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Hello and welcome to the 3rd lecture of this module and we have been discussing a classical 

lamination theory for analyzing of FRP laminated plate. In the last two lectures assumptions made 

in classical lamination theory in terms of the displacement field, in terms of the strain displacement 

relationship and in terms of the stress-strain relationship have been discussed. Then based on those 

assumptions, strains at any layer in the lamina could be expressed in terms of the mid surface 

strains and curvatures. However, it was understood that even though the stains vary linearly across 

the thickness, the stresses do not since the stiffnesses are different in different layers  shown in the 

Fig. 

 

 

 

 

 

 

 

It is therefore not straightforward to relate the stresses in the laminate to the strains because in an 

n-layer laminate the stresses could be different in each layer and at the interface, the stresses are 

discontinuous. (Refer Slide Time: 01:27) 
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Since the stresses are discontinuous across the thickness and in each layer the stresses are different, 

it is convenient to actually represent the stresses in terms of force and moment resultants. 

(Refer Slide Time: 02:11) 

 

Here, the total effect of stresses in each layer of the laminate is represented by means of a 

corresponding forces assumed to act at the mid surface of the laminate known as force resultants. 

For example, the effect of xσ  in all the layers of the laminate is represented by a single force as 

/2

/2

h

x xh
N dzσ

−
= ∫ acting at the mid surface of the laminate,  where, h is the thickness of the laminate. 

This is with reference to the coordinate axes x-y-z of the laminate fixed at the mid surface. 
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Similarly, we can write /2

/2

h

y yh
N dzσ

−
= ∫  and /2

/2

h

xy xyh
N dzτ

−
= ∫ , as the force resultants for 

and y xyσ τ  acting at the mid surface of the laminate. 

Since the forces acting on each layer are different, therefore they will have a net moment and that 

is represented by the corresponding moment resultants. For example at the moment resultant due 

to xσ is /2

/2

h

x xh
M zdzσ

−
= ∫ , due to and y xyσ τ  are /2
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−
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h
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−
= ∫  

respectively.  Thus the stresses in each layer are represented by means of equivalent forces and an 

equivalent moments which are actually acting at the mid plane. Note that in this case the stresses 

are only multiplied by the thickness and not by the area and hence these force resultants are actually 

force per unit width or force per unit length, therefore the unit is Nm-1. Similarly, the moment 

resultants are actually moment per unit width or length, therefore it is unit is N-m m-1. 

Therefore, together these six force and moment resultants (11) and (12) 
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represent a statically equivalent system of the stresses in the laminate.  

(Refer Slide Time: 10:00) 

 

Now considering an n-layer laminate having the distances of the top and bottom surfaces of the 

kth layer (k = 1,2,…n) as zk - 1 and zk respectively from the mid surface as shown in the figure. 

Only x-z plane is shown and similarly we could also show the y-z plane. 
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Now the stresses are not continuous across the thickness but within one layer the stresses are 

thickness and hence the continuous integrals in (10) and (11) could actually be replaced by 

summing the integrals in each thickness over all the layers like 

1
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Now that the stresses are actually represented by the force and moment resultant let us apply the 

stress strain relationship. 

(Refer Slide Time: 17:08) 
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Using the stress strain relations for the kth lamina as 

11 12 16

12 22 26

16 26 66

x x
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And also using the strain in the kth lamina in terms of the mid surface strains and curvatures as 
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 in equation (13)  

1 1

0
11 12 16 11 12 16

0
12 22 26 12 22 26

1 1 0
16 26 66 16 26 66

k k

k k

x x x x xn nz z

y y y y yz z
k k

xy xy xy xy xyk kk k

Q Q Q Q Q QN K
N dz Q Q Q dz Q Q Q z K
N KQ Q Q Q Q Q

σ ε ε
σ ε ε
τ γ γ

− −= =

            
           = = = +            
           

             

∑ ∑∫ ∫
1

1 1

1

0
11 12 16 11 12 16

0
12 22 26 12 22 26

1 10
16 26 66 16 26 66

(15)

k

k

k k

k k

n z

z
k

x x xn nz z

y y yz z
k k

xy xy xy
k k

dz

Q Q Q Q Q QN K
N Q Q Q dz Q Q Q K zdz
N KQ Q Q Q Q Q

ε
ε
γ

−

− −

=

= =

 
 
 

 
 

       
       ⇒ = +        
        

          

∑∫

∑ ∑∫ ∫

 

The in-plane force resultants Nx, Ny and Nxy could be expressed in terms of the mid surface strains 

and the curvature.  
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In this integration, the reduced transformed stiffness for the kth layer 
11 12 16

12 22 26

16 26 66 k

Q Q Q

Q Q Q

Q Q Q

 
 
 
 
  

 is 

constant across that particular kth lamina thickness and hence could be taken out of the integration. 

In addition the mid surface strains 0
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 are constant for the whole 

laminate and hence could actually be taken out of the summation sign 

Therefore, after integration, (15) could be written as 

 (Refer Slide Time: 29:01) 
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 which could be simplified as 
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 [A] and [B] both are 3 × 3 matrix. 

Similarly, using the stress strain relations for the kth lamina as 
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And also using the strain in the kth lamina in terms of the mid surface strains and curvatures as 

0
11 12 16 11 12 16

0
12 22 26 12 22 26

0
16 26 66 16 26 66

x x x x

y y y y

xy xy xy xyk kk k

Q Q Q Q Q Q K
Q Q Q Q Q Q z K

KQ Q Q Q Q Q

σ ε ε
σ ε ε
τ γ γ

           
           = = +           
           

             

 

in equation (14) the relations between the moment resulatants and the mid surface strains and 

curvatures could be obtained as 
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In this integration, the reduced transformed stiffness for the kth layer 
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constant across that particular kth lamina thickness and hence could be taken out of the integration. 

In addition the mid surface strains 0
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laminate and hence could actually be taken out of the summation sign 

Therefore, after integration, (18) could be written as 

(Refer Slide Time: 41:27) 
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Therefore, we obtain this and then we can do this simple integration and we get  
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where [A] and {b} are already defined and [D] is defined as 

1 1

2 2 3 3
1

1 1 1

1 1[ ] ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( )
2 3k k k k

n n n

k k k k k
k k k

A Q z z a B Q z z b D Q z z c
− −−

= = =

     = − = − = −     ∑ ∑ ∑
 

Combining (17) and (19), we get the relationship between the force and moment resultants and the 

mid surface strains and curvatures as 
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That means for a given laminate, given the forces (force and moments), the mid-surface strains 

and curvatures could be determined using the ABBD matrix. In a laminate if the applied forces 

and moments are known, then Nx, Ny, Nxy, Mx, My, Mxy could be obtained by diving those by the 

width/length. Therefore this (20) is the constitutive relation for the laminate obtained using 

classical lamination theory. 

Note that these [A], [B] and [D] matrices are the functions of the properties of each layer ([ ]Q  

obtained from E1, E2, G12, 12ν  and θ ), fiber orientation of each layer, thickness of each layer and 

the location of each layer with reference to the mid surface. So knowing the material of the 

laminate and the stacking sequence , these A,B and D matrices could be determined and knowing 

these ABD, the strains and curvatures in a laminate corresponding to the applied forces could be 

determined. 
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