
 

 

 
Mechanics of Fiber Reinforced Polymer Composite Structures 

Prof. Debabrata Chakraborty 
Department of Mechanical Engineering 

Indian Institute of Technology, Guwahati 
 

Module - 2 
Review of Elasticity 

Lecture - 04 
Orthotropic Materials 

 

Welcome to the second lecture of the second module and we have been discussing the review 

of elasticity. 

(Refer Slide Time: 00:48) 

 

In our last lecture, we understood the generalized Hooke's law; that means, the relation between 

the stresses and strains in terms of stiffness and compliance like we understood that at a point 

there are nine stress components and corresponding nine strain components and therefore they 

are related by stiffness or compliance matrix which has eighty one elastic constants.  

 

But then, we also understood that for symmetric stress and strain tensors, there are six stresses 

and six strains and therefore the number of elastic constants is thirty six. Again, from the energy 

consideration, we have showed that the stiffness or compliance matrix is also symmetric and 

therefore, the number of independent elastic constant because of the symmetry is actually 

twenty one. So, in the last class we understood this and then we have actually introduced an 

important concept of planes of material property symmetry and we saw that as a consequence 
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of existence of planes of material property symmetry, the number of independent elastic 

constants is actually reduced.  

 

We have seen that based on the existence of number of planes of material property symmetry, 

the material could be triclinic or anisotropic. When there is one plane of material property 

symmetry, it is monoclinic. Then we have three mutually perpendicular planes of material 

property symmetry; it is orthotropic. And then we have isotropic material feature, we all know. 

So, today we will discuss the engineering constants for orthotropic materials. (Refer Slide 

Time: 09:34) 

 

Engineering Constants for Orthotropic Materials (Refer Slide Time: 16:19) 

 

The simple way to write the relation between stresses and strains are in terms of stiffness matrix 

or compliance matrix where the six components of stress are related to corresponding six 
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components of strain. So, in order to characterize the material we need to know the elements 

of the stiffness or the compliance matrix. In other word, subjected to stress, if we want to know 

what the strains are, we must know each element (elastic constants) of this stiffness or 

compliance matrix.  However, these elastic constants are actually not measurable quantities 

and the measurable quantities from which these elastic constants could be obtained are termed 

as engineering constants which could be determined experimentally in laboratories by 

conducting experiments. There are relationship between the engineering constants and these 

elastic constants. The elastic constants are actually expressed in terms of engineering 

constants.  For example, for a simple axially loaded bar, if we want to know what is the 

longitudinal strain, we must know what is the Young's modulus (E) for the material of the bar 

and we could determine the lateral strain by knowing the Poisson’s ratio (ν) of the material. 

We know that both E and ν could be measured in laboratory using universal testing machine 

(UTM). As shown in the Fig., by applying stress along the longitudinal direction and measuring 

the corresponding longitudinal strain, the slope of the stress strain curve gives us E. Similarly 

by simultaneously measuring lateral strain and plotting the lateral strain versus longitudinal 

strain, the slope of the curve gives us ν. Similarly using torsion test we could determine G from 

the slope of the shear stress and shear strain curve. For an isotropic material G could be 

expressed in terms of E and ν. We could now write the stress strain relationship for 2D where 

S11, S12, … are expressed in terms of the engineering constants E, ν and G. 

For isotropic materials, there are two independent elastic constants and hence two independent 

engineering constants viz. Young's modulus, E and Poisson's ratio, ν. By conducting just a 

single experiment in an UTM, the Young's modulus and Poisson's ratio can be determined and 

the shear modulus could be expressed in terms of Young's modulus and Poisson's ratio. 

However, for orthotropic materials, there are nine independent elastic constants and hence nine 

engineering constants and we will see how for an orthotropic material these elastic constants 

could be expressed in terms of engineering constants.  

As already discussed, engineering constants are those which could be actually measured in the 

laboratory. Say for example, in the case of isotropic materials conducting a simple tensile test 

in UTM, we could obtain E and ν and derive G from those. We have also seen how those are 

related to the elements of the compliance matrix. Same principle applies to orthotropic 

materials also where tests are conducted by loading in three mutually perpendicular planes 

(directions of orthotropy) and three direction-dependent Young’s moduli and Poisson’s ratios 

could be determined. Note that in the case of orthotropic materials, the relationship between 
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the E, ν  and G (for isotropic materials) does not hold good and three direction-dependent Gs 

are to be determined by separate tests.  

Referring to the Fig., suppose in an orthotropic material, the load is applied along 1 (or X), and 

the corresponding stress is 1σ  and the measured strain along 1 (or X) is, then the slope of the 

stress-strain curve (= 1

1ε
σ ) gives us Young's modulus along 1. Due to Poisson’s effect there will 

be strain along 2 (or Y) and 3 (or Z). Suppose the strain along 2 due to only load along 1 is 2ε

, then the Poisson’s ratio in the plane 12 is 2 1
12 2 12 1 12

1 1

εν or ε ν ε ν
ε E

σ
= − = − = −

Suppose, we 

apply in this direction, say this is 1, and we also keep a strain gauge along direction 2 and we 

keep track of what is the strain along direction 2. This is how the Poisson’s ratio is defined and 

in general j
ij

i

ε
ν (when only 0 is acting)

ε iσ= − ≠
, Suppose, the strain along direction 2 is this. 

I will do a separate diagram maybe; similarly, we can draw the longitudinal strain versus the 

lateral strain. Therefore, in the case of an orthotropic material, the slope of the stress-strain 

curve gives us Young's modulus in a particular direction i

iεiE σ
=

 ( iσ is the applied stress and 

iε  is the corresponding strain in that direction) and the slope of the longitudinal strain versus 

lateral strain curve gives us the Poisson’s ration as, that is j

i

ε
εijν = −

(when only iσ  is applied). 

The shear moduli ijG need to be determined from separate tests. It is to noted that  ν νij ji≠ (for 

isotropic material of course they are same).  

 

Considering an orthotropic material with x plane, y plane and z plane are the planes of 

orthotropy. Suppose, we apply a stress xσ  along X and all other stresses are zero, that will lead 

to a strain along X which is given by 
E

x

x

σ . Now, because of the Poisson's effect, application of 

xσ  along x will lead to strains along Y which is 
ε ν ε ν

E
x

y xy x xy
x

σ
= − = −

.  Similarly, because of 

xσ , there will be a strain along Z which is given by again in terms of Poisson's ratio 

ε ν ε ν
E

x
z xz x xz

x

σ
= − = −

.  
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Note that even though the procedure followed is same as that in isotropic material, but here the 

Poisson's ratios in XY and XZ planes are different. Similarly, if we apply stress yσ  along Y 

and all other stresses are zero, that will lead to a strain along Y which is given by 
E

y

y

σ . Now, 

because of the Poisson's effect, application of yσ  along Y will lead to strains along X which is 

ε ν ε ν
E

y
x yx y yx

y

σ
= − = −

.  Similarly, because of yσ , there will be a strain along Z which is given 

by again in terms of Poisson's ratio 
ε ν ε ν

E
y

z yz x yz
y

σ
= − = −

. Extending the same if we apply 

only stress zσ  along Z and all other stresses are zero, that will lead to a strain along Z which 

is given by 
E

z

z

σ . Now, because of the Poisson's effect, application of zσ  along Z will lead to 

strains along X which is 
ε ν ε ν

E
z

x zx z zx
z

σ
= − = −

 and there will be a strain along X which is given 

by again in terms of Poisson's ratio 
ε ν ε ν

E
z

x xz z xz
z

σ
= − = −

. 

 (Refer Slide Time: 24:20) 

 

Now, suppose it is also subjected to shear stress along plane YZ, yzτ , that will lead to a direct 

shear strain  
γ yz

yz
yzG

τ
=

. Suppose it is also subjected to shear along plane XZ xzτ , therefore, in 
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the XY plane it will lead to shear strain 
γ xz

xz
xzG

τ
= xz

xzG
τ . Similarly, subjected to shear stress xyτ

, leads to xy
xy

xyG
τ

γ =
. It is to be noted that for an orthotropic material there is no shear extension 

coupling and hence application of normal stresses does not result in shear strain and 

applications of shear stresses does not result in normal strains. In addition there is no shear-

shear coupling ie application of shear stress in one plane only results in shear strain in that 

plane and not in other planes.  

 

Extending this, if all the three normal stresses and three shear stresses are applied 

simultaneously, then we could obtain the total strains by using the method of superposition and 

therefore we can add this as follows. From this we could write the six components of strains in 

terms of six components of stresses resulting in what is called the compliance matrix. Her it 

could be noted that the elements of this compliance matrix are now expressed in terms of nine 

engineering constants. 

.  

 (Refer Slide Time: 30:19) 

 

Therefore the elements of compliance matrix S11, S12, S13, … S66 could now be expressed 

in terms of the engineering constants as follows. As discussed earlier it could be seen that in 

this the shear-extension coupling as well as the shear-shear coupling terms are zero though 

extension-extension coupling (due to Poisson’s effect) terms do exist. 
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So, we could actually express elements of the compliance matrix in terms of engineering 

constants. What are these engineering constants? Three Young's moduli, Ex, Ey, Ez; three 

Poisson's ratios, ν xz , ν yz , ν xy ; and three shear moduli, yzG , xzG and xyG .  

(Refer Slide Time: 32:12) 

 

Note that X, Y and Z planes are the three mutually perpendicular planes of material property 

symmetry in an orthotropic material. Generally 1, 2, 3 are designated as the planes of 

orthotropy ie. 1 means the corresponding plane where 1 is the surface normal to the plane 2-3, 

2 is the surface normal to the plane 1-3 and 3 is the surface normal to the plane 1-2. With 

reference to the Fig., generally in an orthotropic lamina, X-Y-Z are conventionally used for 

analysis axis or loading axis.  As shown in Fig., sometimes 1, 2, 3 may coincide with X, Y, Z, 

but not necessarily always. Say for example, if we have a lamina where the fibers are actually 

78



 

 

oriented in a defined direction, 1, 2, 3 have a different orientation with respect to X, Y, Z.  1, 

2, 3 are the directions of orthotropy, sometimes also called principal material direction. So, 

now we can write that S11 = 1/E1 , S22=1/E2 and , S33=1/E3.  E1,  E2,  E3   are the Young's 

moduli along directions 1,2,3 respectively. Similarly, we could express other terms S12, S13 

… S66 in terms of Young’s moduli, Poisson's ratios and the shear moduli. So, these are the 

nine engineering constants which could be actually measured in the laboratory. For example if 

we need to determine what is E1 for a lamina, we make specimen from the this lamina, load it 

along direction 1in UTM (following certain standards) and from the strain gauge reading, we 

get 1ε lamina and from this stress-strain curve we get E1 and from lateral strain longitudinal 

strain curve we get 12ν   Similarly, by loading along directions 2 and 3, we get E2 and E3 and 

other two Poisson’s ratios and by conducting shear tests, we could get three shear moduli. From 

these engineering constants we could obtain the compliance and stiffness matrix.  

 

(Refer Slide Time: 37:13) 

 

Now, as already discussed, compliance and stiffness matrix are symmetric.  Therefore, S12 = 

S21 and in general, [i j]ij jiS S= ≠ , meaning S12 = S21, S23 = S32, S13 = S31 and this leads to a 

relationship which is known as reciprocal relations. That implies that ij ji

i j

ν ν
=

Ε Ε

. As we have 

discussed earlier that 12ν and 21ν  are not same but they are not independent and are actually 

related by this relation 21 12

2 1

ν ν
=

Ε Ε
.  Similarly, 13ν and 31ν are also bound by this relation. So, in 
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general, ij ji

i j

ν ν
=

Ε Ε

.  Recall the definition of Poisson’s ratio and see what are 12ν and 21ν . 

Suppose this is our direction 1, this is our direction 2; suppose if we apply then 2
12

1

εν
ε

= −
 when  

only 1σ ,is applied and all other stresses are zero and 1
21

2

εν
ε

= −
when only 2σ  is applied and all 

other stresses are zero.  

 

 (Refer Slide Time: 39:46) 

 

 

So, in general, we can write the stress strain relations as { } [ ]{ }σ C ε=  and { } [ ]{ }ε σS= . 

Having understood the relationship between the engineering constants and the elastic constants 

we could obtain the elements of the compliance matrix in terms of engineering constants. The 

fact that the stiffness and compliance matrices are mutually invertible ie.[ ] [ ] 1C S −= , we can 

write the elements of the stiffness matrix in terms of the compliance matrix or vice versa.  

(Refer Slide Time: 41:08) 

80



 

 

 

Now that we know these elements of compliance matrix in terms of E1, E2, E3, 12ν , 23ν , 31ν , 

G12, G23, G31; if we put those, we get the elements of the stiffness matrix in terms of the 

engineering constants. We could write the elements of the stiffness matrix in terms of 

engineering constants by these expressions. So, therefore, we obtain the relationship between 

the engineering constants and the elements of the stiffness and the compliance matrices.  

 

Restrictions on Engineering Constants 

Now, we have nine independent engineering constants or elastic constants for orthotropic 

materials, there are some restrictions on the possible values of those. Before discussing those 

restrictions, let us just revisit the restrictions on elastic constants for isotropic material with 

which we are more conversant. We know that G and E have to be always positive. If we apply 

a tensile stress that will lead to a tensile strain and therefore, E must be positive. Similarly, G 

must also be positive.  

(Refer Slide Time: 42:43) 
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Now for an isotropic material, the relationship between G, E and ν  given by this Ε
2(1 ν)

G =
+

. 

For G to be positive and  E to be positive, ν 1> −  it can never be less than −1. 

Now, suppose an isotropic material which is actually subjected to 

hydrostatic stress (equal stress in all directions). For example if 

we put an object under water, it is subjected to hydrostatic stress 

and is equal to pressure p. If it is subjected to hydrostatic pressure 

like this, then the volumetric strain is given by p
K

where this K is the bulk 

modulus. Now K must be positive because if it is subjected to compression, its volume must 

decrease and if it is subjected to hydrostatic tension (say in the case of balloon), volume must 

increase. For K to be positive in this expression, Ε
3(1 2ν)

K =
−

, 1ν
2

<
 i.e. ν can never be 

more than 0.5. So, the restrictions on Poisson's ratio in an isotropic material is 11 ν
2

− < <
. So, 

if we determine the values of Young's modulus and Poisson's ratio for a particular isotropic 

material by conducting experiments in UTM and the Poisson’s ratio must be within this bound. 

If someone tells that the Poisson’s ratio for an isotropic material like steel is 0.8, we can 

immediately infer that there is some issue in the calculation or in the data acquisition because 

we know that for a material like steel, the Poisson's ratio cannot be more than 0.5. Therefore, 

this restriction gives us an additional check on the measured properties.  
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Similarly, there are restrictions on engineering constants of orthotropic materials. Again, the 

philosophy is same that means, all the diagonal elements of [C] and [S] must be positive. The 

argument is that if we apply a positive normal stress along a particular direction, that must lead 

to corresponding positive normal strain. If we apply tensile stress, it cannot lead to compression 

strain in that direction; therefore, they must be positive.  

(Refer Slide Time: 45:54) 

 

 

In order to have the positive diagonal elements the conditions are is that

1 2 3 12 23 32Ε ,Ε ,Ε ,G ,G ,G 0> . Similarly, if we write the stiffness matrix in terms of the 

engineering constants and for each diagonal element to be positive, gives rise to these 

conditions 

23 32 13 31 12 21

12 21 23 32 31 13 21 32 13

(1 ) 0, (1 ) 0 , (1 ) 0 and
1 2 0
ν ν ν ν ν ν

ν ν ν ν ν ν ν ν ν
− > − > − >
∆ = − − − − =

.  

 (Refer Slide Time: 46:55) 
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Considering 12 21(1 ) 0ν ν− > , means 
12 21 12

21

11ν ν ν
ν

< ⇒ <
; and we know that 

212 1 1 1 1 1
12 12 12

21 2 21 2 12 2 12 2 2

1 1 1ν ν ν ν
ν ν ν ν

   Ε Ε Ε Ε Ε
= ⇒ = ⇒ < ⇒ ≤ ⇒ <   Ε Ε Ε Ε Ε   

.  

 

Therefore, 12 21(1 ) 0ν ν− >  leads to relationship; 
1

12
2

ν Ε
<

Ε

. Similarly, by taking other 

conditions, we get the following relationships. (Refer Slide Time: 46:55) 

                               

That means, there are relationships between the nine engineering constants, which serve as 

restrictions on the values the engineering constants could take. 

These interdependencies are used to examine the consistencies of the experimentally 

determined engineering constants. Suppose we take an orthotropic material to the laboratory 

and try to find out those nine engineering constants. Once we get this for a large number of 

data, we must see that those values actually satisfy this interdependency to be consistent with 

the mathematical theory of elasticity.  If they do not satisfy, then there is something wrong. 

Again, one important thing is that; suppose, say for example, for an orthotropic material, 

suppose Young's modulus E1 is 180 GPa and Young's modulus E2 is 10 GPa (a typical example 
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for a graphite epoxy lamina), then the Poisson’s ratio determined must satisfy the following 

relations, 
1

12
2

Ε 1
Ε

ν < >
. 

Notice here that in isotropic elasticity, we know that the Poisson’s ratio cannot be 1, it cannot 

be greater than 0.5, but in the example above, it is possible in the case of orthotropic material. 

However, they have to be checked for satisfying the other conditions as well. So, knowing 

these constraints in the engineering constants for orthotropic materials, once they satisfy these 

data, the material properties obtained from the laboratory could be used for design and analysis 

structures with confidence.  

 

So, what we have learnt today is that, what are the engineering constants for orthotropic 

materials; there are 9 engineering constants corresponding to 9 elastic constants and we have 

also established the relationship between the engineering constants and the elastic constants; 

that is the elements of the compliance and the stiffness matrix. And finally, we also understood 

the existence of restrictions on the engineering constants for orthotropic materials and those 

restrictions are useful to check the consistency and accuracy of the experimentally observed 

data from the laboratory.  
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