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Module - 2
Review of Elasticity
Lecture - 03
Anisotropic Elasticity

Welcome to the second module of the course “Mechanics of Fiber Reinforced Composite
Structures”. This module is basically on review of elasticity and there will be two lectures in
this module.

(Refer Slide Time: 00:52)

FOCUS of Module 2 (Lectures 1 and 2)
* Review of 3D Elasticity
* Generalized Hooke’s Law
* Anisotropic Elasticity
* Constitutive Relations
* Planes of material property symmetry
* Triclinic, Monoclinic, Orthotropic and Isotropic Materials

* Engineering constants for Orthotropic materials

First, generalized Hooke’s law in 3D elasticity will be discussed followed by anisotropic
elasticity. Under anisotropic elasticity, starting with constitutive relations for anisotropic
materials, different types of materials like triclinic, monoclinic, orthotropic and isotropic with
reference to the existence of planes of material property symmetry will be discussed. This will
be followed by a detailed understanding of the engineering constants for orthotropic materials.
Therefore, before proceeding, to the review of 3D elasticity, a quick recapitulation of what all
have been discussed in the last module may useful to maintain the flow of the lectures.
(Refer Slide Time: 01:28)
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Recap of Last Module

* Discussed Composite Materials in general and FRP composites in particular
* Discussed in details the basic constituents of FRP composites

» ie. FIBERS and MATRIX

* LAMINA (heterogeneous and anisotropic) and LAMINATE

* Macromechanics and Micromechanics of Lamina

* Macromechanics of Laminate

* Failure analysis of Laminates

* Mechanics (micro and macro) of Lamina is prerequisite to understand

* Mechanics of Laminate i
o i
* Mechanics of FRP composite structures i i
P > 4
» LAMINA is Anisotropic - Anisotropic Elasticity [550000000000 | i

Recapitulation and Objective

In the last module, definition of composites with different types and classifications of
composites have been discussed broadly with detailed discussions on fiber reinforced polymer
composites. Basic constituents of fiber reinforced polymer composites viz. the fibers and the
matrix, their types and advantages have been discussed along with the basic terminologies like
lamina, laminates etc.

Basic idea of what are macromechanics and micromechanics of lamina, macromechanics of
laminate, failure analysis of laminates importance and significance of those modules have been
discussed in brief.

Having understood that a laminate being the basic structural component of an FRP composite
structure and the fact that a laminate is actually made up of a number of laminae stacked
together implies that understanding the mechanics of lamina is prerequisite to understand the
mechanics of laminate and hence to understand the mechanics of fiber reinforced polymer
composite structures. Again, the fact that a lamina is heterogeneous and anisotropic, to
understand the mechanics of lamina, it is important to understand anisotropic elasticity. It is
with this background, that anisotropic elasticity will be introduced briefly here to facilitate the
understanding the mechanics of an orthotropic lamina.

(Refer Slide Time: 03:14)
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Anisotropic Elasticity - Brief Introduction

3D STRESSES and STRAINS at a point

g stress components and 9 strain components

—_—

Equality of cross shear symmetric stresses and strains(‘ﬁ

— 6 components =B
xY = Cyx - Oy
€y -y *ﬂ—l'oov T Tyz = Tzy g-Y /\.\39(_ o) =
€‘Y A g:rz ZZY * ?)"-Z U:'é o
_)C;Z = bl vz
Vox I S Glf o gy = £
= e ¢ 5= —V)e, +1(s, +&
Ve “ I\ E E b i ST Trvxi-2v) I ey )]
Op Oz
-y e gy E =
g Ey =—V v - = [(l-v)& +v(e e >{o )l
235 <)) g B KT L A {__]
T = —p-F _py Y L
€z = /V E ¥ E % | o :#[(171/)5:4*1/(81_4“5‘)]
o = - 1+1v)(1-2v) ’
,-me = 7y2 = _G_ ’}/Z-’L' = E‘ T_\j‘ = GY\.T : r;: :G;Vj: > T :G:V.\':

Anisotropic elasticity

Before discussing anisotropic elasticity, a brief review of stress strain relations in three
dimensional elasticity of isotropic materials will be useful. With reference to the Cartesian
coordinates x-y-z, the state of stress at a point in a deformable solid is defined with reference
to three mutually perpendicular planes at that point. Referring to the figure, each plane has one
normal stress and two shear stresses. As shown, the x-plane has normal stress ox and shear
stresses Txy and txz. Similarly, in the y-plane, there is normal stress oy and shear stresses Tyx
and tyz and in z-plane and in z-plane, there is normal stress 6z and shear stresses Tzx and Tzy.
Therefore, on three mutually perpendicular planes passing through a point, there are all
together nine stress components (three normal stresses and six shear stresses) representing the
state of stress at that point. Again, due to equality of cross shear (symmetric stress tensor),of
Txy = Tyx, Tyz = Tzy and Tzx = Txz resulting in six stresses to represent the state of state of stress
at a point. Similarly, there are six strain components corresponding to the stresses. In order to
understand the mechanical characterization of a material, it is important to understand the stress
strain relations ie. to understand that subjected to stresses what are the stains and vice versa.
Before proceeding to generalized Hooke’s law, let us write the strains induced in an component
made of isotropic materials subjected to all the six components of stresses. As shown in the
figure, using the knowledge of basic strength of materials, the normal strains and shear strains
could be written as
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Here, strains along x- are direct strain (ox/E) due to ox and due to Poisson’s effect strains along
X- due to oy (—voy/E) and 6z (—Vv0O2/E). These strains are superposed to get the total normal
strain ex. Similarly, the total normal strain along y and z are also obtained. Again, shear stresses
in Xy, yz and zx planes are due to the respective shear stresses in those planes only. Thus, we
obtain a the six strains €x, €y, €z, Yyz, Yzx, Yxy in terms of the six stresses ox, Oy, Gz, Tyz, Tzx, Txy

and the material properties (E and v). This could be written in matrix form as

1Yy Y 9 0 o
E E E
v 1 Vy
—— Z -2 0 0 0
x E E E, Ox
y 1% 1% 1 Gy
— -2 = 0 0 O
:{_| E E E 9
T
Yy 0 0 o L o oll™
7/)(2 G z-)(Z
Dy 0o 0o 0o 0o + ol
G
o 0 o0 0 0 X
L G

Similarly, by taking inverse, the stresses could be expressed in terms of strains. Thus the six
components of stresses are related to the six components of strains. So, for an isotropic material
in three-dimension, it is easy to obtain the stress strain relations from the elementary solid
mechanics. This will be useful in understanding the generalized Hooke’s law.

(Refer Slide Time: 09:54)
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Anisotropic Elasticity - Brief Introduction

Generalized Hooke's Law relating STRESSES to STRAINS at a point
nt
__31 [ox9] 94 —
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CUH Stiffness components
"Si’j_{('n'. * Compliance components
In general, it requires 81 elastic constants to fully characterize a material

Generalized Hooke’s Law

In a Cartesian coordinate, at a point, stresses in three mutually perpendicular planes are needed
to completely specify the state of stress at a point. Now, because on each plane there could be
three stresses viz. one normal stress and two shear stresses, therefore, there will be nine stress
components and corresponding nine strain components Hooke's law in three-dimensions could

be written as

o, =Cuée, + Clzgyy + Cpe, + CMng + ClsgyZ + Cpé, + C17gyx + Clggzy + Cpée,
O, = =Cu8, + szgw + Cpe, + C245Xy + Czsgyz + Cué, + C27<9yX + Czsgzy + Cyéy,
0,=Cyuéut Cyue,+ Cue,+ Cuey+ Cue,t+ Cue, +Cue,+ Cyuey+ Cysy,
Oy =Cuént+ Cpéey+ Cue,+ Cuey+ Cue,+ Cuen+Cre,+ Cueyt+ Cuéy,
0, =Coépt + Cyé,,
Op = Cori T e + Coobyy
Op=Cpépt + Cué,,
0,y =Cgépt + Cgy,
0, =Cy&+ . + Cyoy,

where these nine components of stresses are related to the corresponding nine components of
strains by means of a 9 x 9 matrix. That is the components of the stresses are expressed as
linear combinations of the strains and vice versa. The elements of this matrix are now

understood with reference to the discussion on isotropic materials in the previous section.

1700 =[Clog 8]0

Here the matrix [C] is called the stiffness matrix and the matrix [S] is known as the compliance
matrix. Stiffness matrix expresses the stresses in terms of the strains and the compliance matrix

expresses the strains in terms of the stresses. In general, at a point there are nine stress
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components and corresponding nine strain components. These nine stress components are
related to the corresponding nine strain components by a 9 x 9 matrix having 81 elements.
These elements are known as elastic constant and 81 elastic constants are required to fully
characterize a material. Therefore, in a material subjected to generalized loading, to determine
the strains at a point from the stresses or vice versa these 81 elastic constants need to be known.
Stresses and strains being second order tensors will have 32 = 9 components in three dimension

and the Generalized Hooke's law in the index notation is

Oy = Cijklgkl

or gijzsijklakl [i,].k,1=1,23]

where the stiffness Cij and compliance Sijk are actually a fourth order tensor and therefore, in
three dimension, they will have 3* = 81 elastic constants.
(Refer Slide Time: 13:52)

Anisotropic Elasticity - Brief Introduction
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Anisotropic elasticity

Anisotropy means that the properties are direction dependent. The properties of the materials
are different in different directions and in such materials, in order to relate the stresses to the
strains, we need these 81 independent elastic constants. If we expand the stress-strain relations

written in the index notation, it will be
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Anisotropic Elasticity - Brief Introduction
Conditions of rotational equilibrium— symmetric stress and strain tensors
Jif_ i O-Jl ‘ [_'""4"
& =% J [i= j]
Number of independent elastic constants reduces from 81 to 36
S ot .
19 6 [(' ]5-5{5}5-1 ‘?l
(‘HH C.H (‘EHR (.11 (‘111‘\ CIH"
(‘1211 (‘!2 (‘12 ( (.JIH (‘2212
[(q] - (:5.‘11 (:.‘5- {::53.1_‘ (:_“.'l {ﬁjjl.‘ (:.“[
( 2311 ( 2312 ( 2333 (.!.‘.!.i (‘ljlj ( 231
C!Bll Cl Cl?: Cli CISIS C]EE_
_(‘llll ( 12 (‘I22 ( 12 ('IZIQ (‘lll i

Due to the equality of cross shear (obtained from the condition of moment equilibrium in

absence of body moments), cij =cji and similarly €ijj = ¢ji for i*¥3j and therefore, out
of the nine stress/strain components, actually six are independent
and this leads to symmetric stress and strain tensors. So, six
components of strains are related to six components of stresses by

means of these 36 independent elastic constants.

So, as the stresses and strains are reduced from 9 to 6, therefore, the number of elements of
stiffness matrix also gets reduced to 36 from 81. So, for symmetric stress and strain tensors,
we need 36 independent elastic constants to characterize a material.

(Refer Slide Time: 16:09)
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Anisotropic Elasticity - Brief Introduction
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Now using the contracted notation, Ci111 is written Ci1, Ci122 is written as Ci2 and so on.
Similarly, the stresses are also written in contracted notation where 611, 622, 633 are written as

o1, 62, 63 and so on. The stress strain relation in contracted notation is

{oy=[Clie) and {e}=[S]{o}

Stiffness Compliance

(Refer Slide Time: 16:33)

Anisotropic Elasticity - Brief Introduction

In contracted notation, for an anisotropic body, the Stress-Strain relation

0 G G Gy G G5 G ’ &
g, G G Gy G G Gyl
% | G G G G G Gyl s
Ty C, C, Cy C, Cx Cygllrsg
T3 Co G Gy G G Cyl|rs
T)s _C(;l CCQ Css Ca CG:’\ CG(,_ Y . (é\;
Y
{o} =[Nz} and  {g}=[S]{c}

Stiffness Compliance
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where six components of stresses are actually related to six components of strains by means of
36 independent elastic constants. This matrix [C] is the stiffness matrix and taking inverse of
this yields the compliance matrix [S].

Therefore, in order to characterize an anisotropic material, we need to know these 36
independent elastic constants correlating the stresses to the corresponding strains and vice
versa.

(Refer Slide Time: 17:31)

Anisotropic Elasticity - Brief Introduction
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Stiffness and Compliance matrices are symmetric

However, from the energy consideration, it could be shown that for linearly elastic material

these stiffness and compliance matrices are also symmetric ie. Cij = Cji and Sij = S;i as follows.

Work done per unitvolumeW=£o-igizlcijgjgi:> oW =C;
2 2 0g,0€;

similarly, W =la.g. =£C.igig. = oW =C;
2 1ot Oe 0e, !

= |C.=C.

andsimilarly, S; =S

Area under the stress strain curve is actually the strain energy stored per unit volume, So, we
can write this stress in terms of strain and we get this; and if we take to succeed differentiation

points with respect to €i and then with respect to €j, we get this.

Similarly, we can write this oj in terms of Cji and &i; and we take second to successive

differentiation with respect to €j and €i, we get Cji. Now, that order of differentiation is
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immaterial and therefore, Cji = Cijj. In the same way, we can also prove that Sij = Sji. The net

result is that the stiffness matrices and the compliance matrices are symmetric.

Therefore, as a consequence of this symmetry, instead of 36, now we actually need 21
independent elastic constants to characterize an anisotropic material. That means is given the
six components of stresses at a point, to determine the corresponding six components of strains,

we need to know these 21 independent elastic constants.

Determination of these 21 independent elastic constant is no easy task and we have discussed
with respect to isotropic material that these elements are nothing but the functions of material
properties. Let us now discuss the same with respect to anisotropic materials.

(Refer Slide Time: 20:07)

Anisotropic Elasticity - Brief Introduction
STIFFNESS and COMPLIANCE matrices— 21 independent terms or elastic constants

Linear Elasticity— General expression for stress-strain relation
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* Characteristics of ANISOTROPIC materials
* No planes of symmetry for material properties

e TRICLINIC materials .~

Now, what happens is, these anisotropic materials are also known as triclinic materials.
(Refer Slide Time: 20:13)

Planes of Material Property Symmetry - Monoclinic Materials

= If there is one plane of material property
symmetry i.e. elastic constants to be invariant
with respect to inversion of the axis
perpendicular to that plane - MONOCLINIC

* If X, (plane 1-2) is the plane of material
property symmetry, i.e. Cy is invariant with
respect to an inversion of the X, axis, then the
direction cosine matrix is SES
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Planes of material property symmetry

Fortunately, in many materials there exist planes of material property symmetry. Let us first
understand what is actually a plane of material property symmetry? Referring to the Fig....,
with reference to 3d Cartesian coordinates (X1, X2, X3 or X, Y, Z ), suppose for a material,
with respect to a certain plane the material properties are symmetric; say for example, X1- X2
or the X-Y, is the plane of material property symmetry. This means that if we rotate the object
with respect to this plane by 180°, then there will be no change in material properties. Referring
to the Fig...., the stiffness or compliance matrix of the material remains same when defined
with respect to X1, X2, X3 or X1, X2, X3’ (X3 = — X3/), ie. the properties are symmetric with
respect to X3 plane or X1-X2 plane. Xs is the normal to X1-X2 plane. Generally, plane is
represented by its surface normal. So, if X3 is the plane of material property symmetry, it
means, the stiffness matrix Cij or compliance matrix Sjj are invariant with respect to an
inversion of X3 axis. That means, instead of X3, suppose we just invert it and we write X's,
there will be no change in the stiffness matrix or compliance matrix ie. the material properties

do not change.

Now, we know that the coordinate transformation from X1, X2, X3 to X'1, X'2, X's or say X,

Y,Zto X', Y', Z', could be written in terms of the direction cosine matrix is given by

Cos(x,,x";) Cos(x;,y";) Cos(x,z";)

& = Cos(y,,x";) Cos(y,,y";) Cos(y;,z",)
Cos(z,,x';) Cos(z,,y';) Cos(z,,z",)

(Refer Slide Time: 22:33)
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Planes of Material Property Symmetry - Monoclinic Materials
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Material having one plane of material property symmetry — Monoclinic
Referring to the Fig...., considering a material having Z- plane as the plane of material property
symmetry. For a loaded body made of this material, the stresses are strains with respect to 3D

Cartesian coordinates XYZ are defined as

Oy Txy Ty &y V. Xy 7 xa
y Oy Ty and Ve & Ty
Ty, Tyz o, Ve 7 yz &,

Now, suppose the stresses and strains with respect to the

transformed coordinate system X', Y, Z° (where X'=X, Y'=Y, Z'= -7)
are
/ / / / / /
Oy z-xy Ty &y }/xy Vv
/ o / r / and / e / /
Xy y yz }/Xy y }/yZ
/ / / / / /
sz z-yz O-z yxz 7/yz gz

Since Z- plane is the plane of material property symmetry, the stiffness matrix remains same
in both the cases we could relate the stresses and strains in both the cases by the same stiffness

matrix as

[ N

R N
~ w N =
> =3 o o

gl
S
a1
>

OOﬁOOOO
OOtOOOO
0030000
OOtOOOO
OOgOOOO
OO0 000
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Now, using stress and strain transformations about the rotated axis

/ / /

Oy Xy Xz Oy Ty Ty
/ / . _ _
Ty oy Ty | = [aij ] I:O-xyz :I l:aij :' = Ty oy Ty

/ / /
Ty Ty o, Ty Ty o,

(Refer Slide Time: 23:47)

Planes of Material Property Symmetry - Monoclinic Materials
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Planes of Material Property Symmetry - Monoclinic Materials
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So we could write the transformed stresses in terms of the untransformed stresses by
multiplying it twice by the direction cosine matrix. Similarly, we performed the strain
transformation and we could write the transformed strains in terms of the untransformed strains

as
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Planes of Material Property Symmetry - Monoclinic Materials
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Now comparing the expressions for the untransformed and transformed stresses written in
terms of elements of stiffness matrix and the corresponding strains, we could clearly see that 8
out of 21 elements of the stiffness matrix becomes zero. That is as a consequence of existence
of one plane of material property symmetry (where the stiffness matrix is invariant under the

inversion of the Z- plane), 8 elements of the stiffness matrix become zero.

This is a simple way of showing that the existence of one plane of material property symmetry
leads to 8 of the 21 independent elastic constant to become zero. This could also be done by a
tensor stiffness transformation.

So for a monoclinic material having one plane of material property symmetry, the stiffness

matrix is
_Cll C12 ClS 0 O C16 7
C12 C22 C23 0 O C26
C13 C23 C33 0 O C36
o o o ¢, C, O
o 0 o0 C, C, O
_C16 C26 C36 O O C66 J
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(Refer Slide Time: 28:11)

Planes of Material Property Symmetry - Monoclinic Materials

* For MONOCLINIC Materials with one plane of material property symmetry C;is

s i .
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MONOCLINIC Materials and have 13 independent elastic constants
+ Example—Feldspar
el

The stiffness matrix consists of only 13 terms or 13 independent elastic constants. Similarly,
the compliance matrix will also have 13 independent terms. So, for monoclinic materials, 13
independent elastic constants are required to characterize whereas in a fully anisotropic
material (no plane of material property symmetry), 21 independent elastic constants are

required to characterize.

An example of a monoclinic material is feldspar.
(Refer Slide Time: 29:15)

Planes of Material Property Symmetry - Orthotropic Materials
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= Existence of two mutually perpendicular planes of ; z
material property symmetry, automatically guarantees .~ .
3™ plane also to be a plane of material property 1
symmetry J 5 3

= Such materials having three orthogonal planes of
material property symmetry - ORTHOTROPIC
materials

xz/

-

= In addition to X,X, (plane of material property symmetry for monoclinic
materials), we consider X,X, as the another plane of symmetry

1 @ 9
[Q]z 0 -10
e |0 49 1

Two mutually perpendicular planes of material property symmetry

Referring to Fig..., suppose, in addition to one plane of material property symmetry (discussed
in the previous section), there is another plane of material property symmetry which is
perpendicular to that first plane that means, there are 2 mutually perpendicular planes of
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material property symmetry. In such a case, it could be shown that it existence of two mutually
perpendicular planes of material property symmetry automatically leads to the existence of the
third perpendicular plane also to be a plane of material property symmetry. That is if Z-plane
and Y- plane are the two mutually perpendicular planes of material property symmetry, then
X- plane will also be a plane of material property symmetry. Such materials where there are 3
mutually perpendicular planes of material property symmetry are called Orthotropic materials.
In fact, there are 2 mutually perpendicular planes of material property symmetry automatically
leads to the third plane also to be a plane of material property symmetry and it is an orthotropic

material.

Now, considering a monoclinic material with Z- plane as the plane of symmetry, we already

obtained the stiffness matrix as

_Cll C12 C13 0 O C16_
C12 C22 CZS O O CZG
ClS C23 C33 O O C36
0 0 0 C, C, O
0 0 0 Cg C, O

_ClG C26 C36 0 O C66_

Referring to Fig.,.., suppose Y- plane is also a plane of material
property symmetry. Then the stiffness matrix as shown above will
remain unchanged if we do the inversion of Y—axis ie with respect
to X', Y, Z' (where X'=X, Y'=-Y, Z'= Z). The direction cosine matrix for

the coordinate transformation from X, Y, Zto X', Y', Z ' is

1 0
a,=|0 -1 0
0 0

Now, if the stresses and strains with referenceto X, Y, Z and X', Y', Z' are
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O-x z-xy Xz gx Y Xy Y Xz
Ty O, T,land |y, &, y, |stressand strains with respect to XYZ or X, X, X, and
L “xz yz Uz Y Xz e yz gz
1/ / / / / /
O-x Txy sz gx 7/xy 7xz
r, o/ 7, |and|y, &' 7, |stressand strains with respect to X'Y'Z" or X X, X/,
/ / / / / /
_sz Tyz O-z 7 Xz 7/ yz 82

Then performing stress and strain transformations, we could relate the transformed stresses and
strains with the untransformed stresses and strains as

O-x/ z-xy/ Xz : O, Ty Ty
xy/ O-y/ yz/ = 7% 9y Ty

_sz/ z-yz/ Uz/ Ty, _z-yz o,
R I R
7xy/ gy/ yyz/ = 7/xy gy _7yz
_7xz/ yyz/ gz/ Ve Vv &,

Planes of Material Property Symmetry - Orthotropic Materials

Ry

The stresses and strains get transformed as

g T, T g T, T

T_“_ O" Tr = —I'_“, (_T‘ —Fr .

i) 1 o/| |t . o |
R e LS

EE R B 1 0 0
To & Ve |F| Ve & [0]=[0 -1 0
% % & | [P T & 0 0 1

But [C] and [S] do not change

Again because the stiffness matrix does not change under this transformation, we could relate

the stresses and strains in the transformed and untransformed coordinates by the same stiffness
matrix as

Cll C12 C13 0 O C16 7
C12 C:22 CZS 0 O C26
C13 C23 C33 O O C36
0O 0 0 C, Ct O
0 0 0 Cg C, O
_lei C26 CSG 0 o C66 J
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Again by comparing the transformed and untransformed stresses expresses in terms of
corresponding strains and the elements of stiffness matrix, leads to four more elements of the

stiffness matrix becoming zero as follows.

Planes of Material Property Symmetry - Orthotropic Materials

|

Using G, & G 0 0 0
Cy Cp Gy 0 0 0
S 1C, e, 0 0 o
[0 0T ¢, 0 o
0 0 0 0 Cy O
0 0 0 0 0 C,

For an Orthotropic Material

9 independent elastic constants are required to characterise the material

Example- UD lamina

Rolled steel

o, =0, =C,=0
o,=0,=Cy =0
/ —
o,=0, =>Cs=0
T, = Z'Xy/ =C, =0
The stiffness matrix of such a material with two mutually perpendicular planes of material

property symmetry is

C, C, Cy O 0 0]

C, C, C, 0O 0 O
[C]: Cp Cpu G 0 0 0
0 0 0 C, 0 O

0 0 0 0 Cg O

0 0 0 0 0 Cg

Now, if we consider the third plane ie X-plane also to be a plane of material property symmetry
and perform the same exercise, it will yield the same results meaning that the existence of two
mutually perpendicular planes of material property symmetry automatically leads to the third
perpendicular plane also to be a plane of material property symmetry and such a material is
called orthotropic material.

As a consequence of three mutually perpendicular planes of material property symmetry, total
12 elements of the stiffness matrix become zero which means that to characterize an orthotropic
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material, only 9 (compared to 21 for fully anisotropic) independent elastic constants are
required.

Examples of orthotropic materials are unidirectional lamina, rolled steel

(Refer Slide Time: 35:13)

Planes of Material Property Symmetry - Transversely Isotropic Materials

* Orthotropic materials with one transverse plane of symmetry where material
properties are independent of direction (a plane of isotropy) is called

TRANSVERSELY ISOTROI;IC materials. 3
SR | !
z, 3 A : e
1k G P e e
A 2 By 0 s swm e e ws s ,-
| Ty
c, T, T,
For example: If plane 2-3 is a plane of isotropy, then [a‘ﬁz ]: ., o, 1. |= [R]T [oi‘_‘,:][R]
7 T T o, = e

Now, suppose in an orthotropic material one of the transverse plane is such that, in that plane
the properties are independent of direction. Referring to Fig..., suppose in an orthotropic
lamina, plane X-Y, plane Y-Z and plane X-Z are the three mutually perpendicular planes of
material property symmetry.

Now, suppose the plane Y-Z is isotropic ie., in this the material properties are independent of
directions. That is whether it is Y-Z or Y'-Z' (rotated by an angle 6 about X-axis) the properties
do not change. In a more simple term to understand this in Y-Z plane, Young's modulus and
the Poisson's ratio are same in all directions and shear modulus could be expressed in terms of
Young’s modulus and Poisson’s ratio.

Thus, if in an orthotropic material, one of the transverse planes the material properties are
independent of directions, that means isotropic, these are called transversely isotropic
materials. Now, example in this case, say Y-Z is the plane of isotropy, the transformed stresses
for a rotation in this Y-Z plane could be determined by multiplying by the proper rotation
matrix.

(Refer Slide Time: 37:11)

As a consequence of this four more elements of the stiffness matrix of the orthotropic materials
become zero thus reducing the number of independent elastic constants to 5. The stiffness

matrix for a a transversely isotropic materials is
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C, C, C, 0 0 0]
C, C, Ch O 0 0
Cp Cu Cyp 0 0 0
Ccl=
€=l o o G 2623 0 0
0 0 0 0 C, 0
0 0 0 0 0 C,

Planes of Material Property Symmetry - Transversely Isotropic Materials

gLl -8
Leads to =, =C,, C,=C,, C, = ‘-2 Ezqaz
G G G 0 0 0]

., C.C 0 0 0 g

. Gy .

G, G C 0 0 0 = )

=[d= - ‘;vn/
0 0 0 0 0
0 0 ¢, 0
000 0 0 0 G

5 independent elastic constants— to characterise Transversely Isotropic materials
Example— UD lamina where the fibers are arranged in a square array
Therefore, as a consequence of the fact that one of the three mutually perpendicular planes of
material property symmetry is a plane of transverse isotropy, the number of independent elastic
constants required to characterize the material is 5. Example of transversely isotropic materials

is unidirectional lamina where the fibers are arranged in a square array.

Referring to the figure if in a lamina the fibers are arranged in a squared regularly spaced array,
then naturally, in the 2-3 plane, it will have same properties in the direction 2 or direction 3 or
any other direction. Therefore, this 2-3 plane happens to be a plane of transverse isotropy and
this is an example of transversely isotropic material. But if the fibers are not really arranged
regularly, it may not be the plane of transverse isotropy.

If all the planes are planes of material property symmetry, then it becomes an isotropic material.
This could be again proved considering that all the planes are planes of material property
symmetry and a consequence only 2 independent elastic constants remain all other become

dependent and the stiffness matrix of an isotropic material looks like
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[C, C, C, 0 0 0 ]
C, C, C, 0 0 0
c, C, C, 0 0 0
c,-C
|0 o0 o Smw 0 0
[C]= 2
0 0 O 0 Cu=Cp 0
2
0 0 O 0 0 Cﬂ;Cﬂ

(Refer Slide Time: 40:14)

Planes of Material Property Symmetry - Isotropic Materials

If all the planes are planes of material property symmetry— ISOTROPIC material

As a result the stiffness matrix becomes

’cll (:_1‘2 Cp 0 0 0 ]
Clz CI'JI Clz
CIZ 12 CE
6 —C
o 0 o0 il 0 0
[C]= 2
0 0 0 0 GG 0
0 0 o0 0 0 C“;C‘E

= 2 independent elastic constants - to characterise ISOTROPIC materials

(Refer Slide Time: 41:06)

Summary

Fully Anisotropic Materials

Extension-extension Coupling Shear-extension Coupling
o

gF\_ﬁ 43,2
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Shear = Shear-shear Coupling [ ’C_j/
Having understood the stiffness and compliance matrix and the effect of existence of planes of
material property symmetry, let us have a closer look at each term of the stiffness and the

compliance matrix in terms of deciding the response of a deformable solid subjected to load.

Referring to the Fig. ... and writing the strains in terms of stresses in a loaded object as
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€ Su Sp S Sy S Sg || o
€ S Sp Sy Sy Si Sk |0
I Siz Sp Sy Sy Sy S0
Va3 S Su Sy Sy S S ||Ta
Y13 Sis Sy Sy Sps S See || Tus
Yio) S S S Sue Sss Ses | [Tw

Suppose, load is applied along 1 only. Now for a fully anisotropic material all the 21
components are non-zero and applying say only o1 let us see how an object responds ie. what
are the different strains leading to the deformation. It is quite clear that subjected to only o1
(all others are stresses are zero), because Si1, S12, S13,... all these are non-zero, therefore will
lead to all the normal strains €1, €2, €3 and shear strains y23, Y13, y12. That means, even if we
have applied only a normal stress along 1, that will of course lead to normal strain along 1 €1,
normal strains €2 along 2, and €3 along 3 (Poisson's effect). In addition, it will also lead to shear
strains y23, y13, y12 in 2-3, 3-1 and 1-2 planes respectively. Similarly, applying only 62 or 63 or
t23 or t31 or T12 Will also lead to all the six strains meaning that all the stresses and strains are
coupled and subjected to loading, an object made of anisotropic material will experience not
only normal strains in all the three directions but also shear strains in all the planes.

Now, let us see what is S11? S11 actually tells us, if we apply o1, what €1 is. That means, for a
stress along 1, what is the stain along 1? Similarly, S22 tells us, if we apply a stress along 2,
what is the strain along 2 and Sss tells us, if we apply a stress along 3, what the strain along 3
is. So, these three are actually the extensional stiffness.

Now, what is S12? If we apply a stress 61 along 1, S12 decides what the strain along 2 is or if
we apply a stress 2 along 2, Si2 decides what the strain along 1 is.

Similarly, if we apply a stress, normal stress along 1, what the normal strain along 3 is decided
by S13 and Sz23 is the coupling between normal stress along 2 and the strain along 3. Therefore,
these Si12, S23 and Sis are called extension-extension coupling.

Now, what is Sa4? If we apply a shear stress 123 in plane 2-3 what the corresponding shear
strain y23 is in the plane 2-3 is decided by Sas. Similarly, if we apply a shear stress t31 in plane
3-1 what the corresponding shear strain y31 is in the plane 3-1 is decided by Sss and applying
a shear stress 112 In plane 1-2 what the corresponding shear strain yi2 is in the plane 1-2 is
decided by Ses. So, these are called shear stiffness.

What do non-zero Sas Sas and Sse mean? It means that even if we apply a shear stress in the

plane 2-3, that will also lead to a shear strain on the other planes. If we apply a shear stress
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along 1-2, that will not only lead to shear strain along 1-2, it will also lead to shear strains along
2-3 and 3-1. Similarly, for other planes also. Therefore, these Sas Sas and Sse are called shear-
shear coupling, like extension-extension coupling.

In addition to that, the fact that S14 , S15 , S16, S24 , S25, S26 Sas and Saz4 , S35, Szs are non-
zero leads to the fact that application on normal stress leads to shear strains and application of
shear stresses leads to normal strains and vice versa. Therefore, these terms are called shear-
extension coupling. Therefore, in a fully anisotropic material, all the stresses and strains are
coupled.

(Refer Slide Time: 45:55)

Summary

Monoclinic Materials

Extension-extension Coupling Shear-extension Coupling
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Shear ' Shear-shear Coupling

In a monoclinic material with one plane of material property symmetry, as shown in the
stiffness matrix some of the coupling terms becomes zero.
(Refer Slide Time: 46:33)

Summary

Orthotropic Materials

Extension-extension Coupling /-' Shear-extension Coupling
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Shear ' Shear-shear Coupling

Similarly, in an orthotropic material with three mutually perpendicular planes of material

property symmetry as shown in the stiffness matrix. All the shear-extension coupling terms as
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well as the shear-shear coupling terms become zero. That means, if we apply normal stress,
that will lead to only normal strains and no shear strains; if we apply shear stresses, that will
lead to only shear strains and no normal strains. Also there is no shear-shear coupling. If we
apply shear stress in 1-2 plane, that will lead to shear strain in 1-2 plane only and it will not
lead to shear strain in 2-3 or 3-1 plane. So, in an orthotropic material, shear-extension coupling
IS not there, shear-shear coupling is not there, but extension-extension coupling is there; that is
because of the Poisson's effect.

Now, natural question comes that the same is also true for isotropic material. Even in isotropic
material, if we apply normal stresses, that leads to only normal strains and there is no shear
strain and vice-versa. Then, what is the difference? Difference is that, in isotropic materials,
because of the normal stress is direction 1, the normal strains in the transverse directions (2
and 3) are same meaning, Si2= Sis, but these are not same for an orthotropic material where

S12= Si3.

(Refer Slide Time: 47:14)

Summary
Transversely Isotropic Materials
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In a transversely isotropic material, one plane actually behaves as isotropic and therefore, in
that plane the relationship between the elastic constants exists like the modulus of rigidity is

actually a function of Young's modulus and Poisson's ratio.
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