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Welcome to the second module of the course “Mechanics of Fiber Reinforced Composite 

Structures”. This module is basically on review of elasticity and there will be two lectures in 

this module. 

(Refer Slide Time: 00:52) 

 
First, generalized Hooke’s law in 3D elasticity will be discussed followed by anisotropic 

elasticity. Under anisotropic elasticity, starting with constitutive relations for anisotropic 

materials, different types of materials like triclinic, monoclinic, orthotropic and isotropic with 

reference to the existence of planes of material property symmetry will be discussed. This will 

be followed by a detailed understanding of the engineering constants for orthotropic materials. 

Therefore, before proceeding, to the review of 3D elasticity, a quick recapitulation of what all 

have been discussed in the last module may useful to maintain the flow of the lectures. 

(Refer Slide Time: 01:28) 
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Recapitulation and Objective 

In the last module, definition of composites with different types and classifications of 

composites have been discussed broadly with detailed discussions on fiber reinforced polymer 

composites. Basic constituents of fiber reinforced polymer composites viz. the fibers and the 

matrix, their types and advantages have been discussed along with the basic terminologies like 

lamina, laminates etc.  

Basic idea of what are macromechanics and micromechanics of lamina,  macromechanics of 

laminate, failure analysis of laminates importance and significance of those modules have been 

discussed in brief.  

Having understood that a laminate being the basic structural component of an FRP composite 

structure and the fact that a laminate is actually made up of a number of laminae stacked 

together implies that understanding the mechanics of lamina is prerequisite to understand the 

mechanics of laminate and hence to understand the mechanics of fiber reinforced polymer 

composite structures. Again, the fact that a lamina is heterogeneous and anisotropic, to 

understand the mechanics of lamina, it is important to understand anisotropic elasticity. It is 

with this background, that anisotropic elasticity will be introduced briefly here to facilitate the 

understanding the mechanics of an orthotropic lamina. 

(Refer Slide Time: 03:14) 
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Anisotropic elasticity 

Before discussing anisotropic elasticity, a brief review of stress strain relations in three 

dimensional elasticity of isotropic materials will be useful. With reference to the Cartesian 

coordinates x-y-z, the state of stress at a point in a deformable solid is defined with reference 

to three mutually perpendicular planes at that point. Referring to the figure, each plane has one 

normal stress and two shear stresses. As shown, the x-plane has normal stress σx and shear 

stresses τxy and τxz. Similarly, in the y-plane, there is normal stress σy and shear stresses τyx 

and τyz and in z-plane and in z-plane, there is normal stress σz and shear stresses τzx and τzy. 

Therefore, on three mutually perpendicular planes passing through a point, there are all 

together nine stress components (three normal stresses and six shear stresses) representing the 

state of stress at that point.  Again, due to equality of cross shear (symmetric stress tensor),of 

τxy = τyx, τyz = τzy and τzx = τxz resulting in six stresses to represent the state of state of stress 

at a point. Similarly, there are six strain components corresponding to the stresses. In order to 

understand the mechanical characterization of a material, it is important to understand the stress 

strain relations ie. to understand that subjected to stresses what are the stains and vice versa. 

Before proceeding to generalized Hooke’s law, let us write the strains induced in an component 

made of isotropic materials subjected to all the six components of stresses. As shown in the 

figure, using the knowledge of basic strength of materials, the normal strains and shear strains 

could be written as 
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Here, strains along x- are direct strain (σx/E) due to σx and due to Poisson’s effect strains along 

x- due to σy (−νσy/E) and σz (−νσz/E). These strains are superposed to get the total normal 

strain εx. Similarly, the total normal strain along y and z are also obtained. Again, shear stresses 

in xy, yz and zx planes are due to the respective shear stresses in those planes only.  Thus, we 

obtain a the six strains εx, εy, εz, γyz, γzx, γxy in terms of the six stresses σx, σy, σz, τyz, τzx, τxy 

and the material properties (E and ν). This could be written in matrix form as   
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Similarly, by taking inverse, the stresses could be expressed in terms of strains. Thus the six 

components of stresses are related to the six components of strains. So, for an isotropic material 

in three-dimension, it is easy to obtain the stress strain relations from the elementary solid 

mechanics. This will be useful in understanding the generalized Hooke’s law. 

(Refer Slide Time: 09:54) 
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Generalized Hooke’s Law 

In a Cartesian coordinate, at a point, stresses in three mutually perpendicular planes are needed 

to completely specify the state of stress at a point. Now, because on each plane there could be 

three stresses viz. one normal stress and two shear stresses, therefore, there will be nine stress 

components and corresponding nine strain components Hooke's law in three-dimensions could 

be written as 
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where these nine components of stresses are related to the corresponding nine components of 

strains by means of a 9 × 9 matrix. That is the components of the stresses are expressed as 

linear combinations of the strains and vice versa. The elements of this matrix are now 

understood with reference to the discussion on isotropic materials in the previous section.  

{ } [ ] { }9 1 9 19 9
Cσ ε

× ××
=  

Here the matrix [C] is called the stiffness matrix and the matrix [S] is known as the compliance 

matrix. Stiffness matrix expresses the stresses in terms of the strains and the compliance matrix 

expresses the strains in terms of the stresses. In general, at a point there are nine stress 
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components and corresponding nine strain components. These nine stress components are 

related to the corresponding nine strain components by a 9 × 9 matrix having 81 elements. 

These elements are known as elastic constant and 81 elastic constants are required to fully 

characterize a material. Therefore, in a material subjected to generalized loading, to determine 

the strains at a point from the stresses or vice versa these 81 elastic constants need to be known. 

Stresses and strains being second order tensors will have 32 = 9 components in three dimension 

and the Generalized Hooke's law in the index notation is 

  
or    [ , , , 1, 2,3 ]

ij ijkl kl

ij ijkl kl

C
S i j k l

σ ε

ε σ

=

= =  

where the stiffness Cijkl and compliance Sijkl are actually a fourth order tensor and therefore, in 

three dimension, they will have 34 = 81 elastic constants.  

 (Refer Slide Time: 13:52) 

 
Anisotropic elasticity 

Anisotropy means that the properties are direction dependent. The properties of the materials 

are different in different directions and in such materials, in order to relate the stresses to the 

strains, we need these 81 independent elastic constants. If we expand the stress-strain relations 

written in the index notation, it will be  
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 (Refer Slide Time: 14:43) 

 
Due to the equality of cross shear (obtained from the condition of moment equilibrium in 

absence of body moments), σij =σji and similarly εij = εji for i≠j and therefore, out 

of the nine stress/strain components, actually six are independent  

and this leads to symmetric stress and strain tensors. So, six 

components of strains are related to six components of stresses by 

means of these 36 independent elastic constants.  

 

So, as the stresses and strains are reduced from 9 to 6, therefore, the number of elements of 

stiffness matrix also gets reduced to 36 from 81. So, for symmetric stress and strain tensors, 

we need 36 independent elastic constants to characterize a material.  

(Refer Slide Time: 16:09) 
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Now using the contracted notation, C1111 is written C11, C1122 is written as C12 and so on. 

Similarly, the stresses are also written in contracted notation where σ11, σ22, σ33 are written as 

σ1, σ2, σ3 and so on. The stress strain relation in contracted notation is  
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51 52 53 54 55 5613 13
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(Refer Slide Time: 16:33) 
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where six components of stresses are actually related to six components of strains by means of 

36 independent elastic constants. This matrix [C] is the stiffness matrix and taking inverse of 

this yields the compliance matrix [S].  

 

Therefore, in order to characterize an anisotropic material, we need to know these 36 

independent elastic constants correlating the stresses to the corresponding strains and vice 

versa.  

(Refer Slide Time: 17:31) 

 
However, from the energy consideration, it could be shown that for linearly elastic material 

these stiffness and compliance matrices are also symmetric ie. Cij = Cji and Sij = Sji as follows. 
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Area under the stress strain curve is actually the strain energy stored per unit volume, So, we 

can write this stress in terms of strain and we get this; and if we take to succeed differentiation 

points with respect to εi and then with respect to εj, we get this.  

 

Similarly, we can write this σj in terms of Cji and εi; and we take second to successive 

differentiation with respect to εj and εi, we get Cji. Now, that order of differentiation is 
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immaterial and therefore, Cji = Cij. In the same way, we can also prove that Sij = Sji. The net 

result is that the stiffness matrices and the compliance matrices are symmetric.  

 

Therefore, as a consequence of this symmetry, instead of 36, now we actually need 21 

independent elastic constants to characterize an anisotropic material. That means is given the 

six components of stresses at a point, to determine the corresponding six components of strains, 

we need to know these 21 independent elastic constants.  

 

Determination of these 21 independent elastic constant is no easy task and we have discussed 

with respect to isotropic material that these elements are nothing but the functions of material 

properties. Let us now discuss the same with respect to anisotropic materials.  

(Refer Slide Time: 20:07) 

 
Now, what happens is, these anisotropic materials are also known as triclinic materials.  

(Refer Slide Time: 20:13) 
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Planes of material property symmetry 

Fortunately, in many materials there exist planes of material property symmetry. Let us first 

understand what is actually a plane of material property symmetry? Referring to the Fig…., 

with reference to 3d Cartesian coordinates (X1, X2, X3 or X, Y, Z ), suppose for a material, 

with respect to a certain plane the material properties are symmetric; say for example, X1- X2 

or the X-Y, is the plane of material property symmetry. This means that if we rotate the object 

with respect to this plane by 180⁰, then there will be no change in material properties. Referring 

to the Fig…., the stiffness or compliance matrix of the material remains same when  defined 

with respect to X1, X2, X3 or X1, X2, X3/ (X3 = − X3/), ie. the properties are symmetric with 

respect to X3 plane or X1-X2 plane.  X3 is the normal to X1-X2 plane. Generally, plane is 

represented by its surface normal. So, if X3 is the plane of material property symmetry, it 

means, the stiffness matrix Cij or compliance matrix Sij are invariant with respect to an 

inversion of X3 axis. That means, instead of X3, suppose we just invert it and we write X′3, 

there will be no change in the stiffness matrix or compliance matrix ie. the material properties 

do not change.  

 

Now, we know that the coordinate transformation from X1, X2, X3 to X′1, X′2, X′3 or say X, 

Y, Z to X′, Y′, Z′, could be written in terms of the direction cosine matrix is given by 

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

, x , y , z
, x , y , z
, x , y

(x ) (x ) (x )
(y ) (y ) (y )
(z ) (z ) (z , z )

ij

Cos Cos Cos
a Cos Cos Cos

Cos Cos Cos

′ ′ ′
′ ′

 
 =  


′
′ ′ ′   

 (Refer Slide Time: 22:33) 
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Material having one plane of material property symmetry – Monoclinic 

Referring to the Fig…., considering a material having Z- plane as the plane of material property 

symmetry. For a loaded body made of this material, the stresses are strains with respect to 3D 

Cartesian coordinates XYZ are defined as 

and 
x xy xz x xy xz

xy y yz xy y yz

xz yz z xz yz z

σ τ τ ε γ γ
τ σ τ γ ε γ
τ τ σ γ γ ε

   
   
   
        

Now, suppose the stresses and strains with respect to the 

transformed coordinate system X′, Y′, Z′ (where X′=X, Y′=Y, Z′= −Z)  

are 

/ / / / / /

/ / / / / /

/ / / / / /

 and
x xy xz x xy xz

xy y yz xy y yz

xz yz z xz yz z

σ τ τ ε γ γ
τ σ τ γ ε γ
τ τ σ γ γ ε

   
   
   
        

Since Z- plane is the plane of material property symmetry, the stiffness matrix remains same 

in both the cases we could relate the stresses and strains in both the cases by the same stiffness 

matrix as 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

C C C C C C
C C C C C C
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C C C C C C
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 
 
 
 
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    
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Now, using stress and strain transformations about the rotated axis 
/ / /

/ / /

/ / /

x xy xz x xy xz

xy y yz ij xyz ij xy y yz

xz yz z xz yz z

a a
σ τ τ σ τ τ
τ σ τ σ τ σ τ
τ τ σ τ τ σ

   −
        = = −        
   − −    

(Refer Slide Time: 23:47) 
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So we could write the transformed stresses in terms of the untransformed stresses by 

multiplying it twice by the direction cosine matrix. Similarly, we performed the strain 

transformation and we could write the transformed strains in terms of the untransformed strains 

as  
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/ / /

/ / /

/ / /

x xy xz x xy xz

xy y yz xy y yz

xz yz z xz yz z

ε γ γ ε γ γ
γ ε γ γ ε γ
γ γ ε γ γ ε

   −
   = −   
   − −    
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Now comparing the expressions for the untransformed and transformed stresses written in 

terms of elements of stiffness matrix and the corresponding strains, we could clearly see that 8 

out of 21 elements of the stiffness matrix becomes zero. That is as a consequence of existence 

of one plane of material property symmetry (where the stiffness matrix is invariant under the 

inversion of the Z- plane), 8 elements of the stiffness matrix become zero.  

 

This is a simple way of showing that the existence of one plane of material property symmetry 

leads to 8 of the 21 independent elastic constant to become zero. This could also be done by a 

tensor stiffness transformation.  

So for a monoclinic material having one plane of material property symmetry, the stiffness 

matrix is 

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0
0 0
0 0

0 0 0 0
0 0 0 0

0 0

C C C C
C C C C
C C C C

C C
C C

C C C C

 
 
 
 
 
 
 
 
    
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 (Refer Slide Time: 28:11) 

 
The stiffness matrix consists of only 13 terms or 13 independent elastic constants. Similarly, 

the compliance matrix will also have 13 independent terms. So, for monoclinic materials, 13 

independent elastic constants are required to characterize whereas in a fully anisotropic 

material (no plane of material property symmetry), 21 independent elastic constants are 

required to characterize.  

 

An example of a monoclinic material is feldspar.  

(Refer Slide Time: 29:15) 

 
Two mutually perpendicular planes of material property symmetry 

Referring to Fig…, suppose, in addition to one plane of material property symmetry (discussed 

in the previous section), there is another plane of material property symmetry which is 

perpendicular to that first plane that means, there are 2 mutually perpendicular planes of 
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material property symmetry. In such a case, it could be shown that it existence of two mutually 

perpendicular planes of material property symmetry automatically leads to the existence of the 

third perpendicular plane also to be a plane of material property symmetry. That is if Z-plane 

and Y- plane are the two mutually perpendicular planes of material property symmetry, then 

X- plane will also be a plane of material property symmetry. Such materials where there are 3 

mutually perpendicular planes of material property symmetry are called Orthotropic materials. 

In fact, there are 2 mutually perpendicular planes of material property symmetry automatically 

leads to the third plane also to be a plane of material property symmetry and it is an orthotropic 

material.  

 

Now, considering a monoclinic material with Z- plane as the plane of symmetry, we already 

obtained the stiffness matrix as 

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0
0 0
0 0

0 0 0 0
0 0 0 0

0 0

C C C C
C C C C
C C C C

C C
C C

C C C C

 
 
 
 
 
 
 
 
    

Referring to Fig.,.., suppose Y- plane is also a plane of material 

property symmetry. Then the stiffness matrix as shown above will 

remain unchanged if we do the inversion of Y-axis ie with respect 

to X′, Y′, Z′ (where X′=X, Y′=−Y, Z′= Z). The direction cosine matrix for 

the coordinate transformation from X, Y, Z to X′, Y′, Z′ is 

1 0 0
0 1 0
0 0 1

ija
 
 = − 
    

Now, if the stresses and strains with reference to X, Y, Z  and X′, Y′, Z′  are 
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/ / / / / /
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Then performing stress and strain transformations, we could relate the transformed stresses and 

strains with the untransformed stresses and strains as 

/ / /

/ / /

/ / /

/ / /

/ / /

/ / /

x xy xz x xy xz

xy y yz xy y yz
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τ σ τ τ σ τ
τ τ σ τ τ σ
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   −
   = − −   
   −  
   −
   = −   
   − −    

 
 Again because the stiffness matrix does not change under this transformation, we could relate 

the stresses and strains in the transformed and untransformed coordinates by the same stiffness 

matrix as 

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0
0 0
0 0

0 0 0 0
0 0 0 0

0 0

C C C C
C C C C
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C C
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 
 
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    
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Again by comparing the transformed and untransformed stresses expresses in terms of 

corresponding strains and the elements of stiffness matrix, leads to four more elements of the 

stiffness matrix becoming zero as follows. 

 
/

/

/

/

16

26

36

45

0
0
0
0

x x

y y

z z

xy xy

C
C
C
C

σ σ

σ σ

σ σ

τ τ

= ⇒

= ⇒

= ⇒

= ⇒

=
=
=
=  

The stiffness matrix of such a material with two mutually perpendicular planes of material 

property symmetry is 

11 12 13

12 22 23

12 23 33

44

55

66

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C CC C

C
C

 
 
 
 

      
 
 
  

=

 

Now, if we consider the third plane ie X-plane also to be a plane of material property symmetry 

and perform the same exercise, it will yield the same results meaning that the existence of two 

mutually perpendicular planes of material property symmetry automatically leads to the third 

perpendicular plane also to be a plane of material property symmetry and such a material is 

called orthotropic material. 

As a consequence of three mutually perpendicular planes of material property symmetry, total 

12 elements of the stiffness matrix become zero which means that to characterize an orthotropic 
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material, only 9 (compared to 21 for fully anisotropic) independent elastic constants are 

required. 

Examples of orthotropic materials are unidirectional lamina, rolled steel  

(Refer Slide Time: 35:13) 

 
Now, suppose in an orthotropic material one of the transverse plane is such that, in that plane 

the properties are independent of direction. Referring to Fig…, suppose in an orthotropic 

lamina, plane X-Y, plane Y-Z and plane X-Z are the three mutually perpendicular planes of 

material property symmetry.  

Now, suppose the plane Y-Z is isotropic ie., in this the material properties are independent of 

directions. That is whether it is Y-Z or Y′-Z′ (rotated by an angle θ about X-axis) the properties 

do not change. In a more simple term to understand this in Y-Z plane, Young's modulus and 

the Poisson's ratio are same in all directions and shear modulus could be expressed in terms of 

Young’s modulus and Poisson’s ratio. 

Thus, if in an orthotropic material, one of the transverse planes the material properties are 

independent of directions, that means isotropic, these are called transversely isotropic 

materials. Now, example in this case, say Y-Z is the plane of isotropy, the transformed stresses 

for a rotation in this Y-Z plane could be determined by multiplying by the proper rotation 

matrix.  

(Refer Slide Time: 37:11) 

As a consequence of this four more elements of the stiffness matrix of the orthotropic materials 

become zero thus reducing the number of independent elastic constants to 5. The stiffness 

matrix for a a transversely isotropic materials is 
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[ ]

11 12 12

12 22 23

12 23 22

22 23

55

55

0 0 0
0 0 0
0 0 0

0 0 0 0 0
2

0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

C C C

C
C

 
 
 
 
 = − 
 
 
 
    

 
Therefore, as a consequence of the fact that one of the three mutually perpendicular planes of 

material property symmetry is a plane of transverse isotropy, the number of independent elastic 

constants required to characterize the material is 5. Example of transversely isotropic materials 

is unidirectional lamina where the fibers are arranged in a square array.  

 

Referring to the figure if in a lamina the fibers are arranged in a squared regularly spaced array, 

then naturally, in the 2-3 plane, it will have same properties in the direction 2 or direction 3 or 

any other direction. Therefore, this 2-3 plane happens to be a plane of transverse isotropy and 

this is an example of transversely isotropic material. But if the fibers are not really arranged 

regularly, it may not be the plane of transverse isotropy.  

 

If all the planes are planes of material property symmetry, then it becomes an isotropic material. 

This could be again proved considering that all the planes are planes of material property 

symmetry and a consequence only 2 independent elastic constants remain all other become 

dependent and the stiffness matrix of an isotropic material looks like 
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[ ]

11 12 12

12 11 12

12 12 11

11 12

11 12

11 12

0 0 0
0 0 0
0 0 0

0 0 0 0 0
2

0 0 0 0 0
2

0 0 0 0 0
2

C C C
C C C
C C C

C C
C

C C

C C

 
 
 
 
 − 

=  
 − 
 
 −
 
   

(Refer Slide Time: 40:14) 

 
 (Refer Slide Time: 41:06) 

 
Having understood the stiffness and compliance matrix and the effect of existence of planes of 

material property symmetry, let us have a closer look at each term of the stiffness and the 

compliance matrix in terms of deciding the response of a deformable solid subjected to load. 

Referring to the Fig. … and writing the strains in terms of stresses in a loaded object as 
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11 12 13 14 15 161

12 22 23 24 25 262

13 23 33 34 35 363

14 24 34 44 45 4623 23

15 25 35 45 55 5613 13

16 26 36 46 56 6612

2

12

1

3

S S S S S Sε
S S S S S Sε
S S S S S Sε

=
S S S S S Sγ τ
S S S S S Sγ τ
S S S S S Sγ τ

σ
σ
σ

    
    
    
       
    
    
   
   
       



  

Suppose, load is applied along 1 only. Now for a fully anisotropic material all the 21 

components are non-zero and applying say only σ1 let us see how an object responds ie. what 

are the different strains leading to the deformation. It is quite clear that subjected to only σ1 

(all others are stresses are zero), because S11, S12, S13,… all these are non-zero, therefore will 

lead to all the normal strains ε1, ε2, ε3 and shear strains γ23, γ13, γ12. That means, even if we 

have applied only a normal stress along 1, that will of course lead to normal strain along 1 ε1,  

normal strains ε2 along 2, and ε3 along 3 (Poisson's effect). In addition, it will also lead to shear 

strains γ23, γ13, γ12 in 2-3, 3-1 and 1-2 planes respectively. Similarly, applying only σ2 or σ3  or 

τ23 or τ31 or τ12 will also lead to all the six strains meaning that all the stresses and strains are 

coupled and subjected to loading, an object made of anisotropic material will experience not 

only normal strains in all the three directions but also shear strains in all the planes. 

Now, let us see what is S11? S11 actually tells us, if we apply σ1, what ε1 is. That means, for a 

stress along 1, what is the stain along 1? Similarly, S22 tells us, if we apply a stress along 2, 

what is the strain along 2 and S33 tells us, if we apply a stress along 3, what the strain along 3 

is. So, these three are actually the extensional stiffness.  

Now, what is S12? If we apply a stress σ1 along 1, S12 decides what the strain along 2 is or if 

we apply a stress σ2 along 2, S12 decides what the strain along 1 is.  

 

Similarly, if we apply a stress, normal stress along 1, what the normal strain along 3 is decided 

by S13 and S23 is the coupling between normal stress along 2 and the strain along 3. Therefore, 

these S12, S23 and S13 are called extension-extension coupling.  

Now, what is S44? If we apply a shear stress τ23 in plane 2-3 what the corresponding shear 

strain γ23 is in the plane 2-3 is decided by S44. Similarly, if we apply a shear stress τ31 in plane 

3-1 what the corresponding shear strain γ31 is in the plane 3-1 is decided by S55 and applying 

a shear stress τ12 in plane 1-2 what the corresponding shear strain γ12 is in the plane 1-2 is 

decided by S66. So, these are called shear stiffness.  

What do non-zero S45 S46 and S56 mean? It means that even if we apply a shear stress in the 

plane 2-3, that will also lead to a shear strain on the other planes. If we apply a shear stress 
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along 1-2, that will not only lead to shear strain along 1-2, it will also lead to shear strains along 

2-3 and 3-1. Similarly, for other planes also. Therefore, these S45 S46 and S56 are called shear-

shear coupling, like extension-extension coupling.  

In addition to that, the fact that S14 , S15 , S16 , S24 , S25 , S26 S46 and S34 , S35 , S36 are non-

zero leads to the fact that application on normal stress leads to shear strains and application of 

shear stresses leads to normal strains and vice versa. Therefore, these terms are called shear-

extension coupling. Therefore, in a fully anisotropic material, all the stresses and strains are 

coupled.  

(Refer Slide Time: 45:55) 

 
In a monoclinic material with one plane of material property symmetry, as shown in the 

stiffness matrix some of the coupling terms becomes zero.  

(Refer Slide Time: 46:33) 

 
Similarly, in an orthotropic material with three mutually perpendicular planes of material 

property symmetry as shown in the stiffness matrix.  All the shear-extension coupling terms as 
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well as the shear-shear coupling terms become zero. That means, if we apply normal stress, 

that will lead to only normal strains and no shear strains; if we apply shear stresses, that will 

lead to only shear strains and no normal strains. Also there is no shear-shear coupling. If we 

apply shear stress in 1-2 plane, that will lead to shear strain in 1-2 plane only and it will not 

lead to shear strain in 2-3 or 3-1 plane. So, in an orthotropic material, shear-extension coupling 

is not there, shear-shear coupling is not there, but extension-extension coupling is there; that is 

because of the Poisson's effect.  

Now, natural question comes that the same is also true for isotropic material. Even in isotropic 

material, if we apply normal stresses, that leads to only normal strains and there is no shear 

strain and vice-versa. Then, what is the difference? Difference is that, in isotropic materials, 

because of the normal stress is direction 1, the normal strains in the transverse directions (2 

and 3) are same meaning, S12= S13, but these are not same for an orthotropic material where 

S12= S13.  

 

(Refer Slide Time: 47:14) 

 
In a transversely isotropic material, one plane actually behaves as isotropic and therefore, in 

that plane the relationship between the elastic constants exists like the modulus of rigidity is 

actually a function of Young's modulus and Poisson's ratio.  
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