Mechanics of Fiber Reinforced Polymer Composite Structures
Prof. Debabrata Chakraborty
Department of Mechanical Engineering
Indian Institute of Technology — Guwahati

Lecture - 31
Transverse Deflection
In today’s lecture, we will discuss the transverse deflection of laminate.
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Transverse deflection of laminate is obtained using the classical lamination theory and in
conjunction with the equilibrium equations. In classical lamination theory, we considered a
laminate where the stresses in each layer are actually represented by the force and moment
resultants acting in the mid plane of the laminate. However, the transverse shear stresses were
not considered. But in order to analyze the transverse deflection, the transverse shear stress
resultant also needs to be considered.

We will consider small transverse deflection and because it is small, the out of plane
component of the in-plane force resultants are neglected. Considering an infinitely small
element from this laminated plate as shown in the Fig. represented by its mid surface, the
force resultants (Nx, Ny, Nxy) and moment resultants (Mx, My, Mxy) are as shown in the Fig.
(Refer Slide Time: 03:58)

466



Transverse Deflection of Laminate

- 4 Ik = fil
Transwise Shesr shea ';“‘l . e b
g LG & +

Transrse ishibubd food gy a7 i 02k

Because we will be analyzing the transverse deflection, therefore, in addition, we have also
considered a transverse distributed load gxy. And the transverse shear stress resultant Qx and
Qy. So, considering a small element whose this length is dx and width is dy, we could write
the forces at the two edges as Nx (x=0) and at a distance of dx from this the force is

N . .
N, + aa X dx (Taylor's theorem). We could write Ny (at y=0) is the force resultant and at a
X

y

0
distance of dy, the force resultantis N + dy .

_ . : ON, :
Similarly, the in-plane shear resultants are Nxy and this N + 3 Y dx at a distance of dx.
X

0Q,

In the same way the transverse shear stress resultant it is Qx (x=0) and Q, + 3 dx at a
X

0
distance of dx. Similarly, this Qy (y=0) and at a distance of dy itis Q, + a?/y dy.
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Now considering the force as well as moment equilibrium.

First, we consider the force equilibrium along x- direction, Z F, =0 and it results in

oN
N, +—2=0.
OX oy

(Refer Slide Time: 10:37)
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Similarly, considering the force equilibrium along y- direction, Z F, =0 results in

N, N, .
+ —=
OX oy

Considering the force equilibrium along z- direction, Qx (x=0) and Qy (y=0) are along

0Q,

negative z and Q, +
OX

0
dx (at x+dx) ands Q, + a?/y dy (at y+dy) are along positive z. Note

that, all this force and moment resultants are actually per unit length. Therefore, in force
equilibrium, we must actually represent the force, multiplying it by the length. Also, q(x,y) is

the distributed load and multiplied by the area q(x,y)dxdy is the force. So,

D> F=0= (QX + 88?: dxj dy JF(Qy + aa?/y dyj dx —Q,dy —Q,dx+q(X, y)dxdy =0

= a—QXJra—Qy+q(x, y)=0| (6)

ox oy

It is important that in force equilibrium, it must be total force and not the force per unit

length. So, we get three equations each from equilibrium along x, y and z, direction force
equilibrium.
(Refer Slide Time: 12:57)
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Now, considering the moment equilibrium about x axis

z M, =0

=M dx+ dey—(My+

6(';/|yy dyjdx—[Mxy +%dx]dy+(Qy + aa?/y dyjdxder(Qx + aanx dxjdyd?y—Qxdyd—zy+q(x, y)dydxd—zy =0

oM oM
=== @
ox oy y

Now, considering the moment equilibrium about y axis

ZMyfaxiSZO
oM oM oQ 0Q dx dx dx
M dy-M _dx+| M +—=dx |dy+| M _+—2dy |dx— +—=xdx |dxdy + +—2Ldy [dx—+Q, dx—+q(X, y)dydx— =0
=>-Mdy-M, [ F™ jy[ ayy] [Qx o j y[Qy ayy] 2Qy 2q(y)y >
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Important to note that Mx and My are moments per unit length and in moment equilibrium,
also, we must write the total moment and not the moment per unit length. Putting (7) and (8)
in (6) leads to
2 2
8;)I1A2X+258)|(\/|a;y +aa)'\//2|y+q(x, y)=0 9)
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Therefore, (4), (5) and (9 ) are the equations of equilibrium in terms of force and moment
resultants. Now, using the force deformation relation from classical lamination theory, where
the force resultant and moment resultants are related to the mid-surface strains and curvatures
by ABBD matrix as

N M [ A11 AiZ A16 i Bn BlZ BlG 1] & f
N y A, Ay Ay B, B, By 3 3
N w | Ay Ay As L By By By 1117 )?y
M, B, By, By [ Dy, D, D Ky
M, B, By By D, D, Dy Ky
M Xy B Bi; By B | |Dis Dy D | i Ky

and expanding this, we get

Nx = Allg: + Aizg; + Aiey:y + Blle + B12|<y + BlGny

Ny = Aizgf + Azzgj + Azeyfy + BlZ Kx + BzzKy + BZBny

ny = A168: + AZG(C"; + A%Gy:y + BlGKx + BZGKy + BGGny (10)
Mx = Bng: + BIZE;) + BlG]/:y + D11Kx + DlZKy + D16 ny

M, =B,¢&, + B¢, + By, + DK, +D, K, +D,K,

M B, + Byé, + By, + DK, + D, K, + DK,

xy: 267y

So, using (10), we can write these equations of equilibrium in terms of strains as
(Refer Slide Time: 18:18)
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Using the strain displacement and the curvature displacement relations as

ou o*w
o _ 0 K - _ 0
“ 7o NS
2
g;’ = (Z\;’ K,=- %y\’\zlo (11)
ou ov 2
}/:y=—0+—0 Kx :_28 Wo
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And putting (11) in (10), we can write this force and moment resultants in terms of and uo, vo
and w the mid-surface displacements as

2 2 2
Nx:Auauo-i'Alz 8V0+A16 auo"‘% _Bnavzv_Blzavzv_ZBle ow
OX oy oy OX OX oy OXoy
N :AQ%-"Azz 8V0+A26 auo+avo - 12a_vzv_Bzza_vzv_ZBze8—W
! oX oy oy  oX oX oy OX0y
oV

ou, ; ou, oV, o’w o’w o’w
ny = AG + Aze + A\se + - BlB PR st 7 2866
OX oy OX oX oy oxoy

au, ; ou, ov, o'w o'w o'w
Mx:Bll_+BlZ +BlG + _Dll_z_Dlz_z_ZDlG—
OX oy OX oy oxoy

ov

2 2 2
M 2812%_"822_0'{_826 uo+6vo _Dlza_vzv_Dzza_Vzv_ZDzea—W
! OX oy oX oy oxoy

2 2 2
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(12)

2
R
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Using these relations from (12) in (4), (5) and (9), we get (13), (14) and(15) respectively as

olu, oV, ov o*w 0w 0w o*w
AA ALG z (A2+’%6) Aze 207B11 3 16#7(8124»2865) 2782673:0(13)

ox’ 6xay Oxoy oy OX ox“oy oxoy oy

ou o’u ou 62 ov o*'w o*'w o*'w o°w
A687;+(A2+Aaa)axa;+Aze ay20+p\s Azs axay Azz ayzo_Blﬁy_(Blz+2866)m_382667ay2_822$:0(14)

4 4 4 4, 4 3, 3,

D, % 4p, W 15D, +2D,)- 2" 44p, OV ,p IW g Il g U

X ox’oy oxtoy oxoy® oy ox® ox’oy 15)

ou, o‘u ov ov ov ov
(B +2B, ) - °—B °—(Bu+2866) ——-3B *—B ;’:q(x,y)

xayz 26 8y3 ~ D axg ox ay 26 axay 22 ay
So, they are coupled in the sense that uo, vo and w are coupled and solving these three

equations with appropriate boundary conditions, we could obtain, uo, vo and w. However, it is
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not that easy to solve these coupled equations analytically. Many a times, numerical methods
are used.
So, once we have uo, vo and w, using strain-displacement relationship and the curvature

displacement relationship, we can determine the mid-surface strains and curvatures as

ou, o*w
. T A2
A <] | S
2= 2o land {K, =] -2 1 (16)
oy oy
Vx K
Ty, Yy T 0w
oy OX oxoy

Therefore, the strains (in global x-y) in any ply or lamina (k™ ply, k=1,2,3, ...,n) could be

determined as

gx 8)? KX

g1 =16 +Z, K, (A7)
0

7xy K }/Xy KXV

Now, knowing the global strain in each ply, we could determine the global stresses in the k™

ply (k=1,2,3, ...,n) using

O-X gX
o, =[Q] {& 1 (18)
z-><y K 7xy K

So, we could obtain the global stresses in each ply and from these global stresses (x-y) we
could obtain the stresses in material axis (1-2) in the k™ ply using the stress transformation as

O-l O-x
o, = [T ]k o, ¢ (19).
Z-12 K Z-xy K

Knowing the stresses in each ply in the material axis, we can apply appropriate failure theory
to assess the failure or safety of each lamina. Here in addition to uo and vo which we could
determine in the case of classical lamination theory, we could also determine w the transverse
deflection. The whole procedure discussed here is for small transverse deformation.

(Refer Slide Time: 29:54)
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However, considering a more simplified situation of a symmetric laminate (B; =0), these

three equations will be uncoupled. In addition if we consider a specially orthotropic laminate
which has only 0° and 90° lamina, there is no lamina level shear extension coupling.

and A, = A, =D, = D,, =0. Therefore, (15) reduces to the equation (20) which is the equation
representing the transverse displacement as the unknown as

o'w o'w
8x26y2 + Dy, oy =q(x,y) (20)

and solving (20) with appropriate boundary conditions, we could determine the transverse

o
ox*

D, +2(D,, +2Dg )

displacement w.
(Refer Slide Time: 32:15)
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Considering a rectangular plate of dimension (a x b), represented by the middle surface only

(as shown in Fig.) and considering all the edges are simply supported, the boundary
conditions are

For a rectangular plate of dimension axb:
alongx=0andx=a, w=0,M, =0

Simpl ted BC
alongy=0andy=h, W=O,My :O} Imply supporte

In the case of symmetric laminate we could use this decoupled moment curvature relationship
M X Dll D12 O K
M, += D, 0 |iK
M D | | K

X
y

Xy

And write the boundary conditions in terms of displacements as

o'w o'w
Mx:Dlle+D12Ky:_D11¥_ 12WXO:0

o'w o'w )
My:D12Kx+D22Ky:_D12y_ zzW g:O

Using these boundary conditions, we could solve this equation to find out what is the
transverse deflection w.

(Refer Slide Time: 36:01)
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The deflection is taken as

wix, \']:}_"le" \:llmwlllgl - @
u - d y

The load is represented as

z . MIX . my
r;:.r._rl:ZZy sm—:smT - @}
= !

where

4 . MTX . HTY \
= —}’qu X, ))sin " sin '—-‘—ai\u_ﬁ' v (@)

= aby! a

There are different methods for solution of this equation. However, double Fourier sine series

is one of the simple methods of solving this, where the transverse deflection is represented as
a double Fourier sine series as
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w(X,y) = ZZW sstm nzy (22)

m=1 n=1
which automatically satisfies the displacement boundary conditions (check that x =0 and x =
aandy=0andy=b,w=0).
Similarly, the distributed load is also represented by a double Fourier sine series as
mzXx

q(x,y) = ZZansm—sm n”y (23)

m=1 n=1

where this Qmn could be shown to be evaluated by using this integral

4ab y
= X, sm—sm dxdy (24
Qu abl!q( y) =iy (24)

We will not go into the derivation of this. This is done in the theory of plates. But this is how
we can actually solve this. We can write this displacement as a double Fourier sine series, as
well as the distributed load as double Fourier sine series where Wmn and Qmn are the
coefficients of the displacement series and the load series.
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Now, putting (22), (23) and (24) in (20), we get

3| mz )’ mz)'(nz), o () in X i Y _
ZZ{ Wmn{Dn( " j +2(D12+2D66)( j ( bj +D22( » ) }+an]sm - Sin— 0 (25)

m=1 n=1 a

Now, because (25) is true for all values of 0<x<aand 0<y<b

=N {—Wmn {DM (ﬂj +2(D,, +2D,,) (%jz (”_”T +D,, (”_”T} + an] =0
a a b b
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—lw, =Sm| (26)

4 2 2 4
mrz mrz Nz 14
dmn :Dll( a j +2(D12+2D66)( a j (Tj +D22(TJ
p
d,. =?[Dllm4 +2(Dy, + 2D, )m’n’R* + D,,n*R* | 27)

where

R= % — plate aspect ratio

(Refer Slide Time: 38:21)
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where
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a }

w(x,y)= EZ”' sin

So, knowing dmn (from (27)) and Qmn (from integral shown in (24)), we can determine the
transverse deflection of a laminate. But this is for small transverse deflection.
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