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Hello we have been discussing the determination of stiffness and strength parameters using 

micromechanical models. In last few lectures the determination of the stiffnesses as well as the 

strength parameters of a composite using micromechanics model especially with the mechanics 

of material approach were discussed along with the limitations. 
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In this lecture, we will discuss the determination of coefficients of thermal expansion and 

coefficients of moisture expansion, the parameters responsible for hygrothermal response of a 

lamina. The importance of the determination of hygrothermal stresses in a lamina was already 

discussed while discussing the hygrothermal stresses in lamina. 

In order to determine the hygrothermal stresses in a laminate we must know the hygrothermal 

responses of a lamina and in order to understand the hygrothermal response of a lamina 

coefficient of thermal expansion and coefficient of moisture expansions must be known. So, 
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we shall discuss the determination of coefficients of thermal expansion and coefficients of 

moisture expansion using micromechanics model. 

In an orthotropic lamina, coefficient of thermal expansion is also direction dependent and with 

reference to the principal material axis (1-2, 1 is the longitudinal axis and 2 is the transverse 

axis) as shown in Fig., there will be coefficient of thermal expansion along longitudinal 

direction and coefficient of thermal expansion along the transverse direction and they will be 

different.  

Generally, the coefficient of thermal expansion of this fiber reinforced polymer matrix lamina 

in the longitudinal direction is much less compared to that in the transverse direction. The 

reason is, in the longitudinal direction the fiber is having a coefficient of thermal expansion 

which is much lower than that of the matrix and it puts constraint on the expansion in the 

longitudinal direction. 

Considering an RVE as shown in Fig., suppose, 
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All the assumptions like perfect bonding, uniform fiber spacing etc which we have discussed 

also hold good here. Suppose this composite is actually experiencing a temperature change of 

ΔT, and there is no mechanical load applied. Because the composite is not subjected to any 

mechanical load therefore there is no net load applied in direction 1. 

Even though there is no net load applied, there will be stresses induced in the fiber and the 

matrix because of the mismatch of coefficient of thermal expansions because αf ≠ αm which 

leads to stresses in the fiber and in the matrix, which were already discussed in while studying 

the hygrothermal stresses.  

Because this is perfectly bonded therefore under this ΔT they will have same longitudinal 

expansion, δ and therefore, they will also have the same strain in along direction 1. But suppose 

the fiber and the matrix are actually unrestrained, they are free then the expansion of the fiber 

and the expansion of the matrix would have been different. Therefore, some amount of strain 

is actually restrained and that leads to the development of stresses. Referring to the RVE in the 

Fig., 
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So diving by Ac and referring to the RVE, the volume fraction of the fiber ie.  Vf = Af / Ac and 

the volume fraction of the matrix Vm = Am/Ac, we get  

0f f m mV Vσ σ+ =  

Now let us try to understand what is the stress? So, suppose ε1 is the strain of the composite 

strain along 1. Now if the fibers are free then the free strain in fiber would have been αf ΔT. 

Similarly free strain in the matrix would have been αm ΔT. But then they are not allowed to 

expand freely because they are restrained because the perfect bonding between the fiber and 

the matrix. 

So, the amount of restrain in the fiber is ε1 − αfΔT. So, multiplied this by the Young’s modulus 

of the fiber will actually give us the stress induced in the fiber as σf = Ef (ε1−αf ΔT). Similarly, 

the amount of restrain in the matrix is (ε1 − αmΔT) and the stress induced in the matrix is  σm 

= Em (ε1 - αm ΔT).  Therefore, 
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Therefore, 
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Now, going by the definition of coefficient of thermal expansion along direction 1,  
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It could be seen that this is actually of the form that like this E1 = EfVf + EmVm with, αf Ef/E1 

as apparent αf and αm Em/E1 as apparent αm So, the longitudinal coefficient of thermal 

expansion is a function of the coefficient of thermal expansion of the fiber and the matrix as 

well as the Young’s moduli of the fiber and the matrix besides the volume fraction. Next let us 

see the determination of transverse coefficient of thermal expansion. 
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Here also the same RVE is considered as shown only subjected to ΔT, no mechanical load. 

When this RVE of the composite actually experiences a temperature changes of ΔT, the strain 

in this direction is ε1 and because of the perfect bonding, the fiber,  the matrix and the composite 

experiences the same strain along 1. 

1 f mε ε ε= =                                                                  (8) 

and we already discussed while discussing the determination of  α1, the residual stresses in the 

fiber and the matrix are 
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Now the strains in the direction 2 for the fiber is the direct strain along due to ΔT which is αfΔT 

.  In addition, there is strain along direction 2 due to the strain along direction 1 which is the 

Poisson’s effect. Suppose νf is the Poisson’s ratio of the fiber, then  εf2 = νf  εf1 and εf1= σf1/Ef,.  

Similarly, in the direction 2 for the fiber is the direct strain along due to ΔT which is αm ΔT . In 

addition, there is strain along direction 2 due to the strain along direction 1 which is the 

Poisson’s effect. Suppose νm is the Poisson’s ratio of the fiber, then  εm2 = νm  εm1 and εm1= σm1/ 

Ef,.  

So, the transverse strains in the fiber and the matrix that means along direction 2 are 
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Total change in in length along the transverse direction is sum of that due to the fiber and the 

matrix (Ref to the RVE in Fig.) 

2 f mδ δ δ= +                                                                               (11) 

 

Expressing in terms of the strains 
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Taking note of the fact that for this RVE; tf / tc = Vf and tm / tc = Vm. So, we could express the 

transverse strain in direction 2 in terms of the transverse strain in the fiber and transverse state 

in the matrix. So, we could express the transverse strain in direction 2 in terms of the transverse 

strain in the fiber and transverse state in the matrix. 

Putting the expressions for transverse strain in the fiber and the matrix from(10) in (12) 
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Now, going by the definition of coefficient of thermal expansion along direction 2 and taking 

note of the fact that ν12 = νf αf + νm αm  

254



( ) ( ) 12 1 21 1f f f m m mV Vα ν α ν α αν= + + + −
                           (13) 
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Now in deriving these expressions actually the both fiber and the matrix properties are 

isotropic. There are works (Hashin in 1979) where the properties of the fiber have been actually 

considered as orthotropic and the expression for α2 is obtained as  
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Now you will see that α1 and α2 actually depends on the αf , αm , their volume fraction and 

elastic properties. 

For most of these fiber reinforced polymer matrix composites α1 is less compared to α2. This 

is because in the longitudinal direction the fiber actually restrains the expansion and therefore 

the α1 is less. But in the transverse direction it is dominated by the matrix and therefore α2 is 

more compared to that of α1.  
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in the hygrothermal stress analysis of lamina, we have also discussed the importance of 

determination of hygroscopic stresses in a polymer matrix composite where the matrix absorbs 

moisture and therefore it experiences strain. Because most of the fibers, actually inorganic 

fibers are insensitive to moistures therefore there will be residual stresses and these residual 

stresses should be taken into account while analyzing or while designing the components made 

of this fiber reinforced laminated composites. 

So, let us see how we determine the coefficient of moisture expansion similar to the coefficient 

of thermal expansion. The coefficients of moisture expansion in composites are also direction 

dependent, and they are different in the longitudinal direction and in the transverse direction. 

Let us see how to determine the coefficient of moisture expansion. Suppose, 
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Analogous to the thermal expansion, since the lamina (RVE as shown) is only experiencing 

ΔC and no mechanical load,  But residual stresses will be induced in the fiber and the matrix 

due to the difference between the free expansion and the constrained expansion due to perfect 

bonding and the residual stresses are ( ) ( );ff f f m mf m mmE EC Cσ ε σβ βε∆ = − ∆= − . 

Therefore 
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And going by the definition of coefficient of moisture expansion along 1, 
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Now this ΔCc could be written in terms of ΔCf and ΔCm  as follows  
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This is the expression for the coefficient of moisture expansion along direction 1. Similarly, 

we can also determine the coefficient of moisture expansion in direction 2 (β2) analogous to 

determination of α2 and we obtain 
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Note that unlike CTEs (α1 and α2), in the expressions for CMEs (β1 and β2) contains the 

moisture concentration terms (ΔCf and ΔCm) as the moisture absorptions for the fiber and the 

matrix are different. However, for most of the polymer matrix composites, the inorganic fibers 

are are almost insensitive to moisture and hence ΔCf = 0 and putting ΔCf = 0 in (17), we get 
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Now, since, 
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So, this is much more simplified and do not contain ΔCf and ΔCm. So, this is the expressions 

for coefficient of moisture expansion in the longitudinal as well as in the transverse direction. 
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