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Hello and welcome to the second lecture of the 12th module. 

(Refer Slide Time: 00:41) 

 
So, in our last lecture we have discussed how to determine the transverse deflection of a 

laminate using classical lamination theory. In order to determine the transverse deflection, the 

transverse shear resultants were introduced in the classical lamination theory. We did however 

restrict our discussion to only symmetric and specially orthotropic laminate, and with the 

inherent assumptions in classical lamination theory. However, even though we have restricted 

our discussion to symmetric special orthotropic and rectangular laminated plate, the same 

approach could actually be used for other more general laminates.  

Now, laminated composite structures may also be subjected to axial compression and whenever 

there is an axial compression the slender structures actually experiences buckling. Therefore, 

it is important to understand the response of such laminated plates under axial compression and 

more importantly to determine the critical buckling load. In undergraduate strength of 

materials, column buckling has already been discussed. 
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When the axial compression load actually exceeds certain critical value which is called critical 

buckling load, the column goes to instability. Similarly, for a laminated composite plate, we 

need to actually determine what is the buckling load?  

In addition, laminated composite structures may also be subjected to vibration and therefore it 

is important to know the response of such structures to vibration. Because it is important to 

understand that when a laminated plate or for that matter, any component is subjected to 

vibrations. We always try to see that the forcing frequency is far away from the natural 

frequency otherwise resonance occurs. Therefore, we will restrict our discussions to I mean 

only to determination of natural frequency of laminated composite plates.  

 

In this lecture address these two issues viz. the buckling and free vibration of FRP laminates. 

Again, we shall restrict our discussions only to the buckling response and free vibration 

response of a simply supported specially orthotropic symmetric rectangular laminate since the 

objective here has been to understand basically different parameters and properties in a 

laminated composite plate influence the free vibration and buckling response of the laminate.  

 

(Refer Slide Time: 04:14) 

 
Therefore, to start with, let us first see the buckling of laminated plates in brief. We know when 

a slender column buckles it actually deforms in the lateral direction as it experiences bending. 

Therefore, a plate also, similarly buckles when the in-plane compressive force is so large that 
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the originally flat equilibrium state is no longer stable and the plate deflects into a non-flat 

configuration. Similarly considering a rectangular plate experiencing an axial compression the 

plate is initially flat. If the load is so large that after some time the transverse deformation 

becomes unstable. That means even if the load is constant it keeps on the transverse deflection 

keeps on increasing that is what is called instability.  

 

The difference between this the column, buckling and plate buckling is when a plate buckles 

the deformation transfers to the plane of the plate has two dimensional wavy nature with 

multiple sine waves (as shown in Fig.), the edges may have different boundary conditions like 

simply supported, clamped etc. Now, this could be actually represented by two dimensional 

multiple sin waves, as it is shown in the figure.  

 

That, of course, depends upon what is the actual load. Also, the load deformation behaviour of 

a plate is more complicated compared to that of a column. Again, we will restrict our 

discussions to the buckling response of a simply supported, specially orthotropic, symmetric 

rectangular laminate, subjected to uniform in-plane axial compression. 

 

A plate could be also a circular plate and the response will be different but we are restricting 

our discussions to only a rectangular plate. Also, we are considering a laminate which is 

spatially orthotropic. That means it is only 0/90 layers, meaning that there is no shear extension 

coupling and symmetric. That means there is no bending extension coupling. However, the 

approach that will be followed  could also be applied for a general laminate. 

 

(Refer Slide Time: 09:38) 
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Now, let us consider a laminate subjected to all the in-plane forces, Nx, Ny, Nxy , moments Mx, 

My, Mxy and transverse load. Now, considering a general laminate and we represent this by 

means of its mid plane, as done in classical dimension theory. Coordinates x, y and z are fixed 

at the mid surface it is subjected to all kinds of in-plane force and moment resultants and 

uniformly distributed transverse load.  

Now, considering a small element from this laminate with length, dx width dy, the forces are 

as shown in the Figure.  

 (Refer Slide Time: 11:17) 
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Now, under this load, the deformed configuration of the element is shown in Fig. Now, 

considering a section in the xz plane, at x it is actually experiencing Nx and at a distance of  dx, 

this is Nx + (∂Nx/∂x)dx. (Using Taylor’s series, only first term, continuous function) 

 

Similarly, considering yz plane, this is Ny and at a distance of dy this is Ny + (∂Ny/∂y)dy. 

Considering the xy plane suppose we look from top xy, for same the elemental length, dx, dy, 

this is Nxy incremented as Nxy + (∂Nxy/∂x)dx along x and  Nxy incremented as Nxy + 

(∂Nxy/∂y)dy along dy.  

So, what is important here is that out of plane component of in-plane forces as considered 

meaning now Nx is not along x. It is making certain angle with x axis. Similarly, Ny is not no 

more along y. It is making certain angle. What is that angle that we have shown that rotation is 

(∂w/∂x), (∂w/∂y). 

Therefore, the appropriate components of forces along x, y and z will have to be taken in 

equilibrium equations. We have used, for small θ, sin(θ) is θ and Cos(θ)=1 and the product 

terms like dx·dx  and dy·dy=0. 

 

 (Refer Slide Time: 15:59) 

 
 

Note that component of Nx, Ny and Nxy along the z (which were neglected in transverse 

deflection) are considered here. Considering Fz=0 and putting dx·dx  and dy·dy=0 we obtain 
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Eqn (1) and moment equilibrium about y- and x- axes gives Eqn(2) and Eqn(3). Using (2) and 

(3) in (1), we obtain (4).  

Now, using classical lamination theory we have the relationship between force and moment 

resultants with the mid surface strains and curvatures by so, called ABBD matrix of the 

laminate (5) expressing Nx, Ny, Nxy, Mx, My, Mxy in terms of the mid surface strains and 

curvatures. Again, using the strain displacement and curvature deflection relations (6) we 

obtain (7) as the relations between force/moment resultants and the displacements. 

 

(Refer Slide Time: 17:44) 

 
 

In equation (7), we could express Nx, Ny, Nxy, Mx, My, Mxy in terms of the displacement 

components. Note here that we have been using wo and w, same because in classical lamination 

theory, we have one of the assumptions was that w does not depend upon the the thickness, the 

z component of displacement, is independent of z, meaning that the z component of mid surface 

displacement and z component of displacement at any other, point along the thickness is same.  

So, putting (7) in (4) ie. putting Mx, My, Mxy in terms of the displacement in (4) we get equation 

(8).  

(Refer Slide Time: 19:54) 
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Note that equation (8) is actually obtained as a consequence of force equilibrium in the z 

directions but this is a coupled equation where uo, vo  are also there.  

Now, for a specially orthotropic and symmetric laminate, Bij=0 i.e. all the elements of bending 

extension coupling matrix [B] are 0 and since it is specially orthotropic, A16, A26, D16, D26, the 

shear extension and twisting bending coupling are also 0. Therefore, this equation (8) actually 

gets simplified to this equation (9).  

Now because we are actually dealing with the buckling of a plate, Nx is non-zero and other 

forces are all zero, that means the plate experiences only axial compression. 

Therefore, this is Nx = –N, Ny = Nxy = q(x,y) =0 (q(x,y) is uniformly distributed transverse 

load). Therefore we get this equation (9) from (8).  

 (Refer Slide Time: 22:01) 
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Eqn (9) is actually for a symmetric special orthopaedic rectangular laminate, subjected to Nx = 

–N. That means axial compression load. The governing differential equation is this equation 

number (9). Now, for a simply supported boundary conditions at the edges, we can solve this 

using double sine series already discussed in the lecture of transverse deflection. Therefore 

considering a simply supported boundary conditions at the edges, the solution is assumed of 

the form as (10) which satisfies this boundary conditions. 

 

Putting (10) in (9) that is using the double sine series we obtain this equation (11), where R is 

equal to ratio of length to the width of the plate, a/b is known as aspect ratio of the plate 

sometimes. 

 

Now, in this equation, (11), one of the solution is, of course, wmn = 0 but this is trivial. That 

means there is no deflection. Therefore, for non-trivial solution we obtain (12) whcih is the 

buckling load and note that it is actually a function of m and n the number of half sine wave 

along the x and y direction respectively. 

 

 

Therefore, if n = 1, this is the smallest buckling load and the least value corresponding to a 

particular a m can be determined knowing, D11, D12 and D22 and D66. The values of  D11, D12, 

D22, D66 could be determined knowing the stacking sequence of the laminate and the individual 

the reduced transform stiffness matrix of the constituent lamina. So for a laminate, knowing 
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D11, D12, D22, D66 and knowing R, the smallest buckling load corresponding to n = 1 and for 

different m could be obtained. Note that he smallest value of N for different m is, however, not 

very obvious.  

What is important here to note that the buckling load actually depends upon all the components 

of bending stiffness D11, D22, D12, D66. Therefore, depending upon the stacking sequence of 

the laminate, it will be different as the elements of [D] matrix actually depend not only on the 

in the properties of the constituent laminar but also their stacking sequence.  

(Refer Slide Time: 26:34) 

 
Now, the smallest buckling load is a function of the elements of [D] matrix, and of course, the 

plate dimension R, the aspect ratio. Now, suppose we have two laminates. One is all 0˚ layer 

we have total sixteen 0˚ layer ([0˚16]) and this is subjected to axial load and in other with 

identical dimension, identical thickness, identical material but the stacking sequence is 

different say, [0˚4/90˚4]S. Now, in which case, we expect the buckling load to be higher. 

 

That means from the design point of view, we always try to see that the buckling load is higher.  

Now, when a column buckles, naturally bending stiffness (EI) decides the buckling load for 

column buckling as the critical buckling load (for both ends pinned)  is  

𝜋𝜋2𝐸𝐸 𝐼𝐼
𝐿𝐿2

 

 

Now, for a given L, more is EI, that is the bending stiffness, more is the buckling load.  
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Therefore, we may be tempted to think that the [0˚16] will have higher buckling load because 

all are 0˚. But it is not so, because in the case of a laminated plate it is not only D11, it is also 

decided by D22, D12, D66. Therefore, we may try using this formula, in which case actually the 

buckling load will be higher. 

 

It is important to understand that for a plate of course because it is subjected to boundary 

conditions at the edge the buckling load is actually a function of all these stiffnesses D11, D12, 

D22, D66. Therefore, it is not very straightforward to tell that wherever D11 is high, the buckling 

load will be higher.  

 

We have restricted to rectangular, symmetric special orthotropic laminate. But the same 

principle could actually be applied to other types of laminates. But the equations will be more 

involved, especially when they are coupled. It is not very easy to solve those equations 

analytically but numerical methods could be used but the principle remains same.  

 

So, now next, we will consider the free vibration, basically transverse vibration of laminated 

plate.   
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Now, laminated composite structures are also subjected to vibrations. It is important to 

understand the response of such laminates under free and forced vibrations. Now, free vibration 

studies are important to determine the natural frequencies for such structures. So that these 

frequencies could be avoided during loading. That means whenever there is a force vibration, 

we ensure that the forcing frequency is far away from the natural frequency to avoid resonance. 

Therefore, it is important to design laminated composite structures in such a way that its natural 

frequencies are not near to the forcing frequencies. The discussion in this lecture is again 

restricted to free vibration of simply supported, rectangular laminated plate. Of course, 

symmetric and specially orthotropic.  

 

The objective here has been that what are the factors which actually influence the natural 

frequency and therefore in designing a laminate we must know how to design a laminate for a 

required range.   
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Again, we consider a rectangular eliminated plate with length a and width b and subjected to 

all generalized loading in-plane, force and moment resultants as well as uniformly distributed 

transverse load which we have also considered for transverse deflection. The laminate is 

represented by the mid plane as shown and considering a very small element from this laminate, 

with length dx and width  dy the in-plane forces moments and transverse shear stress is 

resultants are shown in Fig. 

 

(Refer Slide Time: 32:34) 
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Considering the intertia force and equilibrium along x-and y- directions we obtain equations 

(1) and (2). Again, the smaller terms, dx·dx, dy·dy (product terms) are set to 0. Note that ρ is 

the density and ρ₀ is the mass per unit area. Also remember that this force, is actually force per 

unit length. Therefore, it is ρ₀dx dy is the mass per unit length. Acceleration in the in the in the 

x and y directions are 𝜕𝜕
2𝑢𝑢∘
𝜕𝜕𝑡𝑡2

 𝑎𝑎𝑎𝑎𝑎𝑎 𝜕𝜕
2𝑣𝑣∘
𝜕𝜕𝑡𝑡2

.  

 

(Refer Slide Time: 34:39) 

 
Similarly when we consider the force equilibrium along z- we get equation (3). So, we get 

equations (1), (2) and (3) from the equilibrium along x, y and z.  

 

(Refer Slide Time: 35:16) 
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Considering moment equilibrium along x axis, and moment equilibrium about y axis, we get 

equations (4) and (5) respectively. 

So, using this (4) and (5) in equation number (3) we get this equation (6). (Refer slide 16). 

Now, from classical lamination theory, we have the force and moment result and expressed in 

terms of mid surface strains and curvatures as in equation (7) and (8). 
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(Refer Slide Time: 35:35) 

 
Then using this (8) along with the strain displacement and curvature displacement relationship 

(9), we obtain (10). 

 

(Refer Slide Time: 36:24) 

 
Therefore, in (10), we can get the force and moment resultants in terms of the displacements, 

mid surface displacement uo, vo and wo . Again note here that w = w₀, because w does not 

 CLT 
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depend upon the z direction. The mid surface displacement is same as the displacement in any 

other point along the thickness. And then putting (10) ie. Nx, Ny, Nxy, Mx, My, Mxy in equation 

number (1) we get (11). (Refer slide 14).  

 

(Refer Slide Time: 37:21) 

 
Similarly, putting (10) in (2), we get equation number (12). Then (10) in (6) get equation (13). 

 

So, you could see that equation number (11), (12) and (13) actually represent coupled 

differential equations with u v w as unknown and they are coupled.  
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(Refer Slide Time: 38:11) 

 
Now, for a specially orthotropic, symmetric laminate, this we can actually uncouple them 

because all these Bij terms are 0. Also, for a special orthotropic laminate this A16, A26, D12, 

D16, D26 are 0. For free vibration there is no load, so, q(x, y, t) is also 0 and putting these in 

(13) for transverse vibration, we obtain this equation number (14). Now, considering simply 

supported boundary conditions at all the edges, w = 0, as well as moment = 0. Like along x-

axis w = 0 and Mx = 0, along y, w = 0 and My = 0. Now because this equation is actually in 

terms of w as unknown therefore, these force boundary conditions like Mx = 0, are also 

expressed in terms of displacement boundary conditions using {M}=[D]{K} from the ABBD 

matrix (see the lower right portion in slide 19). We can uncouple them. Therefore, we can 

write: 

Mx = D11Kx + D12Ky ; My = D12Kx + D22 Ky. 

D16 is 0 because we have considered specially orthotropic and 

and putting 𝐾𝐾𝑥𝑥 = −𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

 , 𝐾𝐾𝑦𝑦 = −𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2

 and we get 

2 2

11 122 2

2 2

12 222 2

x

y

w wM D D
x y
w wM D D

x y

∂ ∂
= − −

∂ ∂

∂ ∂
= − −

∂ ∂  

 (Refer Slide Time: 40:21) 
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The four boundary conditions are as in (i) – (iv). Now, for free vibration, it is being harmonic 

in time, the solution with frequency,  ω (omega) is assumed to be of the form  as in equation 

number (15) where this w(x, y) could be spatial. Distribution of w(x, y) could be actually taken 

as a double sine series as written in equation number (16) which actually satisfies this simply 

supported boundary conditions.  

 

(Refer Slide Time: 40:50) 

 
And when we put (15) and (16) in (14), we get equation (17) and (18). So, the various natural 

frequencies, ω, corresponding to different mode shapes basically corresponding to different 

values of m and n, (m and n are the number of half sin wave along x and y) and accordingly 
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different shapes.  Note that here again, natural frequency, ω is a function of D11, D12, D66 and 

D22. So, depending upon the values of this elements of [D] matrix, they will be different.  

 

(Refer Slide Time: 41:42) 

 
So, fundamental natural frequency of the lowest frequency is obtained when m = 1 and n = 1 

and it is for m = 1 and n = 1. This means that the first natural frequency will be corresponding 

to one half sine wave in the x direction and one half sine wave in the y direction.  

 

Now, this is for a rectangular plate simply supported at all edges symmetric, specially 

orthotropic laminate. Similar approach could be also applied to for other more general 

laminated plates. Maybe the equations will be more involved.  

Here the objective here has been to understand the factors which actually affect the free 

vibration response.  We could see that it is decided by the dimensions a and b and in addition, 

more importantly, the frequency will be decided by the stiffness and the mass. So, ρ is the 

density and the stiffness here for this orthotropic plate is actually all these components: D11, 

D12, D66 and D22. So, we may actually compute the fundamental natural frequencies again two 

different laminates: one [0˚20] having 20 layers and another is [0˚/90˚]5S (symmetric laminate) 

to appreciate how the natural frequencies actually vary with stacking sequence. You may take 

the properties for graphite epoxy to find out what is [D] using classical lamination theory and 

ply thickness as 0.1 mm.  
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In today’s lecture we understood what are the factors actually influence in in deciding the 

buckling load as well as in deciding the natural frequencies of laminated plates. Therefore, in 

design if we have to design a particular component with a particular requirement of buckling 

load and the then we can have a first-hand idea that how the stacking sequence should be. 

 

Similarly, if we have a requirement of natural frequency for a particular, laminate. Then we 

understand that what are the factors which actually influence and accordingly, we may decide 

the stacking sequence of that particular laminate.  
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