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Hello and welcome to the 3rd lecture of 6th module, we have been discussing the 

micromechanics of lamina. In the last few lectures, we understood how the properties of the 

constituents (fiber and matrix) influence the properties of lamina. We also understood different 

approaches in micromechanics like mechanics of material approach, elasticity approach, 

variational approach, semi empirical methods and the mechanics of material approach has been 

discussed in details. 

In the last lecture, using the elasticity approach, we could understand the fiber matrix 

interaction, the role of the matrix, especially, when a fiber breaks, the fiber micro buckling 

mode of failure of laminates under compression load. In today's lecture will first solve two 

problems to determine the lamina properties in terms of the matrix and fiber properties and 

then we will discuss in brief the experimental determination of the elastic moduli and the 

strength parameters of lamina. To start with, let us take a simple problem. 
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Example: In an UD lamina made of Glass/Epoxy, with Em=3GPa, E2f=70GPa, Vf=0.5, the 

transverse Young’s modulus is 6 GPa. Using Halpin-Tsai relation, determine the transverse 

Young’s modulus of a lamina made of same materials with volume fraction Vf=0.65. 

Solution: 

Given the Young's modulus of epoxy Em = 3 GPa and the transverse Young's modulus of glass 

fiber, E2f = 70 GPa and given that a lamina is made with the fiber volume fraction of Vf= 50% 

that results in the transverse Young's modulus of the composite E2 = 6 GPa. Now using these 

values in  
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 we get, ξ = 1.2  and η = 0.91. 

Putting these values of ξ = 1.2  and η = 0.91 in 
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  and therefore, 2 2.74 8.2  GPamE E= = . ξ is the reinforcing factor 

actually depends upon the fiber geometry, packing geometry and of course, the loading 

condition and this η is depends upon the relative Young's modulus of the fiber and the matrix. 

What is the physical significance?  

Suppose E2f / Em or Ef/ Em, = 1, it implies that η = 0. This is actually for homogeneous material. 

Suppose E2f / Em is very large, say E2f / Em tends to infinity. In that case η = 1. This actually 

represents rigid inclusions in a medium.  

Suppose E2f/ Em, or  Ef/ Em = 0. It means, if you put that here you get η = 1/ξ. This actually 

represents void. That means there is no fiber. 

Using Halpin-Tsai equation, we could see that when the fiber volume fraction increases from 

0.5 to 0.65, the transverse Young’s modulus increases from 6 GPa to 8.2 GPa. Suppose we use 

the mechanics of material approach for the same. 
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Using mechanics material approach 1/E2=  Vf /E2f + Vm /Em. If we use this put Vf = 0.65,  E2f 

= 70 GPa, Em = 3 GPa. That gives us E2 = 7.9 GPa. So, there is a difference between what we 

get using mechanics of material approach and what we get using the Halpin-Tsai relationships. 

(Refer Slide Time: 11:24) 

 
Next, let us take another problem as 

Example: Determine the longitudinal tensile strength and stiffness for a lamina made of carbon 

fibers and epoxy matrix with the following properties. 

E1f=250GPa, Em=4GPa,(σ1f)u=3000MPa ,(σm)u=150MPa, Vf=0.5 

Solution: 

Solution to this problem is important to understand the failure of a lamina especially 

longitudinal tensile failure. Here we have to find out the longitudinal tensile strength and 

longitudinal Young's modulus of lamina made of carbon fibers and epoxy matrix with the 

following properties as E1f=250GPa, Em=4GPa,(σ1f)u=3000MPa ,(σm)u=150MPa, Vf=0.5. 
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Fig shows the stress strain curve for the matrix and the stress strain curve for the fiber (not to 

scale) and the stress strain curve of the composite in between. The slope of stress strain curve 

of the composite relative to fiber and matrix is decided by the volume fraction. If we keep on 

increasing the volume fraction, it will be more towards the fiber and if we keep on lowering 

the volume fraction it will be more towards the matrix. Now if P is load on the composite, it is 

shared by the fiber (Pf) and the matrix (Pm) as 
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So, the stress in the composite can be written in terms of those in the fiber and the matrx and 

the volume fractions as 

1 f f m mV Vσ σ σ= +  

Now, we consider that failure of fiber implies the failure of composite or lamina, the strain in 

the composite at failure is ε1 = (ε1f) u   and (ε1f) u =(σ1f) u/ E1f following Hooke’s law. The strain 

in the matrix at the failure point is this is σm = (ε1f) u Em . So, 
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Therefore, the ultimate longitudinal tensile stress of the lamina is 
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So, if we put all these values E1f=250GPa, Em=4GPa,(σ1f)u=3000MPa ,(σm)u=150MPa, Vf=0.5, 

we get (σ1T) u = 1530 MPa and E1=102 GPa. 
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So, from micromechanics we could actually determine the elastic moduli and strength of 

lamina based on certain stress strain state of the constituents and considering representative 

volume element with certain assumptions like uniform fiber spacing, fibers are of regular shape 

and size, perfect bonding, etc.. With those assumptions, we could get certain expressions for 

elastic moduli of lamina and strengths of lamina in terms of the properties of the fiber and the 

matrix and volume fraction.  

So, these expressions give us an initial guideline to select what kind of the fiber and the matrix 

need to be selected, with what volume fraction to achieve certain properties of the lamina. 

However, failure prediction of micromechanics is actually complex, there are interactions 

between the fiber and the matrix and therefore, those models based on simplified assumptions 

like the mechanics of material approach are not always reliable. Therefore, they need to be 

verified with experiments. Therefore, we need experimental determination of this elastic 

moduli and the strength properties. 
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Now, in experimental determination of elastic moduli and strengths, experiments could be 

conducted at different scales viz. at micromechanical scales, macromechanical scales or at the 

structural component level. In micromechanical scales basically experiments are performed to 

determine the constituent properties say the Young’s modulus of the fiber, the strength of an 

individual fiber, the other properties of the constituents and maybe the interface properties. On 

the other end in macromechanical scale, we find out the strength and elastic moduli of the 

lamina by conducting tests. The elastic moduli and the strength could be determined at 

structural component level also. 

So, we will discuss in brief the macromechanical scales experiments and the objectives of those 

experiments are first, to determine the basic lamina properties to be used as input for design 

and analysis of composite structures. Second, the results are used to verify the prediction of 

mechanical behaviour. Suppose, we use certain relations to determine the elastic moduli or 

strength of a lamina we can also verify that how well they actually agree with the experimental 

results. 
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Experimental Evaluation of E1, ν12 and  (σ1
T)u  

Test method recommended for tensile properties of fiber resin composites— ASTM D3039 

gives us the full details of this experiment regarding conducting these experiments, the 

specimen dimensions, loading. All the details are available in ASTM and are not discussed 

here. 

Specimen geometry :  

1. Specimen Thickness = 6-8 plies (0°) 

2. Specimen (Ply) Width = 12.7 mm  

3. Specimen Length = 229 mm 

Mountings :  Strain gages are placed in longitudinal and transverse directions 

Loading : Tensile stresses are applied at a rate of 0.5 - 1 mm/min 

Data :  40-50 data points are taken till failure 

Two strain gauges are mounted, one along the longitudinal direction and another along the 

transverse direction. One will measure the longitudinal strain and other will measure the 

transverse strain which is required to determine the Poisson’s ratio. The specimen is loaded in 

UTM and 40 - 50 data for stress and strains are recorded till it fails. 
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Now, the slope of the σ1 - ε1curve will give us longitudinal Young's modulus, ie E1= σ1/ε1 and 

the slope of ε2 - ε1 gives us the Poisson’s ratio ie.  ν12 = −ε2 / ε1 . At failure the stress value is 

the longitudinal tensile strength (σ1T) u.  

Now, observing the failure in a large number of tests for glass/epoxy, it is observed that the 

failure could be the brittle fracture of the fiber when the volume fraction is less than 40% and 

in the intermediate volume fraction between 40% to 65% brittle fracture of fiber and associated 

fiber pullout are also observed as shown in the Fig. At a high-volume fraction, there is fiber 

matrix de-bonding. So, from a single test, we could obtain the longitudinal Young's modulus 

E1, major Poisson’s ratio ν12 and longitudinal tensile strength (σ1T) u. 

 

(Refer Slide Time: 26:17) 

 
 

Experimental Evaluation of E2, ν21 and  (σ2
T)u  

The procedure for finding the (σ2T)u is the same as for finding the (σ1T)u . Only the specimen 

dimensions differ. Compared to the longitudinal tensile testing specimen, the width of the 

specimen is double and the thickness of the specimen is also more, 8 -16 plies of 90° because 

we are trying to find out the transverse properties 
Specimen geometry : 

1. Specimen Thickness: 8-16 plies (90°) 

2. Specimen (Ply) Width = 25.4 mm   
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3. Specimen Length = 229 mm 

Mountings :  Strain gages are placed in longitudinal and transverse directions 

Loading : Tensile stresses are applied at a rate of 0.5 - 1 mm/min 

Data :  40-50 data points are taken till failure 

From this test, the transverse Young’s modulus E2, minor Poisson’s ratio ν21 and the transverse 

tensile strength (σ2T) u could be obtained. 

 

 (Refer Slide Time: 29:55) 

 
Again, for a typical graphite epoxy lamina we get say E2 = 10 GPa, ν21 = 0.017 and ultimate 

transverse tensile strength (σ2T) u =50 GPa. The transverse properties predicted by the 

mechanics of materials approach do not agree well with the experiments. This is due to the fact 

that, in addition to the properties of the fiber and the matrix, it is also decided by the bond 

strength between the fiber and the matrix. Also, presence of void drastically changes the 

transverse properties and during manufacturing if there is a residual stress that also influences 

the transverse strength and modulus.  
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Knowing that ν12/ν21 = E1/E2, we could check that whether this followed or not. Similarly, other 

restrictions discussed in macromechanical analysis of lamina could be checked after we 

determine the properties so these results could be used with confidence. 
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Experimental Evaluation of  (σ1
C )u  

Again, one of the most recommended methods is following ASTM D3410. Full details of this 

could be found in ASTM D3410.  

Specimen geometry : 

1. Specimen Thickness:16-20 plies (0°) 

2. Specimen (Ply) Width = 6.4 mm  

3. Specimen Length = 165 mm 

Mountings :  Strain gages are mounted in the longitudinal direction on both faces of the 

specimen to check for parallelism of the edges and ends 

Loading : Compressed at a rate of 0.5 - 1 mm/min 

Data :  40 - 50 data points are taken till failure 

In this case the specimen is thicker with 16 – 20, 0° plies 

because we are trying to find out the longitudinal 

compression strength. The plies width is 6.4 mm, 

specimen length is 165 mm, but except 12.7 mm the most 

of the length of the specimen are actually gripped to put 

constraints on almost on the major portion of the length of 

the specimen to eliminate buckling, otherwise without 

sufficient constraint it might buckle. Strain gauges are mounted in the longitudinal direction on 

both faces of the specimen to ensure that they are parallel which is ensured by identical readings 

of the strain gages on both the faces. 

So, for a typical graphite epoxy we get E1 = 140 GPa. Then (σ1c) u =1500 MPa and (ε 1c) u = 

0.014. So, this is a typical for a graphite epoxy you obtain from longitudinal compression. 
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Experimental Evaluation of  (σ2

C)u  

Similarly, we can also have the transverse compression, the procedure is same again the 

specimen is little different. So, here the thickness is 30 – 40,  90° plies and the ply width is also 

little more it is 12.7 mm. Strain gauges are mounted in the longitudinal direction on both faces 

to check for parallelism and till failure 40 to 50 data points are taken. 

Specimen geometry : 

1. Specimen Thickness: 30 - 40 plies (90°) 

2. Specimen (Ply) Width = 12.7 mm  

Mountings :  Strain gages are mounted in the longitudinal direction on  

both faces of the specimen to check for parallelism of the edges and ends 

Loading : Compressed at a rate of 0.5 - 1 mm/min 

Data :  40 - 50 data points are taken till failure 
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Exeprimental Evaluation of (τ12)u  

One of the most recommended method for determination of in-plane shear strength is using a 

[±45]2S meaning that there are [± 45] lamina stacked in a sequence 

like this +45/−45. ‘2’ means this sequence is repeated twice and S 

means, it is symmetric. So, the laminate is 

+45/−45/+45/−45/−45/+45/−45/+45 following ASTM 

D3518. 

Specimen geometry : 8 plies  

[+45/–45/+45/–45/–45/+45/–45/+45] 

Loading : An axial stress σx is applied to the 8-ply laminate 

That means it is only subjected to σx.  

The objective is to determine τ12 that is ultimate shear strength as well as G12. The state of 

stress with respect to X-Y, is {σx 0 0}. This will lead to strains εx, εy. There will be no shear 

strain because it is ±45. Now, 1 and 2 are the principle material direction. So, we can write the 

stresses in and the strains with reference to the material axis, (1-2), σ1, σ2, τ12 using the stress 

transformation matrix as. 
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So, from this what we get is τ12 = σx /2 and γ12 = εx - εy. That means applying stress σx , we 

know what is τ12 and from the two strain gauge readings we get εx and εy and hence γ12  and 

using  G12 = τ12 /  γ12 = σx /(2 (εx - εy)). So, knowing σx, εx and εy, we can find out what is G12. 

So, this ±45° coupon is actually loaded till failure and (τ12)u is nothing but σx/2 at failure. So, 

we get (τ12)u and  G12. 

(Refer Slide Time: 50:02) 

 
The transverse and shear properties estimated from the mechanics of material approach do not 

agree well with the experimental observations. The reasons are that in addition to the properties 

of the constituent materials like the shear modulus of the fiber and the shear modulus of the 

matrix, it is also influenced by weak interface, presence of voids, Poisson’s ratio mismatch 

between the fiber and the matrix etc.   
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