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Interlaminar Stresses- Delamination 

Hello and welcome to a new module “Interlaminar stresses in laminates”. So, in the last 
module in macromechanics of laminates the classical lamination theory was discussed 
in details to obtain ABBD matrix for a laminate. Based on ABBD matrix, special cases 
of laminate stiffnesses and different types of laminates, symmetric laminate, anti-
symmetric laminate, quasi isotropic laminate etc, their importance have been discussed. 
Then to determination of the stresses and strains in each ply of a laminate has been 
discussed. From those stresses and strains in each ply, determination of ply failure and 
then laminate failure using appropriate failure theories were also discussed. Strength of 
laminate subjected to mechanical or thermal or hygroscopic load or a combination of 
thermo-hygro-mechanical loading was also understood in light of classical lamination 
theory. While discussing classical lamination theory, the stresses are considered to be 
only in plane in each lamina,  

 (Refer Slide Time: 02:25) 

 
In classical lamination theory one of the key assumptions is that each lamina of the 
laminate is subjected to only in-plane stresses. With reference to the figure if x-y 
represent the lateral dimensions of a laminate and z- is the thickness direction, then the 

lamina the stresses are only σx, σy and τxy and no out-of-plane stresses. While this may 

be true for thin-walled structures within plane loading, but for a layered laminate out-
of-plane stress may be induced from in-plane loading. And this is more so because in a 
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laminate the adjacent plies may have different thermo-elastic properties and that might 
lead to interlaminar stresses especially near the free edge.  

These interlaminar stresses actually lead to separation of adjacent laminae or ply which 
is called delamination. This is very important as it is of the unique mode of failure in 
laminated composite structures. Therefore, these interlaminar stresses which are 
actually not considered in classical lamination theory must be addressed and understood. 
Classical lamination theory does not consider transverse shear also. The transverse shear 
is neglected because the interface was considered thin and non-shear deformable. The 
classical lamination theory actually, does not satisfy the stress boundary conditions.  

Referring to the Fig. the laminate is subjected to only uniaxial load in x- direction, Nx. 
That means the edges at x=0 and x=a are subjected to traction. However, the other two 
edges at y=0 and y=b are actually free edges, ie. free from any load. They are neither 
subjected to any shear or traction load.  

Now when analysing this laminate using CLT, we get σx, σy and τxy as shown. Along 

the width of the laminate, since these two edges are free edges, therefore at these two 

edges τxy = 0, σy =0 following stress boundary conditions. However, classical 

lamination theory does not predict that. Classical lamination theory gives us a value of 

τxy, σy, which are constant throughout the lamina. Therefore, it does not satisfy the stress 

boundary conditions, which is essential for any elasticity problem. These are some of 
the limitations of the classical lamination theory. But it is observed that because of the 
adjacent plies may have different thermo-elastic properties, therefore even subjected to 
in-plane loading there may be out-of-plane stresses especially at the free edges. These 
out-of-plane stresses are very important as far as the design of the laminate is concerned 
because they lead to a unique failure mode called delamination which is actually 
separation of the adjacent plies. Therefore, due considerations must be given to 
understand this and to incorporate this in design of laminated structure. Therefore, in 
this lecture, these interlaminar stresses and the mechanics of development of such 
interlaminar stresses will be developed.  

(Refer Slide Time: 07:40)  
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Now since we have been discussing on the in-plane and out-of-plane stresses, let us try 
to understand what exactly are the out-of-plane stresses and in-plane stresses with 
reference to a laminate. As shown in the Fig., consider this laminate say x, y, z are fixed 
at the reference plane, which is the mid plane of the laminate. Considering a small 

volume element from the laminate, x-y is the in-plane. Therefore, σx is the in-plane 

normal stress. Similarly, σy is another in-plane normal stress and τxy is the in plane shear 

stress. Equality of cross shear tells τyx = τxy. Therefore, the σx, σy and τxy are the in-

plane stresses. 
Then what are the out-of-plane stresses with reference to this coordinate system x-y- z? 

Again, considering the same small volume element, σz is the out-of-plane normal stress 

which is definitely not in the x-y plane and is perpendicular to the x-y plane. Then we 

have shear stress in the z plane along x direction, τzx or x plane z direction, τxz they are 

equal because of equality of cross shear. Similarly, shear stress in the z plane and along 

y direction τzy or y plane z direction, τyz are equal due to equality of cross shear. 

Therefore, these three stresses σz, τxz and τyz are out of plane stresses. Now with 

reference to a laminate what the stresses do, the in-plane stresses are responsible for in-
plane strains like it could be extension of stretching in that plane. Whereas the out-of-

plane stresses, suppose σz if it actually acts at the interface it will try to separate two 

adjacent plies. Similarly, τxz if it actually acts at an interface it will try to have relative 

sliding motion between two adjacent plies. Similarly, τyz will also try to tear one layer 

above the other.  So, the net effect of these out-of-plane interlaminar stresses at the 
interface are actually to separate the two adjacent laminae.  Therefore, this leads to what 
is called delamination and it is an important mode of failure  which needs to be actually 
considered.  
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So there are three out-of-plane stresses, one normal and two shear stresses and the effect 
of those out-of-plane stresses when they act at an interface is to separate two adjacent 
lamina leading to what is known as delamination. Now Let us try to understand why 
these out-of-plane stresses do exist.  

(Refer Slide Time: 15:06)  

 
So, to understand this later we will start with equilibrium equations, okay. Referring to 
the Fig. the width of the laminate is say 2b. The length of the laminate is say L and the 
thickness is h.  
Now considering a laminate subjected to only Nx, from classical lamination theory, only 

σx, σy and τxy could be determined and it does not yield the other three out-of-plane 

stresses. However, we know that the stresses induced must satisfy the stress equilibrium 
equations.   
Since it is uniaxial loading, it may be assumed that stresses are independent of x. 
Therefore, the stresses are independent of x.  Now considering stress equilibrium 
equations in the absence of body forces,  
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Now since the laminate is subjected to uniaxial load and it is assumed that the stresses 

are independent of x, therefore 
, ,xyx xz

x x x
τσ τ∂∂ ∂

∂ ∂ ∂ are zero and it follows as 
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From (4), it could be seen that interlaminar shear stress τxz at any z will exist provided 

there is a gradient of τxy with y,ie.  
0xy

y
τ∂

≠
∂ . If 

0xy

y
τ∂

=
∂  there will be no τxz. So, the given 

lamina we can find out what is τxy. Now whatever is the value of τxy, at the two edges 

τxy must be 0. That is the stress boundary condition because no load is applied on those 

edges. Therefore, 
0

y b
xyτ

=±

=
. Now we find out τxy using classical lamination theory and 

there is a
xy

y
τ∂
∂  at the region near the free edges which is not zero leading the to existence 
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of τxz. Therefore, even though there is no τxz here, because at this region there is a 
xy

y
τ∂
∂ , 

therefore there is τxz as a function of z near the free edge.  So, this is precisely the reason 

why at the free edge there will be out-of-plane shear stress τxz. Now for 
xy

y
τ∂
∂ to exist 

there must be τxy. If τxy itself is not there then that 
xy

y
τ∂
∂ is not there. So, mathematically 

we can show that at the free edge there will be τxz.  

(Refer Slide Time: 27:42)  

 
 

Similarly from (5), it is clear that if there exists a gradient of σy with respect to y, 
0y

y
σ∂

≠
∂

that leads to τyz at a particular z. Now let us try to understand what this 
y

y
σ∂
∂  means. 

Again, for a given laminate, from classical lamination theory if find out  σy. But we 

know that the two free edges at y = ±b must be free from stresses and they must satisfy 

the stress boundary condition. Therefore, at y = ±b, σy = 0.  

So that means, at this region near the free edge there is a nonzero stress gradient 
0y

y
σ∂

≠
∂
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. Equation (5) tells that if there is 
y

y
σ∂
∂ which is nonzero that leads to τyz. Therefore, there 

will be τyz. So, at the two free edges there will be interlaminar shear stress τyz due to 

0y

y
σ∂

≠
∂ . Now for that there should be σy. If there is no σy there is no 

y

y
σ∂
∂ . Therefore, 

away from free edge there is no τyz. But near the free edge where there is a steep gradient 

of 
y

y
σ∂
∂  there is τyz. So, near the free edge there are interlaminar shear stresses because 

there are stress gradients of 
xy

y
τ∂
∂  and 

y

y
σ∂
∂  exists. Away from that because there is no 

stress gradient, therefore there is no interlaminar shear stress. These are the free edge 
interlaminar shear stresse. So now let us turn to third equilibrium equation. Now this 

equation (6) shows that if there is a nonzero 
yz

y
τ∂
∂  that will lead to a σz. Now what is 

yz

y
τ∂
∂

, we have already seen from (5) that in the region near the free edges, there is a 
yz

y
τ∂
∂ . 

Because τyz increases from 0 to maximum value in this region. Therefore, we can see 

that in this region 
yz

y
τ∂
∂ exists. Therefore, that leads to a σz. So, we could now understand 

from the equilibrium equations, why three out-of-plane interlaminar stresses, one 

normal stress and two interlaminar shear stresses. Now what are the reasons? τxz is 

induced because of the existence of 
xy

y
τ∂
∂ , τyz is induced because of the existence of 

y

y
σ∂
∂

, and σz is induced because of the existence of 
yz

y
τ∂
∂ .  

So, having understood that why these interlaminar stresses are actually induced, now let 
us see that how this actually happens.  

(Refer Slide Time: 39:34)  
 
Mathematically using equilibrium equations we could see that interlaminar stresses are 
actually induced. Now suppose, we consider a symmetric angle ply laminate subjected 

to only Nx, Two adjacent laminae (+θ and −θ) are shown.  

Therefore, for this laminate, ABBD matrix could be obtained. Now because it is a 
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symmetric laminate subjected to only in-plane load, we can relate the axial, in-plane 
force to the in-plane strains (decoupled) as. 
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Now from this could see that subjected to Nx there will be o
xε , there will be 

o
yε , but there 

will be no 
o
xyγ because [ ]s

θ θ+ −  is a balanced laminate. Now these mid surface strains 

will also be the strains in all the layers because there are no curvatures. Now from the 

strains, we can find out the stresses σx, σy, τxy in each lamina by multiplying the strains 

with the corresponding reduced transform stiffness matrix for that lamina as shown 
below. 

.  

Therefore, there will be, a normal stress σx at + θ and − θ layer and they are equal. 

There will be no normal stress in the y direction σy=0 in both + θ and − θ layers. But, 

due to existence of lamina level shear extension coupling [Q16 and Q26], there will be 

shear stress τxy, in both the layers ie. τxy≠0 in both + θ and − θ layer but τxy(+θ) 

is positive and τxy(−θ) is negative.  Even though there is no mid surface shear strain, 

but there will be shear stresses in each + θ and − θ layers.  
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In each layer there will be shear stresses corresponding to the normal strains. So, there 

is τxy. Now because there is τxy, therefore at the free edges τxy has to drop down to 0.  

Therefore, there will be 
xy

y
τ∂
∂ . Now why this τxy, nonzero τxy is developed because there 

is a shear extension coupling. This is due to existence of shear extension coupling in + 

θ and −θ layers and the shear extension coupling of + θ is actually opposite 

to that in −θ. Therefore, there is a difference in share extension coupling, and this 

difference in responsible for τxz. Similarly considering a specially orthotropic laminate 

[0/90]s subjected to only Nx as shown. Now because it is a symmetric laminate 
subjected to only in-plane load, we can relate the axial, in-plane force to the in-plane 
strains (decoupled) as. 
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Now from this could see that subjected to Nx there will be o
xε , there will be

o
yε , but there 

will be no 
o
xyγ because it is a specially orthotropic laminate and A16 and A26 are zero Now 

these mid surface strains will also be the strains in all the layers because there are no 

curvatures. Now from the strains, we can find out the stresses σx, σy, τxy in each lamina 

by multiplying the strains with the corresponding reduced transform stiffness matrix for 
that lamina as shown below.(Refer Slide Time: 50:57) 
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Therefore, there will be, σx in both 0° and 90⁰layers. Also, σy will be there for 0° layer 

and 90⁰ layer, but for 0° layer this will be positive and for 90⁰ layer it will be negative 

and there is no τxy  since there is no lamina level shear extension coupling (Q16 = Q26=0). 

Because there is σy, therefore there is 
y

y
σ∂
∂ . When they are loaded along x, because of 

the Poisson’s ratio, there will be contraction in the y- direction. This contraction in the 

y- direction for the 0° layer and for the 90° layer are different because their Poisson’s 

ratios are different.  Now, xy (0°) ≠ xy(90⁰).  

( ) ( ) ( ) ( ) ( ) ( )0 90 0 90 0 90xy yx xy xy xy xy xyν ν ν ν ν ν ν= −=→ ≠ → ∆     

 

Because they are not equal, therefore they are not allowed to contract by the same 

amount in the lateral direction and that leads to existence of σy.  So therefore, 
y

y
σ∂
∂ exists. 

And because of this there will be τyz.  Therefore the reason for existence of σy is due to 

the mismatch in Poisson’s ratios between the adjacent layers. So τyz is due to the 

mismatch in Poisson’s ratio of adjacent plies. So, we understood from equilibrium 

equations that why τxz and τyz are developed. τxz is because of the mismatch in the shear 

extension coupling coefficient and τyz is because of the mismatch of the Poisson’s ratio. 
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Similarly, because τyz exists, 
yz

y
τ∂
∂  exists leading to the existence of σz. So, σz is also due 

to mismatch in Poisson’s ratio of adjacent plies. And they are at the free edge, okay. If 
it is not free edge then at that edge the stresses will not drop down to 0 okay. So, it is 
there in the free edge. Now free edge may not be always at the edges of the laminate. 
Suppose you have a laminate, I can show you some of the free edges.  

(Refer Slide Time: 59:53)  

 
Suppose in a laminate there is a hole. This also forms a free edge, an edge which is free, 
which is not subjected to any load or traction. So, this phenomenon of development of 
interlaminar out-of-plane stresses will also be seen at this free edge of the hole along 
with the free edges. Now for the sake of explanation an angle laminate was considered 

to showt how τxz is developed and a cross ply laminate has been considered to show how 

τyz and σz are developed.  

Now for any general laminate, all these three stresses may exist at the free edges.  For 

example considering a [0/θ1/90/θ2]s, at each interface, between 0° and θ1 there will be, 

between θ1 and 90°, between 90° and θ2 there will be interlaminar stresses. So, all these 

interlaminar stresses shear stresses τxz and τyz and normal stress σz, may simultaneously 

exist at the free edges. So, depending upon what is the magnitude of these interlaminar 
stresses, delamination will initiate at a particular interface. Therefore, it is very 
important to understand how the interlaminar stresses are induced which might lead to 
the failure of the laminate. Also, it is decided by the stacking sequence, because at a 
particular interface between two adjacent laminae whether interlaminar stresses will be 
there or not. If it is there, what will be the magnitude is actually decided by the stacking 
sequence.  Therefore, by changing the stacking sequence we can change the interlaminar 
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stresses. For example, if σz is negative for a stacking sequence and for another sequence 

suppose σz is positive so we will prefer the negative σz because positive σz is actually 

leads to delamination whereas negative σz does not have any influence on the 

delamination. So, it is important to understand the influence of stacking sequence on 
this interlaminar stresses which are responsible for delamination.  
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