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We have been discussing the failure analysis of laminate and in our last class we discussed how 

to calculate the first ply failure load of a laminate. We understood that with the help of an 

example and in continuation to that in this lecture we shall discuss the analysis of laminate 

under hygro-thermo-mechanical loading. That means what happens if a laminate is 

simultaneously subjected to mechanical load, thermal load as well as hygroscopic load.  

So, we will try to understand this with the help of an example. In our previous lectures, we 

have understood how the hygrothermal residual stresses are actually induced in different 

lamina of a laminate and in our last lecture we understood how to determine the first ply failure 

load of a laminate subjected to mechanical loading. In this lecture, we will try to see when a 

laminate is actually subjected to both hygro-thermo-mechanical loading, how do we carry out 

the failure analysis. 
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So, we have taken an example to determine the first ply failure load of a laminate with a given 

the stacking sequence under thermal gradient of 50°C. This is a glass/epoxy laminate with the 

stacking sequence of [0/±45/90]s, This is a quasi-isotropic laminate.  

So, altogether there are 8 layers in this laminate and it is a symmetric laminate. From our last 

lecture, we know how to determine the first ply failure load Nx.  

So, here we need to determine the first ply failure load Nx when this laminate is experiencing 

a ∆𝑇𝑇 = 50℃ . So, we will approach this problem as two individual problems. First, we will 

find out the first ply failure load without having any thermal gradient or temperature gradient 

∆T. And then we will see separately what happens if there is only ⊗T and then we will analyse 

how the first ply failure load gets influenced because of the presence of ⊗T.  

First, given the lamina properties that is the engineering constants E1, E2, 12, G12, we can 

calculate the reduced stiffness matrix, using the formulae in terms of engineering constants as 
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So, for unidirectional glass-epoxy lamina, this is the reduced stiffness matrix [Q] is 

0°

39.16 2.18 0
8.39 0 GPa

4.14
Q

 
   =   
   . 

(Refer Slide Time: 05:05)  

 

Next, the reduced transform stiffness matrix �𝑄𝑄� for all the layers are evaluated using  
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( )
( ) ( )
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Q Q Q Q s c Q Q Q s c
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Q Q Q Q Q c s Q s c

= + + +

= + − + +

= + + +

= − − − − −

= − − − − −

= + − − + +  

In this case, there are 8 layers, therefore for all the 8 layers or for all 8 lamina we determine 

reduced transform stiffness matrix �𝑄𝑄�k (k=1,2,3 …, 8).  

0° 90

45° -45°

39.16 2.18 0 8.39 2.18 0
8.39 0 GPa 39.16 0 GPa

4.14 4.14

17.24 8.9 7.7 17.24 8.9 7.7
17.24 7.7 GPa 17.24 7.7 GPa

10.7 10.7

Q Q

Q Q

   
      = =      
      

−   
      = = −      
      



 

Having known the values of zk and zk-1 for each layer, we can now calculate [A], [B] and [D] 

matrix using the formulae. 

[ ] 1 0° 45° -45° 90°
1

( ) 2 0.125
n

k kk
k

A Q z z Q Q Q Q−
=

          = − = + + + ×          ∑  
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[ ]
20.50 5.54 0

20.50 0
7.42

A GPa mm
 
 = − 
    and 

[ ] 1

0.0525 0.0142 0
10.0525 0

0.1347
A

GPa mm
−

− 
 =   −
    

Here, it is a symmetric laminate subjected to only Nx, so [B] and [D] are not required. Having 

calculated the [A]�1 we could determine the effective Young's modulus in extension as 

*
11

1 1 19.05 
1 0.0525xE GPa

h A
= = =

⋅ ×  where h is the thickness of the laminate, 𝐴𝐴11∗  is the first 

element of the inverse of [A]�1. Note that actually we can also calculate [B] and [D] also but 

because it is symmetric we know that [B] will be 0.  

Also, since our objective is to determine the first ply failure load when the laminate is subjected 

to only normal load Nx and it is symmetric therefore [D] is not required.  For a general laminate, 

we will actually calculate all the [A], [B] and [D].  

(Refer Slide Time: 09:01) 

 
Having known ABBD matrix and having known the applied force ie. the force resultants and 

moment resultants we could calculate the mid surface strains and curvatures by taking inverse 

of ABBD determine the mid surface strains and curvatures as 
1o oN A B A B N

M B D B D MK K
ε ε −
          

= => =          
            
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Now in this case we have considered Nx = 100 N/mm. In the present case, it is a symmetric 

laminate only subjected to Nx and hence we could calculate mid surface strains as ([B] is zero 

and {M} is not applied) from  

{ } [ ]{ } { } [ ] { }1o oN A A Nε ε −
= => =  

1

100

20.50 5.54 0
0 20.50 0
0 7.42

20.50 5.54 0 100
20.50 0 0

7.42 0

x

o
x x

o
y
o
xy

o
x
o
y
o
xy

N N mm

N ε
ε
γ

ε
ε
γ

−

=

    
    =    
         

     
    =    
         . 

Because Nx is the only nonzero, therefore by solving these simultaneous equations we can find 

out 

o
x
o
y
o
xy

ε
ε
γ

 
 
 
 
  . But in general, we will find out the mid surface strains and curvatures using 

[ABBD]�1. In this particular case Kx = Ky = Kxy = 0 (no curvature) because there is no bending 

extension coupling (symmetric laminate). Because it is symmetric laminate and only Nx is 

applied, therefore there is no curvature. So, we calculated the mid surface strains directly. 

(Refer Slide Time: 12:02) 

 
Now, using mid surface strains and curvatures we could determine the strains in all the plies or 

layers, using 
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0

0

0

x x x

kxy

y

x

y y

y yx

K

K
z K

ε

γ

ε
ε ε

γ

     
     = +     
     
      

In this particular case because {K} = 0 implies that strains in all the layers in global coordinates 

(x-y) same as the mid surface strains, but in general it may not be so.  

So, we can find out actually the strains in all the layers using this formula, in this case n = 8. 

So, in all the 8 layers we can find out the strains. But in this particular problem because it is a 

symmetric laminate and only subjected to Nx, there is no curvature and hence the strains [in 

the global axis x-y] in all the layers are same as that of the mid surface strains. In general strains 

in all the layers could be obtained from the mid surface strains as 

( 1, 2,..., )

o
x x x

o
y y k y

o
xy xy xyk

K
z K k n

K

ε ε
ε ε
γ γ

     
     = + =     
     
         

(Refer Slide Time: 15:22) 

 
So, the first layer is 0°, second layer is 45°, third layer is –45°, fourth layer is 90° and fifth 

layer is again 90°, sixth is –45°, seventh is 45° and eighth is again 0°. So, in each of these layers 

we know the strain in the analysis axes (x-y).  

Then knowing these strains, we can calculate the material axes strain in all the plies using this 

strain transformation because we know that k (fiber orientation) for each ply and therefore we 

know the transformation matrix and using that we could determine the strains in the material 
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axes in all plies. Now, in this particular case there are 8 plies, four above the middle surface 

and four below it and they are symmetric.  

12

2 2
1

2 2
2

2 2

-2
2

- -
2 2

x

y

k

xyk

k

c s sc
s c sc
sc sc c s

ε ε
ε ε
γ γ

  
    
    =    

        
     

Therefore, in the first and eighth layer which has 0° layers, the strains are 

( )

2 2
1

6
1

6
2

12 12°

2 2
2

2 2

0

5262.3-2 10
0° 1422.1 10 ;

0
1&

2
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-

2
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x

y

c s sc
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θ

ε
ε

γ γ

ε
ε ε

γ

ε −

−

=

  
    
    =    

        
  

×
− ×



=
=

=

 

Of course, you can see that these are same as xy because 0° means the principal material 

directions do coincide with the global axis. Then in the 45° layers these are the material axes 

strains are calculated as 

( )

2 2
1 1

2 2
2 2

2

6

6

6
12 12

2

5°4

1920 10
45° 1920 10

6684

-2
2 &7 : 2

.4 10
2 2

- -

x

xy

y

c s sc
Plies s c sc

sc sc c s
θ

γ γ γ

ε ε ε
ε ε ε

−

−

−

=

  
    
    =    

= ×
= ×

= −        
  

×
  

(Refer Slide Time: 17:34) 

 
In the −45⁰ (3rd and 7th layers) and in the 90° layers (4th and 5th layers), the material axes 

strains are calculated as 
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( )

2 2
1

2 2
2

2 2

4

6
1

6
2

6
12 125°

-2
3&

1920 10
6 :45° 1920 10

6684.4 1
2
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2 2

-

x

x

y

y
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Plies s c sc

sc sc c s
θ

ε
ε

γ γ

ε
ε ε

γ

ε −

−

−

−

=

  
    
    =    

= ×
− = ×

=     ×   
     

( )

2 2
1

2 2
2

2 2
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6
1

6
2

12 12°

-2
4 &5 : 2

-

1422.1 10
90° 5262.3 10

0
2 2

-

x

y
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c s sc
Plies s c sc

sc sc c s
θ

ε
ε

γ γ γ

ε ε
ε ε

−

=

−

  
    
    =    

        
  

= − ×
= ×

=
  

As could be seen from these calculations that in the 0° and 90° layers there is no shear strain 

because these are special orthotropic lamina therefore there is no shear extension coupling. On 

the other hand for the +45⁰  and −45⁰ layers, there are shear strains even though it is subjected 

only Nx because it is an angle lamina. So, there are shear strains in +45⁰  and −45⁰ laminae.  

(Refer Slide Time: 18:23) 

 
Therefore, from the material axes strains we can now calculate the stresses in the material axes 

in each ply by multiplying the material axis strain with the reduce stiffness matrix as follows 

( ) [ ]
o o

1 1 1

2 2 2

0 012 12 12

20
1

2.97
0° 0.4& :

0
8 6Plies Q

MPa
MPa

MPa

σ ε σ
σ ε σ
τ γ τ

   
   = →   
   
  

=

=

= −
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202.97 0.1911
1062
0.46 0.0039
118

0 0
72

LT

TC

S

SR

SR

SR

= =

−
= =
−

= =
 

( ) [ ]
12 12 12

1 1 1

2 2 2

45° 45°

79.37
45° 20.29

27.68
2 &7 :
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MPa
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σ ε σ
σ ε σ
τ γ τ

   
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=
=
= −     
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−
= =

−  
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   = →   
   
  

=
=
=

−

 

79.37 0.0747
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20.29 0.6545

31
27.68 0.3844
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S

SR

SR

SR

= =

= =

= =
 

( ) [ ]
12 12 1290° 90

1

°

1 1

2 2 2

4
4 &5

4.22
90° 4 0: 1. 5

0
Plies Q

MPa
MPa

MPa

σ ε σ
σ ε σ
τ γ τ

   
   = →   
   
  

−

=

=
=

 

44.22 0.0725
610

41.05 1.3242
31

0 0
72

LC

TT

S

SR

SR

SR

−
= =

−

= =

= =
 

Having calculated the materials axes strains in each lamina we know that a lamina could fail 

in five probable failure modes like longitudinal tensile (LT), transverse tensile (TT), 

longitudinal compressive (LC), transverse compressive (TC) and in-plane shear (S). 

Comparing these stresses with the corresponding strengths will tell us in which mode the 
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particular lamina might fail. Therefore, we also evaluated the strength ratio for each mode as 

shown. 

What is the significance of strength ratio? If the strength ratio is 1, it means the lamina will fail 

in that particular mode. It is important to note that the strength ratio is obtained by dividing the 

stress by the corresponding strength (which is decided by the sign of the stress).  

(Refer Slide Time: 23:48) 

 

 
 (Refer Slide Time: 24:07) 

Now, having known the strength ratios we now tabulate the strength ratios for all the plies. 

Please see that there are actually 8 plies, but we have tabulated only 4, you can tabulate the 

other 4 also. Because it is symmetric it will be exactly same. The stresses will also be exactly 
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same. Six is –45°. Seven is 45° and eight is 0°, so exactly same. The stresses will be exactly the 

same and so will be the strength ratios.  

Now what we have done here is we have first plotted 1 , 2, 12 and the corresponding 

strength ratios in longitudinal, in transverse and in shear and for this 0° layer we have compared 

all the strength ratios and you could see that among these three strength ratios longitudinal, 

transverse and shear this is the highest among these three. Therefore, if the 0° layer fails it will 

fail in this mode longitudinal tensile.  

The mode corresponding to the highest strength ratio will be the first mode to reach failure.  

We have arbitrarily taken a load Nx = 100 N/mm and corresponding to this the highest strength 

ratio is 1.3242 which corresponds to TT mode of failure of the 90° plies. Therefore, Nx at which 

the 90° plies will fail, meaning SR = 1 in transverse tensile is obtained as Nx at failure = 

100/1.3242= 75.52 N/mm and this is the first ply failure load.   

Among these 8 plies two 90°s plies will fail first in transverse tensile and therefore this is the 

first ply failure load. This we have done earlier also and  it is straightforward. Now, our problem 

here was to determine the first ply failure load when this particular laminate is actually 

experiencing a ⊗T = 50°C.  

(Refer Slide Time: 28:24) 

 
Therefore, what we do is now we take this as a separate problem. This laminate is subjected to 

∆𝑇𝑇 = 50℃  and therefore we would like to determine due to this ∆𝑇𝑇 = 50℃  what are the 

residual stresses induced in each ply of this lamina. We have done it earlier. So, following the 

same procedure first we determine for each ply the coefficient of thermal expansion in the 

global axis. 
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How we know that the coefficient of thermal expansion in the material axes and they follow 

the same transformation as that of strain we could obtain the coefficient thermal expansions in 

x-y for each ply (0°, 45°, –45° and 90°) as 

{ } [ ]
x 1

-1

y 2

0 90

45

xy

6 6

6 6

0
2

8.6 10 22.1 10
22.1 10 m/m/°C 8.6 10 m/m

α α
α T

/°C

    15.35
    15.35
 

α
α

0

  -13.

0

XY

x x

y y

xy xy

x

y
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α

α α
α α
α α

α
α
α

− −

− −

 
   
   = =   
   

  
 

      
       = =       
 

×

     
      

 
 

×

= 


×




×



 



6 6

45

    15.35
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50    13 0
0 1

.5
1 0

x

y
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α
α
α

− −

−

    
     × = ×     
     
       
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So, having known this 〈x, 〈y, 〈xy for each layer we could now determine the equivalent thermal 

load and moments due to ∆𝑇𝑇 = 50℃. Now it is a symmetric laminate, therefore there will be 

no moment but just for the sake of completeness we have shown both equivalent thermal load 

and moment (though moment comes out to be 0 anyway). 

8 8
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14732
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x
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   
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   
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(Refer Slide Time: 30:33) 

 
So, once we know the equivalent thermal forces and moments, we can now use force moment 

and strain curvature relationship using ABBD matrix and from this putting the values of 

equivalent thermal loads Nx, Ny and Nxy we could calculate the mid surface strains and 

curvatures. Iit is a symmetric laminate therefore curvature will be zero, though for the sake of 

completeness we have shown it here as 
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Having determined the mid surface strains due to ⊗T we now determine the strains in all the 

layers using this formula as 

4 4 4 4

4 4 4

Strain in plies in X-Y coordinates, 50°C ,

1 2 3 4
0 45 45 90

5.67 10 5.67 10 5.67 10 5.67 10
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o
x x
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y y x
o

xy xy xy y

x

y

for T

Ply
K

z K
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ε ε θ
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γ ε
ε ε
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− − − −
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∆ =

      ° ° − ° °
     = + → × × × ×     
      × × × ×     

4

0 0 0 0xyγ  

Because there is no curvature, therefore four strains in all the layers in the global axes (x-y) 

will be same as that of the mid surface strains. Strains in all the layers in the global axis xy due 

to ∆𝑇𝑇 = 50℃  is listed here. It is obvious for 0° and 90° layers there is no shear strain because 

there is no shear extension coupling. But for the 45° and –45° there is xy. As could be seen 

that in the mid surface strains due to ⊗T there is no xy. The reason is that the laminate is 

actually a quasi-isotropic laminate, therefore subjected to Nx there is no xy. Now knowing the 

mid surface strains we could find out the strains in all the layers. Because the curvature is 0, 

therefore the strains in all the layers are same as that of the mid surface strains. 

So, we have tabulated the strains in all the layers in the global axis x-y as 
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4 4 4 3

3 4 4 4

4

Free thermal strains in plies in X-Y coordinates,

1 2 3 4
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×

 
 
 
 
 

46.75 10 0−×  

That means all the layers will experience the same strains in x and y directions, but suppose 

each of these individual layers are free and are actually subjected to ⊗T, they would have 

experienced different strains (called free thermal strain) because there is no constraint, but now 

all the adjacent layers are actually constrained due to perfect bonding with the adjacent layers 

and are not allowed to experience free thermal strain. The difference between the free thermal 

strain and the common strain is nothing but the residual strain in each layer. We have discussed 

this earlier also. Therefore, the free thermal strains in X-Y coordinates are actually calculated 

as ⊗T  〈 as shown above. 

(Refer Slide Time: 33:59) 

 
And the difference between the free thermal strain and the common strain is the residual strains. 

Therefore, the residual strain in each ply is now obtained by subtracting the free thermal strains 

from the common strains as tabulated here.  
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Then, once we have the residual strains, we can now calculate the residual stresses in each ply. 

So, the residual stresses in global coordinate (x-y) are calculated by multiplying the residual 

strains with the reduced transform stiffness matrix for that particular ply as shown and tabulated 

below. 
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And once we have the residual stresses, we could now calculate the residual stresses in the 

materials axes using the stress transformation in each ply as follows. 
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These residual stresses in the material axes of each ply are solely due to ⊗T. Now, because of 

⊗T, we could obtain the residual stresses. Now our problem was to determine the first ply 

failure load or rather to understand the influence of ⊗T on the first ply failure load.  

(Refer Slide Time: 35:31) 

 
Now, if you remember when we have taken 100 N/mm as Nx what were the stresses? The 

possible mode of failure was the transverse tensile in the 90° layer. The 90° layer would have 

failed first in the transverse tensile mode and the stress 90° layer was 41.1 MPa. So, suppose 

in addition to this Nx =100 N/mm, this laminate is now also experiencing ∆𝑇𝑇 = 50℃  , then 

there is an additional stress of 4.21 MPa in the 90° layer but this is compressive and 

2 2 2

Total stress in the transverse direction in 
(d  

90° pl
ue to Nx) (Residual thermal) 41.1 ( 4.21) 36.

y
89R MPaσ σ σ= + = + − = .  

So, there is a net decrease in the total stress in the transverse direction of the 90° layer. Now, 

to determine the first ply failure load, there are two components, one is ⌠2 due to Nx, another 

is ⌠2 because of ⊗T; which is the residual stress. Now, this residual thermal stress is due to 

∆𝑇𝑇 = 50℃  and it does not change with Nx, it is independent of Nx.  On the other hand, the ⌠2 

due to Nx varies linearly with Nx. Because of 100 it is 41, if you make it 200 it will be 82…. 

Therefore, the condition for failure is that the total stress ⌠2 due to Nx and due to residual 

thermal is equal to the (𝜎𝜎2𝑇𝑇)𝑢𝑢. that is the ultimate transverse tensile stress which is 31 MPa. 

Therefore, since four ∆𝑇𝑇 = 50℃  this is constant, therefore the ⌠2 due to Nx required for this 

failure condition to occur is calculates as 
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Therefore, this is the first ply failure load. Now, we can clearly see here that because the 

presence of ⊗T, the first ply failure load has increased from 75.5 N/mm to 85.67 N/mm. 

Because the ∆𝑇𝑇 = 50℃   actually leads to a compressive residual stress in the 90° ply in 

transverse direction, therefore this actually opposes the failure in the transverse tensile direction 

and therefore there is an increase. Suppose, we would have made ∆𝑇𝑇 = −50℃   then what 

would have happened? Then in that case the residual thermal stress in the in the 90° layer would 

have been tensile and that would have been added and that would have led to reduced first ply 

failure load.  

You may try that putting ∆𝑇𝑇 = 50℃   what is the first ply failure load? Therefore, what we 

understand is that the residual thermal stress does influence the first ply failure load. Similarly, 

we can also calculate the last ply by failure load and we can see the influence of the residual 

thermal stress. In the same manner, we can also see how the residual hygroscopic stress also 

influences the first ply filler load.  

Now, doing it manually is tedious, therefore you can just write a small code to determine the 

first ply failure load under only mechanical loading or under combined mechanical and thermal 

loading or under combined mechanical, thermal and hygroscopic loading.  
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