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Lecture – 31 

Transverse Deflection 

In today’s lecture, we will discuss the transverse deflection of laminate. 
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Transverse deflection of laminate is obtained using the classical lamination theory and in 

conjunction with the equilibrium equations. In classical lamination theory, we considered a 

laminate where the stresses in each layer are actually represented by the force and moment 

resultants acting in the mid plane of the laminate. However, the transverse shear stresses were 

not considered. But in order to analyze the transverse deflection, the transverse shear stress 

resultant also needs to be considered. 

We will consider small transverse deflection and because it is small, the out of plane 

component of the in-plane force resultants are neglected. Considering an infinitely small 

element from this laminated plate as shown in the Fig. represented by its mid surface, the 

force resultants (Nx, Ny, Nxy) and moment resultants (Mx, My, Mxy) are as shown in the Fig. 

(Refer Slide Time: 03:58) 

466



 
Because we will be analyzing the transverse deflection, therefore, in addition, we have also 

considered a transverse distributed load qxy. And the transverse shear stress resultant Qx and 

Qy.  So, considering a small element whose this length is dx  and width is dy, we could write 

the forces at the two edges as Nx (x=0) and at a distance of dx from this the force is 

x
x

NN dx
x

∂
+

∂
(Taylor's theorem). We could write Ny (at y=0) is the force resultant and at a 

distance of dy, the force resultant is y
y

N
N dy

y
∂

+
∂

.  

Similarly, the in-plane shear resultants are Nxy and this xy
xy

N
N dx

x
∂

+
∂

 at a distance of dx. 

In the same way the transverse shear stress resultant it is Qx (x=0) and x
x

QQ dx
x

∂
+

∂
 at a 

distance of dx. Similarly, this Qy (y=0)  and at a distance of dy it is y
y

Q
Q dy

y
∂

+
∂

.  
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Now considering the force as well as moment equilibrium.  

First, we consider the force equilibrium along x- direction, 0xF =∑  and it results in 

0xyx NN
x y

∂∂
+ =

∂ ∂
.  
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Similarly, considering the force equilibrium along y- direction, 0yF =∑  results in  

0xy yN N
x y

∂ ∂
+ =

∂ ∂
 

Considering the force equilibrium along z- direction, Qx (x=0) and Qy (y=0) are along 

negative z and x
x

QQ dx
x

∂
+

∂
(at x+dx) ands y

y

Q
Q dy

y
∂

+
∂

 (at y+dy) are along positive z. Note 

that, all this force and moment resultants are actually per unit length. Therefore, in force 

equilibrium, we must actually represent the force, multiplying it by the length. Also, q(x,y) is 

the distributed load and multiplied by the area q(x,y)dxdy is the force. So,  

0 ( , y) 0

( , ) 0 (6)

yx
z x y x y

yx

QQF Q dx dy Q dy dx Q dy Q dx q x dxdy
x y

QQ q x y
x y

∂ ∂ = ⇒ + + + − − + =  ∂ ∂   

∂∂
⇒ + + =

∂ ∂

∑
 

It is important that in force equilibrium, it must be total force and not the force per unit 

length. So, we get three equations each from equilibrium along x, y and z, direction force 

equilibrium. 
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Now, considering the moment equilibrium about x axis  

0

( , ) 0
2 2 2

(7)

x axis

y xy y x
y xy y xy y x x

xy y
y

M

M M Q Q dy dy dyM dx M dy M dy dx M dx dy Q dy dxdy Q dx dy Q dy q x y dydx
y x y x

M M
Q

x y

− =

∂ ∂ ∂      ∂ ⇒ + − + − + + + + + − + =       ∂ ∂ ∂ ∂      

∂ ∂
⇒ + =

∂ ∂

∑  

Now, considering the moment equilibrium about y axis  
0

( , ) 0
2 2 2

(8)

y axis

xy yx x
x xy x xy x y y

xyx
x

M

M QM Q dx dx dxM dy M dx M dx dy M dy dx Q dx dxdy Q dy dx Q dx q x y dydx
x y x y

MM Q
x y

− =

∂ ∂   ∂ ∂   ⇒ − − + + + + − + + + + + =      ∂ ∂ ∂ ∂      

∂∂
⇒ + =

∂ ∂

∑  

Important to  note that  Mx and My  are moments per unit length and in moment equilibrium, 

also, we must write the total moment and not the moment per unit length. Putting (7) and (8) 

in (6) leads to  

 
2 22

2 22 ( , ) 0 (9)xy yx M MM q x y
x x y y

∂ ∂∂
+ + + =

∂ ∂ ∂ ∂
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Therefore, (4), (5) and (9 ) are the equations of equilibrium in terms of force and moment 

resultants. Now, using the force deformation relation from classical lamination theory, where 

the force resultant and moment resultants are related to the mid-surface strains and curvatures 

by ABBD matrix as  

11 12 16 11 12 16

12 22 26 12 22 26

13 23 66 13 23 66

11 12 16 11 12 16

12 22 26 12 22 26

13 23 66 13 23 66

x

y

xy

x

y

xy

A A A B B BN
A A A B B BN
A A A B B BN

M B B B D D D
M B B B D D D
M B B B D D D

     
     
     
          = 
    
    
    
          

o
x
o
y
o
xy

x

y

xy

K
K
K

ε
ε
γ

 
 
 
    
  
  
  
   

     

and expanding this, we get   

11 12 16 11 12 16

12 22 26 12 22 26

16 26 66 16 26 66

11 12 16 11 12 16

12 22 26 1

o o o
x x y xy x y xy

o o o
y x y xy x y xy

o o o
xy x y xy x y xy

o o o
x x y xy x y xy

o o o
y x y xy

N A A A B K B K B K

N A A A B K B K B K

N A A A B K B K B K

M B B B D K D K D K

M B B B D

ε ε γ

ε ε γ

ε ε γ

ε ε γ

ε ε γ

= + + + + +

= + + + + +

= + + + + +

= + + + + +

= + + + 2 22 26

16 26 66 16 26 66

x y xy

o o o
xy x y xy x y xy

K D K D K

M B B B D K D K D Kε ε γ

+ +

= + + + + +

(10)      

So, using (10), we can write these equations of equilibrium in terms of strains as 
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Using the strain displacement and the curvature displacement relations as 

2

2

2

2

2

2

o oo
xx

o o o
y y

o o o o
xy xy

wu K
xx

v wK
y y

u v wK
y x x y

ε

ε

γ

∂∂ = −=
∂∂

∂ ∂
= = −
∂ ∂

∂ ∂ ∂= + = −
∂ ∂ ∂ ∂

 (11)  

And putting (11) in (10), we can write this force and moment resultants in terms of and u0, v0 

and w the mid-surface displacements as 
2 2 2

11 12 16 11 12 162 2

2 2 2

12 22 26 12 22 262 2

2

16 26 66 16 2

2

 2

o o o o
x

o o o o
y

o o o o
xy

u v u v w w wN A A A B B B
x y y x x y x y

u v u v w w wN A A A B B B
x y y x x y x y

u v u v wN A A A B
x y y x x

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂
= + + + − − ∂ ∂ ∂ ∂ ∂ 

2 2

26 662

2 2 2

11 12 16 11 12 162 2

2 2 2

12 22 26 12 22 262 2

16 26 66

2

2

2D

o o o o
x

o o o o
y

o o o
xy

w wB B
y x y

u v u v w w wM B B B D D D
x y y x x y x y

u v u v w w wM B B B D D
x y y x x y x y

u v u vM B B B
x y y

∂ ∂
−

∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂

2 2 2

16 26 662 2
2Do w w wD D

x x y x y
  ∂ ∂ ∂

− − − ∂ ∂ ∂ ∂ ∂ 

  (12) 
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Using these relations from (12) in (4), (5) and (9), we get (13), (14) and(15) respectively as 

( ) ( )

( )

2 2 2 2 2 2 3 3 3 3

11 16 66 16 12 66 26 11 16 12 66 262 2 2 2 3 2 2 3

2 2 2 2 2 2

16 12 66 26 66 26 222 2 2 2

2 3 2 0 (13)

2

o o o o o o

o o o o o o

u u u u v v w w w wA A A A A A A B B B B B
x x y y x x y y x x y x y y

u u u v v vA A A A A A A
x x y y x x y y

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + − − − + − =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
+ + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
( )

( )

( )

3 3 3 3

16 12 66 26 223 2 2 3

3 34 4 4 4 4

11 16 12 66 26 22 11 164 3 2 2 3 4 3 2

3 3 3

12 66 26 162 3

2 3 0 (14)

4 2 2 4 3

                    2

o o

o o

w w w wB B B B B
x x y x y y

u uw w w w wD D D D D D B B
x x y x y x y y x x y

u uB B B B
x y y

∂ ∂ ∂ ∂
− − + − − =

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂ ∂ ∂ ∂
+ + + + + − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
− + − −

∂ ∂ ∂
( )

3 3 3

12 66 26 223 2 2 3

(15)
2 3 ( , )o o o ov v v vB B B B q x y

x x y x y y
∂ ∂ ∂

− + − − =
∂ ∂ ∂ ∂ ∂ ∂

 

So, they are coupled in the sense that u0, v0 and w are coupled and solving these three 

equations with appropriate boundary conditions, we could obtain, u0, v0 and w. However, it is 
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not that easy to solve these coupled equations analytically. Many a times, numerical methods 

are used. 

So, once we have u0, v0 and w, using strain-displacement relationship and the curvature 

displacement relationship, we can determine the mid-surface strains and curvatures as 

2
0

2

2
0

2

0

0
2

0

0 0

 and 

2

x x

y y

xy xy

K
K

u w
xx

v w
y y

u v w
y x x y

K

ε
ε
γ

   
 



 = =   
 



 


   ∂∂ −   ∂∂  
  ∂ ∂ −   ∂ ∂   

   ∂ ∂


 ∂+ −  
∂ ∂ ∂ ∂



 



 

 (16) 

Therefore, the strains (in global x-y) in any ply or lamina (kth  ply, k=1,2,3, …,n) could be 

determined as 

 

0

0

0

x x x

y y k y

xy xy xyk

K
Z K

K

ε ε
ε ε
γ γ

     
     = +     
     
     

 (17)  

Now, knowing the global strain in each ply, we could determine the global stresses in the kth  

ply (k=1,2,3, …,n) using 

x x

y yk

xy xyk k

Q
σ ε
σ ε
τ γ

   
    =    
   
   

(18) 

So, we could obtain the global stresses in each ply and from these global stresses (x-y) we 

could obtain the stresses in material axis (1-2) in the kth  ply using the stress transformation as 

 [ ]
1

2

12

x

yk

xyk k

T
σ σ
σ σ
τ τ

   
   =   
   
   

(19).  

Knowing the stresses in each ply in the material axis, we can apply appropriate failure theory 

to assess the failure or safety of each lamina. Here in addition to u0 and v0 which we could 

determine in the case of classical lamination theory, we could also determine w the transverse 

deflection. The whole procedure discussed here is for small transverse deformation. 
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However, considering a more simplified situation of a symmetric laminate ( 0ijB = ), these 

three equations will be uncoupled. In addition if we consider a specially orthotropic laminate 

which has only 00 and 900 lamina, there is no lamina level shear extension coupling. 

and 16 26 16 26 0A A D D= = = = . Therefore, (15) reduces to the equation (20) which is the equation 

representing the transverse displacement as the unknown as 

( )
4 4 4

11 12 66 224 2 2 42 2 ( , )w w wD D D D q x y
x x y y

∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
 (20) 

and solving (20) with appropriate boundary conditions, we could determine the transverse 

displacement w.  

(Refer Slide Time: 32:15) 
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Considering a rectangular plate of dimension (a × b), represented by the middle surface only 

(as shown in Fig.) and considering all the edges are simply supported, the boundary 

conditions are 

For a rectangular plate of dimension :  
along 0 and ,  0, 0

Simply supported BC
along y 0 and y ,  0, 0

x

y

a b
x x a w M

b w M

×

= = = = 
= = = = 

  

In the case of symmetric laminate we could use this decoupled moment curvature relationship 

11 12

22

66

0
0

x x

y y

xy xy

M D D K
M D K
M D K

    
    =    
        

 

And write the boundary conditions in terms of displacements as 
2 2

11 12 11 122 2
0

2 2

12 22 12 222 2
0

0

0

x x y
x
x a

y x y
y
y b

w wM D K D K D D
x y

w wM D K D K D D
x y

=
=

=
=

∂ ∂
= + = − − =

∂ ∂

∂ ∂
= + = − − =

∂ ∂

(21) 

Using these boundary conditions, we could solve this equation to find out what is the 

transverse deflection w.  
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There are different methods for solution of this equation. However, double Fourier sine series 

is one of the simple methods of solving this, where the transverse deflection is represented as 

a double Fourier sine series as 
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1 1

( , ) sin sinmn
m n

m x n yw x y W
a b
π π∞ ∞

= =

=∑∑  (22)  

which automatically satisfies the displacement boundary conditions (check that x = 0 and x = 

a and y = 0 and y = b, w = 0).  

Similarly, the distributed load is also represented by a double Fourier sine series as 

1 1

( , ) sin sinmn
m n

m x n yq x y Q
a b
π π∞ ∞

= =

=∑∑  (23) 

where this Qmn could be shown to be evaluated by using this integral 

0 0

4 ( , )sin sin
a b

mn
m x n yQ q x y dxdy

ab a b
π π

= ∫ ∫  (24) 

We will not go into the derivation of this. This is done in the theory of plates. But this is how 

we can actually solve this. We can write this displacement as a double Fourier sine series, as 

well as the distributed load as double Fourier sine series where Wmn and Qmn are the 

coefficients of the displacement series and the load series.  
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Now, putting (22), (23) and (24) in (20), we get  

( )
4 2 2 4

11 12 66 22
1 1

2 2 sin sin 0 (25)mn mn
m n

m m n n m x n yW D D D D Q
a a b b a b
π π π π π π∞ ∞

= =

          − + + + + =         
           

∑∑
Now, because (25) is true for all values of 0  and 0x a y b≤ ≤ ≤ ≤  

4 2 2 4

11 12 66 222( 2 ) 0mn mn
m m n nW D D D D Q
a a b b
π π π π          ⇒ − + + + + =         

           
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mn
mn

mn

QW
d

⇒ =  (26) 

4 2 2 4

11 12 66 22

4
4 2 2 2 4 4

11 12 66 224

where

2( 2 )

2( 2 )

where

plate aspect ratio

mn

mn

m m n nd D D D D
a a b b

d D m D D m n R D n R
a

aR
b

π π π π

π

       = + + +       
       

 = + + + 

= →

 (27) 
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So, knowing dmn (from (27)) and Qmn (from integral shown in (24)), we can determine the 

transverse deflection of a laminate. But this is for small transverse deflection. 
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