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Lecture-13 

Evaluation of Transverse and Shear Strengths 
 

Hello and welcome to the 4th lecture of this module on micro mechanics of lamina. So, in the 

last lecture we have discussed the determination of longitudinal tensile strength of a lamina 

wherein it was assumed that the longitudinal tensile strength of a lamina is decided by the fiber 

failure only.  

 

(Refer Slide Time: 01:02) 

 
 

So, when the fibers fail that means when the strain in the fiber reaches the ultimate strain of the 

fiber then the composite fails and based on that  an expression for the longitudinal tensile 

strength of the composite was derived which is dependent on the strengths and stiffness 

properties of the fiber and matrix and volume fraction. Therefore, for a given combination of 

fiber and matrix and for given properties of the fibers and the matrix is the volume fraction 
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which decides what will be the longitudinal tensile strength of a lamina and we understood how 

the volume fraction actually influences the longitudinal tensile strength in terms of critical 

volume fraction and minimum volume fraction. 

We have discussed in the last lecture that the slope of the stress strain curve for the lamina or the 

composite will be decided by what is the volume fraction for given properties of the fiber and 

matrix. Higher is the volume fraction fV , more it will be inclined towards the fiber stress strain 

curve and lower is the volume fraction more it will be inclined towards the matrix stress strain 

curve. If the volume fraction is actually more than a critical volume fraction, then it is ensured 

that the longitudinal tensile strength of the lamina will be higher than that of the matrix. If the 

volume fraction is less than the critical volume fraction, then the longitudinal tensile strength of 

the lamina will be less than that of the matrix, and the objective of adding fibers is not served. 

We have also seen that there is a minimum volume fraction if the volume fraction is below 

minimum, then even if fibers break, the remaining matrix could actually withstand the load and 

below minimum volume fraction, increase in fiber volume fraction leads to reduction in 

composite strength.  

In all these, one of the key assumptions was that the fibers are of uniform strength, that means all 

the fibers in the lamina break or fail at the same time. This assumption does not go well with the 

practical composites. Therefore, there will be deviations in the predicted strength from the actual 

longitudinal tensile strength. There are some other assumptions also made in the determination of 

the strength parameters as well as stiffness parameters using the micromechanics approach. 

Because some of the assumptions do not go well with the practical situations, there will be 

deviations.  

Therefore, it is important to understand the factors which actually influence the strengths of a 

composite or a lamina in particular.  

(Refer Slide Time: 04:29) 
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So, some of the important factors influencing the strengths are 

Fiber orientation – Fiber are assumed to be perfectly aligned. The fact that the longitudinal 

strength of the fiber is much higher, in a lamina, the fibers aligned along the direction of loading 

will provide maximum strength compared to that if some of the fibers are not aligned or say 

there is misalignment. Misalignment thus affects the strength of the composite.  The amount 

deviation will be decided by the number of fibers which are misaligned and the degree of 

misalignment.  

Non-uniform fiber strength – Strength of the fibers are actually not uniform even though an 

assumption has been made in the micromechanics model that the strength of the fibers is uniform 

but it is not so. Actually, the strengths are statistically distributed and therefore affects the 

longitudinal tensile strength of the composite. Say for example subjected to load suppose the 

weakest fibers break, then the adjacent intact fibers are over stressed and as a result of that the 

chances of the failure of those fibers becomes higher. This leads to cumulative fiber break 

leading to the failure of the lamina.  So, this is how the cumulative fiber breakage takes place and 

the actual tensile strength of the lamina will be less than that has been predicted with the 

assumptions that the fibers are of uniform strength.  

Discontinuous fibers – It was assumed that all the fibers are continuous. Suppose there are 

discontinuous fibers. Subjected to load, the load on the matrix is transferred to the fiber by the 
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edge of the fiber and there is a stress concentration at that point. If the zone of stress 

concentration is far less compared to the length of the fiber we can consider that the fibers are of 

infinite length. Otherwise, for short fibers this has to be taken into account and that influences 

the longitudinal tensile strength of the composite. 

Interface –A perfect interface has been assumed and stronger is the interface, stronger is the 

composite. If the interface is weak, then the transverse crack, which sometimes gets induced in a 

composite, propagates to the interface leading to the degradation of the strength of the 

composite. When a transverse crack grows, it encounters a fiber and because the fibers are very 

strong, the crack actually propagates through the interface. So, for a weaker interface, it 

propagates through this fiber matrix interface and then the failure takes place, thereby reducing 

the overall strength of the composite. 

Residual stresses – Residual stresses are induced in the lamina because of two reasons viz. the 

mismatch in coefficient of thermal expansion and the fabrication temperature is different 

compared to the operating temperature. Residual stresses thus induced get added to the stresses 

applied by the mechanical loading whenever composite or lamina is loaded and thereby the 

strength of the composite is reduced. Therefore, residual stresses should be taken into account 

while analyzing the strength of a laminated composite.  

(Refer Slide Time: 10:49) 
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In the last lecture, longitudinal tensile strength of a lamina was discussed. Now, let us discuss the 

transverse tensile strength. Unlike the longitudinal tensile strength which is almost entirely 

decided by the fiber properties, the transverse tensile strength is actually influenced by many 

other factors like bond strength of the interface presence of voids etc. 

It is observed that the transverse tensile strength of a lamina or a composite is actually less than 

that of the matrix tensile strength means addition of fiber actually have a negative effect on the 

transverse tensile strength. Now a simplest way to determine the transverse tensile strength is to 

assume that that transverse tensile strength is due to the failure of the matrix.  

Considering a simple RVE as shown in the Fig. having fiber diameter d and the fiber spacing as s 

and the stress applied in the direction 2 is 2σ . Suppose the transverse displacement of the 

composite, fiber and matrix are  cδ , fδ  and mδ respectively. 

With usual assumptions of perfect bonding, uniform fiber spacing, both fiber, matrix and the 

composites follow Hooke’s law that is linear elastic and no residual stress.  

Now,                 (1)c f mδ δ δ= +  

Now suppose cε  , fε  and mε  are the transverse strains (along 2) in the composite, fiber and 

matrix respectively.  

(Refer Slide Time: 14:27) 
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Now looking at this RVE and going by the definition of the strain we can write the expression 

for strain cε   

c
c s

δε = ; f
f d

δ
ε = ;                   (2)m

m s d
δε =
−

   

So, c csδ ε= ; f f dδ ε= ; and ( )m m s dδ ε= −  

c f mδ δ δ= +  

( )c f ms d s dε ε ε⇒ = + −  

1c f m
d d
s s

ε ε ε ⇒ = + −  
 

2 1               (3)f m
d d
s s

ε ε ε ⇒ = + −  
 

 

Now,  

2 f mσ σ σ= =  

Because this is the stress is in this direction 2, so, uniform stress, of course with the assumption 

that the fibers are equally spaced in the thickness direction.  So, stresses are same in the 

transverse direction in the in the fiber matrix and the composite. Now with the assumptions that 

that the fiber, matrix and the composite follow Hooke’s law.  

 f f f m m mE Eσ ε σ ε= = =  

             (4)m
f m

f

E
E

ε ε=  

Now putting Eq. (4) in Eq. (3) 

2 1m
m m

f

Ed d
s E s

ε ε ε ⇒ = + −  
 

2 1              (5)m
c m m

f

Ed d
s E s

ε ε ε ε ⇒ = = + −  
 

So, we could obtain an expression for transverse strain in the composite in terms of the 

transverse strain in the matrix the Young’s moduli of the matrix and the fiber and the relative 

spacing d /s which is relative dimensions of the fibers and the matrix. 

(Refer Slide Time: 19:16) 
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Now with the assumption that the transverse failure of the composite is due to the failure of the 

matrix meaning that at failure, the strain in the matrix mε  is equal to ultimate strength of the 

matrix. So, from the last equation that means equation number 5 we can now write we can 

replace mε by ( )m uε and 2ε  as 2( )T
uε .  

Therefore  

2( ) 1 ( )           (6)T m
u m u

f

Ed d
s E s

ε ε
  = + −     

 

Therefore, again the composite also always Hooks law. Therefore we can write the transverse 

tensile strength of the composite is nothing but 2 2( )T
uE ε  . 

Therefore  

2 2( ) 1 ( )           (7)T m
u m u

f

Ed dE
s E s

σ ε
  = + −     

 

where,  
2

1 f m

f m

V V
E E E

= +  

2
f m

f m m f

E E
E

V E V E
⇒ =

+
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2( ) 1 ( )f mT m
u m u

f m m f f

E E Ed d
V E V E s E s

σ ε
  = + −   +   

  (8) 

So, this is the expression for transverse tensile strength of a lamina in terms of the strength of the 

matrix and the Young’s moduli of the fiber in the matrix and the volume fraction (d/s). This is a 

simple model where it was assumed that the transverse tensile failure of the lamina is because of 

the strain in the matrix reaching the ultimate strain of the matrix.  

(Refer Slide Time: 25:06) 

 
Now as you have discussed earlier see the; now if you see that in the case of 1E  or in the case of 

1( )T
uσ  actually the presence of fibers led to the improvement in the longitudinal modulus as well 

as longitudinal tensile strength. Of course if the volume fraction is kept above certain critical 

volume fraction that leads to the improvement in the longitudinal tensile strength. Also, 1E  that 

is the longitudinal Young’s modulus is of the composite is more than that of the matrix by 

adding the high modulus fibers. 

Even in case of 2E , the transverse modulus of the composite is more than that of the matrix 

because the presence of the high modulus fibers actually puts constraints in the transverse 

deformation thereby increasing the transverse modulus. But in the case of transverse tensile 

strength actually the presence of the fibers leads to induction of stress concentration in the matrix 
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and thus the strength of the composite is actually the transverse tensile strength of the composite 

is actually less than that of the matrix. So, the presence of the fibers in the case of transverse 

tensile strength is having a negative effect. For example, for graphite epoxy the transverse tensile 

strength is only 40 MPa whereas the longitudinal tensile strength is 1200 MPa this is the reason 

is because under transverse loading the cracks actually nucleate in the transverse direction and it 

propagates through the fiber matrix interface. 

So, the net result is that the transverse strength of the composite is less than that of the matrix 

and it is sometimes written as  

2
( )( )T m u

u s
σσ =  

where s is strength reduction factor given by 

1/2

1 1

4
1 1

m
f

f

f m

f

EV
E

s
V E

Eπ

 
− −  

 =
  

− −       

 

Now for some values it could be maybe 2 that means the strength of the transverse tensile 

strength of the composite is half that of the matrix. 

(Refer Slide Time: 28:20) 
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Next is a longitudinal compressive strength of a composite. Now the models which are actually 

used for tensile strength may not be suitable for longitudinal compressive strength. Because 

under compression the failure modes are different there are different possible failure modes like 

transverse tensile, shear failure, fiber micro buckling.  

Depending upon the volume fraction, if the volume fraction is very low the fiber micro buckling 

may take place even at a much lower level of stress whereas with a practical volume fraction of 

say maybe forty percent the fiber micro buckling many times actually is preceded by the fiber 

matrix debonding. Referring to the Fig., fiber micro buckling may be in the extension mode or in 

shear mode. Fiber micro buckling and shear failure will be addressed later where there are 

localized buckling of the fibers and not gross buckling of the laminate. 

In the transverse tensile mode, when the composite is subjected to compression loading, the 

matrix will experience tensile strain in the lateral direction and due to this tensile strain in the 

lateral direction the matrix might fail or there may be fiber matrix debonding. 

A simple model based on the ultimate tensile strain of the matrix is shown in the Fig. where a 

lamina is subjected to a compression stress 1σ in the direction 1 which is the principal material 

direction and naturally because of that there will be transverse strain.  

1
1

1E
σ

ε =  

So, due to Poisson’s effect, the transverse tensile strain is  

1
2 12

1E
σ

ε ν=  

Using maximum strain failure theory, at failure, 2 2( )T
uε ε≥  and hence 1 1( )C

uσ σ≥  

1
2 12

1

( )( )
C

T u
u E

σε ν=  

2
1 1

12

( )( )
T

C u
u E εσ

ν
=  

where 1 f f m mE E V E V= + ; 12 f f m mV Vν ν ν= +  and 2( ) ( ) 1 1T T m
u m u

f

Ed
s E

ε ε
  

= − +      
  

So, this is a simple model, however this model does not go well with the experimental results. 

Therefore a more rigorous model considering the fiber micro backlink has to be considered. 
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Next let us discuss the determination of transverse compressive strength. So, again a simple 

model analogous to the transverse tensile strength could be used.  It is similar to transverse 

tensile strength but we have replaced the tension by compression and the same expression which 

was derived for the transverse tensile strength is used where 2( )T
uε  is replaced by 2( )C

uε and  

( )m uε  is replaced by  ( )C
m uε  in the following expression 

2( ) 1 ( )T m
u m u

f

E d d
E s s

ε ε
  = + −     

 

we get 

2( ) 1 ( )C Cm
u m u

f

E d d
E s s

ε ε
  = + −     

 

and following Hooke's law (multiplying this by 2E ) we get the expression for transverse 

compression strength as 

2 2 2( ) ( )C C
u uEσ ε=  
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2 2( ) 1 ( )C Cm
u m u

f

E d dE
E s s

σ ε
  ⇒ = + −     

 

So, from the analysis of some compression failure specimen it could be observed that many 

times it is because the matrix shear failure or fiber matrix interface failure under this there may 

be failure at the interface of the fiber and the matrix and it might fail. Therefore, the simple 

model does not work well for determination of the transverse compression strength. However, 

this gives us an idea of how the transverse compression strength is actually influenced by the 

fiber properties and the matrix properties and the relative volume fractions.  

(Refer Slide Time: 36:33) 

 
Next let us discuss the in plane shear strength. Again as shown in the Fig. considering an 

subjected to pure shear it is subjected to pure shear 12τ . Now, suppose c∆  , f∆  and m∆  are the 

shear deformation of the composite, fiber and the matrix respectively due to 12τ . Therefore 

           (1)c f m∆ = ∆ + ∆  

Now, suppose, cγ , fγ  and mγ  are the  shear strains the composite, fiber and the matrix 

respectively. By definition of shear strain (Ref Fig.) 
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;  ;          (2)
( )

fc m
c f ms d s d
γ γ γ

∆∆ ∆
= = =

−
 

From Eqn. (1) and (2)      ( )c f ms d s dγ γ γ⇒ = + −  

  1           (3)c f m
d d
s s

γ γ γ ⇒ = + − 
 

 

Now, the shear stress in the composite, fiber and the matrix are same ie.  12 f m cτ τ τ τ= = =  and 

using Hooke’s law, 

  

           (4)

f f m m

m
f m

f

G G
G
G

γ γ

γ γ

⇒ =

⇒ =
 

From Eqn. (3) and (4)  12  1m
c m m

f

Gd d
s G s

γ γ γ γ ⇒ = = + − 
 

 

12  1         (5)m
m

f

Gd d
s G s

γ γ
  ⇒ = + −  

   
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Now considering that the failure is due to matrix meaning at failure at failure, the shear strain in 

the matrix reaches the ultimate shear strain of the matrix.  

At failure, ( ) ( )12 12m m u u
γ γ γ γ= ⇒ =  

Substituting in Eqn. (5) ( ) ( )12  1         (6)m
mu u

f

Gd d
s G s

γ γ
  ⇒ = + −  

   
  

and using Hooke’s law, 

( ) ( )12 12 12u u
Gτ γ=  

( ) ( )12 12  1         (7)m
mu u

f

Gd dG
s G s

τ γ
  ⇒ = + −  

   
 

Where, 12
12

1    f f mm

f m m f f m

V G GV G
G G G V G V G

= + ⇒ =
+

 

 

( ) ( )12  1         (8)f m m
mu u

m f f m f

G G Gd d
V G V G s G s

τ γ
  ⇒ = + −  +    

 

So, this is the ultimate shear strength of the composite in terms of the ultimate shear strain of the 

matrix and other properties and dimensions.  
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