present.  

This is because of the existence of non-zero 𝑆𝑆12 and 𝑆𝑆26 terms. However, these  S16 and S26 and 

similarly, Q16 and Q26 terms are always 0 in the material axes when we define the stress-strain 

relationship in material axes.  

(Refer Slide Time: 54:34) 
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Similarly, we could plot the variation of ηxy,y with θ  using the expression in terms of E1, E2, 

G12 and ν12 . Again, for be 0 at θ = 0˚ and θ = 90˚ the value is zero and it is maximum value 

and the corresponding at θ at which it is maximum depends upon the values of E1, E2, G12 and 

ν12.  

 (Refer Slide Time: 55:21) 

 
Now, to understand  the implication of these engineering constants we consider three different 

specimen of identical dimensions as shown in Fig. First one is made of isotropic material, 

second one is a specially orthotropic lamina and the third one is an angle lamina (generally 

orthotropic). Now, suppose we apply a load in the x- direction (as shown) say stress, σx. The 

specimen made of isotropic material will extend along x and there will be contraction along y. 

So, there will be strain along x, εx and along y, εy (Poisson’s) due to σx.  There is no shear-

extension coupling.  
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In the case of specially orthotropic (1-2 coincide with x-y), subjected to σx, there will be  strains 

along x, εx and there is strain along y, εy (Poisson’s) and because it is specially orthotropic and 

there is no shear-extension coupling, because the material axes, x and y coincides with 1 and 

2.  

However, when it comes to this generally orthotropic lamina, subjected to σx only, in addition 

to having strain εx and εy, it will also have shear strain γxy and the deformed shape is as shown 

due to the shear extension  coupling.  

Then, what is the difference between isotropic and orthotropic is that, in case of isotropic, 

whether we apply stress along x or stress along y, the strains in the other direction will be same 

which is not true for orthotropic. That is εy (Poisson’s) due to σx and εx (Poisson’s) due to σy 

are same in the case of orthotropic but in the case of an orthotropic material, εy (Poisson’s) due 

to σx and εx (Poisson’s) due to σy are NOT same since ν12 ≠ ν21 . 

This is the difference between orthotropic and isotropic. In both orthotropic and isotropic, there 

is no shear extension coupling, but in orthotropic materials, even in the material axes νxy is not 

equal to νyx, that is, ν12 is not equal to ν21 but it is same in isotropic materials.  

So, we can see that in case of a generally orthotropic lamina, even if we apply a normal stress, 

that leads to shear strain and vice versa. Now, the question is, then what is the importance of 

this angle lamina?  

This is very important in the sense that, say for example, if we have understood the variations 

of this Ex, Ey, you can clearly see Ex is highest, that means, is equal to E1 when θ is equal to 0˚. 

Therefore, suppose we want an object which should be very stiff against longitudinal loading, 

then our choice will be a lamina whose longitudinal axis actually coincides with the global 

axis. So, θ is equal to 0˚; but it will be poor in the transverse direction ie. in the y direction.  

Suppose we also want that it should have substantial stiffness along the y direction, then we 

have to take a lamina, whose fibers are oriented in angle of 90˚, the loading axis. Suppose we 

want both, it should be stiff in the x as well as y direction, then, naturally we have to take a 

combination of these two lamina, one 0˚, another 90˚ , but both these 0˚ and 90˚  lamina are 

poor against shear.  

Therefore, suppose we want a component which should be, we should have sufficient 

resistance to shear, then we must have a very high value of shear modulus. Then, we know that 

at 45˚, the shear modulus is maximum, so, we must take a lamina which is having a fiber 

orientation of 45˚. Suppose, we want a component which should have the sufficient stiffness 
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along x, sufficient stiffness along y, it should also have in-plane shear stiffness, then we must 

have a lamina which is 0˚, which is 90˚ as well as 45˚.  

That is what the idea of making a laminate. Therefore, angle lamina is also important. 

Depending upon the stiffness requirement, we need different fiber orientation of the lamina. 

Even the strength requirements also dictate that. So, depending on the stiffness requirements, 

we need to have a combination of 0˚, 90˚ or other angle lamina.  

But what happens is, as soon as we introduce angle lamina, there will be shear-extension 

coupling. As long as it is 0 and 90˚, there is no shear-extension coupling, but as soon as it is 

deviating from 0 and 90˚; suppose, at 45˚ there is a shear-extension coupling. So, again, that 

has to be addressed in the design. It is very important to understand the stress-strain 

relationships or the behaviour of a lamina subjected to load to understand the behaviour of a 

laminate which is composed of number of laminas stacked together.  

Therefore, understanding the variation of these properties in the global axes is very important. 

We will discuss these things in details when we actually go for analysis of laminate.  
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