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Hello and welcome. We have been discussing the macro mechanical analysis of laminate and in 

last few lectures, the classical lamination theory has been discussed and the constitutive relation 

for a layered laminate has been obtained where the force and moment resultants were related to 

the mid surface strains and curvatures by the so called 
A B
B D
 
 
   matrix. Using this, the 

determination of strains and stresses in each lamina of the laminate was also discussed. 

Depending upon the values of the elements of the 
A B
B D
 
 
   matrix, some special cases of laminate 

stiffnesses and some special types of laminates viz. symmetric laminates anti-symmetric laminates, 

balanced laminates, quasi-isotropic laminate etc and their significance in terms of achieving the 

desired stiffness and behavior of laminates under load have also been discussed. Then, when a 

laminate experiences a temperature change or a moisture concentration change the residual stresses 

induced in the laminate known as hygrothermal stresses have been discussed in the last lecture.  

In today’s lecture two problems will be solved with an objective to understand the steps in analysis 

of laminate subjected to load.  

(Refer Slide Time: 02:01) 
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Example 1: In the first problem a Glass/epoxy [0/90] laminate as shown 

in the Fig. is subjected to only Nx ≠ 0 (Ny=Nxy=Mx=My=Mxy=0). 

Properties of the UD Glass/epoxy lamina are given as 

[ ]1

2

12

12

38.6 0 / 90
8.27

5mm
0.28
4.14

k

GPa
GPa

t

G GPa
ν

Ε =
Ε =

=
=
=

 Stresses in each lamina need to be determined. 

Solution: 

Here the laminate is a [0/90]. Glass/epoxy subjected to Nx = 100 N/mm and Nx = Ny= Nxy=0. 

Similarly Mx= My= Mxy=0. The laminate configuration is given that is the number of layers in the 

laminate, properties (E1, E2, ν12, G12) of each layer, geometry of each lamina meaning the thickness 

(5 mm) of the lamina as well as the positions with reference to the mid surface of the laminate that 

is the stacking sequence is known.  

Note that this is not a symmetric laminate and is an unsymmetric laminate. In this problem, 

intentionally an unsymmetric laminate has been considered to keep the problem general in nature 

that is all the three matrices [A], [B] and [D] exist. In addition, only a two layer laminate is 

considered for the ease of analysis. However the procedure is same for a general n-layer laminate.  
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Step 1: Reduced stiffness matrix [ ]Q  for UD Glass/epoxy lamina has been calculated as 

[ ]

1 2 12 2 21 1
11 22 12 66 12

12 21 12 21 12 21 12 21

1 2 12 12From 38.6 , 8.27 , 0.28, 4.14 using  

39.16 2.

; ; ; ,

18 0
8.39 0 GPa 

4

1

4

1 1

.

1

1

Q

GPa GPa G G

Q Q

P

Q

Q G

a
ν ν

ν ν ν ν ν ν ν ν

ν
Ε Ε Ε

Ε = Ε = = =

 
 =  


Ε
= = = = =

− −

 

− −

 

Step 2: From [ ]Q  and knowing fiber orientation angle θ for each lamina, elements of reduced 

transformed stiffness matrix Q    for each lamina are calculated using the following which is 

discussed in details in macromechanics of lamina. 

( )
( ) ( )

( )
( ) ( )
( ) ( )
( ) ( )

4 2 2 4
11 11 12 66 22

2 2 4 4
12 11 22 66 12

4 2 2 4
22 11 12 66 22

3 3
16 11 12 66 22 12 66

3 3
26 11 12 66 22 12 66

2 2 4 4
66 11 22 12 66 66

2 2

4

2 2

2 2

2 2

2 2

Q Q c Q Q s c Q s

Q Q Q Q c s Q s c

Q Q s Q Q c s Q c

Q Q Q Q s c Q Q Q s c

Q Q Q Q s c Q Q Q s c

Q Q Q Q Q c s Q s c

 = + + +


= + − + +


= + + +


= − − − − −


= − − − − −

= + − − + +

 










 
 

  

And the reduced transformed stiffness matrices for each layer are 

0°

90

39.16 2.18 0
8.39 0 GPa ;

4.14

8.39 2.18 0
39.16 0 GPa

4.14

Q Q

Q

 
    = =     
  

 
   =   
  



 

 (Refer Slide Time: 08:21) 

Even though in the present problem, we have only two layers viz. 0⁰ and 90⁰, even for an n layer 

laminate the reduce stiffness matrix [𝑄𝑄] could be calculated using the same procedure.   

(Refer Slide Time: 11:38) 
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Step 3: Having calculated reduced transform stiffness matrix for each layer, in the next step [A], 

[B] and [D] matrices are obtained from the [𝑄𝑄] for each layer and their stacking sequence 

information as follows. 

[ ]

[ ]

[ ]

8 7

7 8
1

1 7

6

2 2 6 2
1

1

3 2

3 3 2
1

1

2.37 10 2.18 10 0
( ) 2.18 10 2.37 10 0 Pa-m

0 0 4.14 10

3.84 10 0 0
1 ( ) 0 3.84 10 0 Pa-m
2

0 0 0

1.98 10 1.81 10 0
1 ( ) 1.81 10 1
3

n

k kk
k

n

k kk
k

n

k kk
k

A Q z z

B Q z z

D Q z z

−
=

−
=

−
=

× × 
  = − = × ×   
 × 

− × 
  = − = ×   
  

× ×
 = − = × 

∑

∑

∑ 3 3

2

.98 10 0 Pa-m
0 0 3.45 10

 
 × 
 ×   

With reference to the Fig., note that for the 0⁰ layer, 1 2.5 mm and 0k kz z− = − = and for the 90⁰ layer, 

1 0 and 2.5 mmk kz z− = = − . Therefore, the 
A B
B D
 
 
  matrix looks like (note that [A], [B] and [D] have 

different units) 
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8 7 6

7 8 6

7

6 3 2

6 2 3

2

2.37 10 2.18 10 0 3.84 10 0 0
2.18 10 2.37 10 0 0 3.84 10 0

0 0 4.14 10 0 0 0
3.84 10 0 0 1.98 10 1.81 10 0

0 3.84 10 0 1.81 10 1.98 10 0
0 0 0 0 0 3.45 10

A B
B D

× × − × 
 × × × 
 × 

=    − × × ×   
 × × ×
 

×    

 (Refer Slide Time: 14:10) 

 

Step 4: Knowing the 
A B
B D
 
 
   matrix and using

o
x x

o
y y

o
xy xy

x x

y y

xy xy

N
N
N A B
M KB D
M K
M K

ε
ε
γ

  
  
  
       =    

    
   
   
       the applied load vector the 

mid surface strains and curvatures are obtained as follows. 
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3

1 1

620.100 10
0
0
0
0
0

oo
xxx
oo
yyy
oo
xyxyxy

xx x

yy y

xyxy xy

N
N
NA B A B
MK B D B D K
MK K
MK K

εε
εε
γγ − −

      ×                                     = = ⇒ =          
           
                            

6

6

1

7 10
56.95 10

0

1.205 10
0 1
0

m m

m

−

−

−

 × 
  − ×  
    
 

×  
          

Now in this case we have taken Nx = 100 N/mm = 100 kN/m because all other units are in Pascal 

(Pa).  

Now the laminate considered is actually an unsymmetrical unsymmetric laminate. Therefore even 

though only Nx (uniaxial tensile loading along x) is applied,  but besides producing in plane strains 

it also resulted to curvatures.  

 (Refer Slide Time: 17:55) 

 
Step 5: Knowing the mid surface strains and curvatures, the strains in each (kth) layer (in x-y) 

could be obtained using the mid surface strains and curvature as 

;

                                              1, 2,3,.......

k

xy xyk

x

k

x

y

k

y

x

y

xy

o
x x

o
y y

o
xy xy

Q

k n

K
K
K

z
σ

τ

ε
σ

γ
ε

ε ε
ε ε
γ γ

                      = → =          
         

            
=

+

 

370



Where, z is the distance of the middle surface of  the kth layer from the laminate mid surface (ref 

Fig.). 

 

( )

6 1 6

6 6

620.7 10 1.205 10 18.199 10
0° 56.95 10 0.005 0 ; 56.95 10 ;  :

0
1

0 0

x

y

xy
k

x

y

xy

Ply
ε
ε

γ

ε
ε
γ

− − −

− −

  × × = ×   
      = − × − = − ×     
      =     

( )

6 1 6

6 6

620.7 10 1.205 10 1223.2 10
90° 56.95 10 0.005 0 ; 56.95 10  

0 0 0
2 :

x

y

xy
k

x

y

xy

Ply
ε
ε

γ

ε
ε
γ

− − −

− −

  × × = ×   
      = − × + = − ×     
      =       

 
So, knowing the strains is in the global axis (x-y) of a lamina, the stains in the local axes (1-2)  for 

that lamina could be obtained using the strain transformation as follows. 

[ ]
6

6
0°

1 1

2 2

0

0

12

0

12

;
18.199 10

56.95 10
0

2 2
x

x

y

y

T
θ

ε

γ γ

ε
ε ε

γ

ε
ε

−

−

=

  
             = =       

       
      

 

×
− ×

    and 

[ ]
1 1

2 2

90

9

6

6
90°

12

0

12

56.95 10
1223; .2 10

0
2 2

x

y

xy

T
θ

γ γ γ

ε ε ε
ε ε ε

=

−

−

−
  
             = =       

     

×

 
      

    

×

 

 
Even though the strains are calculated at the middle of the layer, strains could be calculated at the 

top of bottom of the layer also using the appropriate values of z. 

 (Refer Slide Time: 23:44) 
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 (Refer Slide Time: 25:37) 

 
Step 6: Multiplying the material axis strains of each layer by the reduced stiffness matrix for the 

layer, the material axes (1-2) stresses for each layer could be calculated as 

( ) [ ]

( ) [ ]

12 120° 0°

12 129

1 1

2 2

1 1

2 2

0° 90°

0°

90°

1 :

2 :

Ply Q

Ply Q

σ ε
σ ε

σ ε
σ

γ
ε

τ γ

τ

   
   = =   
   
   

   
   =   
   
   

=
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Note for a general laminate having n-layers that this kind of problems are actually not done 

manually because it will be tedious. However, to illustrate the steps, it was done manually 

considering a two layer laminate only.  

Now, knowing the material axis stresses and strains in each lamina, appropriate failure theory 

could be applied to assess the failure or safety of that particular lamina and that will be discussed 

in details in failure of laminates. But here the steps that are involved in determination of the stresses 

in each lamina of a laminate has been discussed.  

 

 

Example 2: In the second example, the same [0/90] glass epoxy laminate is considered but it 

is only subjected to ∆T and the residual stresses in each lamina need to be determined. 

[ ]
6

1
6

2

0 90 /75°C  
5mm8.6 10

m/m/°C
22.1 10

k

Glass EpoxyT
tα

α

−

−

∆ = −

== × 


= ×   

Solution: 

Here the laminate is a [0/90]. Glass/epoxy subjected to 75°C T∆ = − and Nx = Nx = Ny= Nxy=0. 

Similarly Mx= My= Mxy=0. The laminate configuration is given that is the number of layers in the 

laminate, properties (E1, E2, ν12, G12) of each layer, geometry of each lamina meaning the thickness 

(5 mm) of the lamina as well as the positions with reference to the mid surface of the laminate that 

is the stacking sequence is known.  

Note that this is not a symmetric laminate and is an unsymmetric laminate. In this problem, 

intentionally an unsymmetric laminate has been considered to keep the problem general in nature 

that is all the three matrices A, B and D exist. In addition, only a two layer laminate is considered 

for the ease of analysis. However the procedure is same for a general n-layer laminate.  

Step 1: Reduced stiffness matrix [ ]Q  for UD Glass/epoxy lamina has been calculated as 
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[ ]

1 2 12 2 21 1
11 22 12 66 12

12 21 12 21 12 21 12 21

1 2 12 12From 38.6 , 8.27 , 0.28, 4.14 using  

39.16 2.

; ; ; ,

18 0
8.39 0 GPa 

4

1

4

1 1

.

1

1

Q

GPa GPa G G

Q Q

P

Q

Q G

a
ν ν

ν ν ν ν ν ν ν ν

ν
Ε Ε Ε

Ε = Ε = = =

 
 =  


Ε
= = = = =

− −

 

− −

 

Step 2: From [ ]Q  and knowing fiber orientation angle θ for each lamina, elements of reduced 

transformed stiffness matrix Q    for each lamina are calculated using the following which is 

discussed in details in macromechanics of lamina. 

( )
( ) ( )

( )
( ) ( )
( ) ( )
( ) ( )

4 2 2 4
11 11 12 66 22

2 2 4 4
12 11 22 66 12

4 2 2 4
22 11 12 66 22

3 3
16 11 12 66 22 12 66

3 3
26 11 12 66 22 12 66

2 2 4 4
66 11 22 12 66 66

2 2

4

2 2

2 2

2 2

2 2

Q Q c Q Q s c Q s

Q Q Q Q c s Q s c

Q Q s Q Q c s Q c

Q Q Q Q s c Q Q Q s c

Q Q Q Q s c Q Q Q s c

Q Q Q Q Q c s Q s c

 = + + +


= + − + +


= + + +


= − − − − −


= − − − − −

= + − − + +

 










 
 

  

And the reduced transformed stiffness matrices for each layer are 

0°

90

39.16 2.18 0
8.39 0 GPa ;

4.14

8.39 2.18 0
39.16 0 GPa

4.14

Q Q

Q

 
    = =     
  

 
   =   
  



 

Even though in the present problem, we have only two layers viz. 0⁰ and 90⁰, even for an n layer 

laminate the reduce stiffness matrix [𝑄𝑄] could be calculated using the same procedure.   

Step 3: Having calculated reduced transform stiffness matrix for each layer, in the next step [A], 

[B] and [D] matrices are obtained from the [𝑄𝑄] for each layer and their stacking sequence 

information as follows. 
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[ ]

[ ]

[ ]

8 7

7 8
1

1 7

6

2 2 6 2
1

1

3 2

3 3 2
1

1

2.37 10 2.18 10 0
( ) 2.18 10 2.37 10 0 Pa-m

0 0 4.14 10

3.84 10 0 0
1 ( ) 0 3.84 10 0 Pa-m
2

0 0 0

1.98 10 1.81 10 0
1 ( ) 1.81 10 1
3

n

k kk
k

n

k kk
k

n

k kk
k

A Q z z

B Q z z

D Q z z

−
=

−
=

−
=

× × 
  = − = × ×   
 × 

− × 
  = − = ×   
  

× ×
 = − = × 

∑

∑

∑ 3 3

2

.98 10 0 Pa-m
0 0 3.45 10

 
 × 
 ×   

With reference to the Fig., note that for the 0⁰ layer, 1 2.5 mm and 0k kz z− = − = and for the 90⁰ layer, 

1 0 and 2.5 mmk kz z− = = − . Therefore, the 
A B
B D
 
 
  matrix looks like (note that A, B and D have 

different units) 
8 7 6

7 8 6

7

6 3 2

6 2 3

2

2.37 10 2.18 10 0 3.84 10 0 0
2.18 10 2.37 10 0 0 3.84 10 0

0 0 4.14 10 0 0 0
3.84 10 0 0 1.98 10 1.81 10 0

0 3.84 10 0 1.81 10 1.98 10 0
0 0 0 0 0 3.45 10

A B
B D

× × − × 
 × × × 
 × 

=    − × × ×   
 × × ×
 

×    

 (Refer Slide Time: 37:12) 
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Step 4:  Given, the CTEs of the lamina with reference to the materials axes as 

6
1

6
2

8.6 10
22.1 10
00

α
α

−

−

×  
   = ×   

   
   

, the CTEs in the global axes (x-y) could be evaluated as 

{ } [ ]
y

1
-

2

x

x
1

y

0
2

α α
α T α
α

XY
α

 
   
   = =   
   

  
   

And then for each layer 
6

0 9

6

6 6

0

8.6 10 22.1 10
22.1 10 m/m/°C & 8.6 10 m/m/°C

0 0

x x

y y

xy xy

α α
α α
α α

− −

− −

×      
       = =       
 

×
× ×

     
         

 (Refer Slide Time: 40:08) 
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Step 5:  Knowing for each layer (k), , equivalent thermal loads have been evaluated as 
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And the equivalent thermal moments are evaluated as 
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(Refer Slide Time: 42:06) 
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Step 6: Using the relation 
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the mid surface strains and curvatures due to ΔT are calculated as 
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Step 7: From the mid surface strains and curvatures, the strains and stresses in global (x-y) axes 

in all the layers are calculated using 
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(Refer Slide Time: 45:46) 

The free thermal strain in layer 1 (0⁰ layer) is 
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Therefore, the residual strains in layer 1 is 
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residual stresses for the 0⁰ layer. 

Similarly, for the layer 2 (90⁰ layer),  
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The materials axes (1-2) residual stresses in layer 2 (90⁰ layer) are obtained using the stress 

transformation as follows. 
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Here, only ΔT has been considered. But, in the same way, the residual 

stresses in each layer due to ∆C, change in moisture concentration 

(hygroscopic) could also be evaluated. 

 (Refer Slide Time: 52:21) 
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After calculating the residual stresses in each lamina in a laminate is 

subjected to ∆T and due to ∆C individually, those stresses in the 

material axis could be superposed for a laminate which is 

simultaneously subjected to a mechanical load Nx, ∆T and ∆C. 
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