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Hello welcome to the second lecture of the module micro mechanics of lamina. In the last 

lecture the importance of studying micromechanics of lamina and its objectives have been 

discussed along with different approaches in micromechanics of lamina and different important 

terminologies used in micromechanics of lamina. Determination of lamina engineering 

constants using the mechanics of material approach was discussed where the longitudinal 

Young’s modulus and Transverse Young’s modulus of a lamina in terms of the Young’s moduli 

of the fiber and the matrix and the volume faction was derived.  

In continuation to that today we shall discuss the determination of other engineering constants 

for a lamina using mechanics of material approach.  

(Refer Slide Time: 01:49) 

 
Determination of major Poisson’s ratio.  

Referring to the figure, with reference to the material axes, there could be two Poisson’s ratios 

viz. ν12 (sometimes called major Poisson’s ratio) and ν21 (sometimes called minor Poisson’s 

ratio) which were defined while discussing macromechanics of lamina and they are related as. 
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Now in determination of this major Poisson ratio using mechanics of material approach the 

same RVE which was used for determination of longitudinal Young’s modulus is also 

considered as shown in the Fig. Here also load is applied along material direction 1 but the 

deformation along 2 due to the Poisson's effect is observed. Suppose due to the load along 1, 
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By definition, the strains along the transverse direction (along 2) are 

; ;
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Now suppose the Poisson’s ratios of the composite fiber and the matrix are 

, , ' ,c f m Poisson s ratioof composite fiber and matrix respectivelyν ν ν →  

By definition of Poisson’s ratio, 

; ;
TT T
fc m

c f mL L L
c f m

εε εν ν ν
ε ε ε

= − = − = −
 

Now from the condition of perfect bonding for this RVE the strains in the longitudinal direction 

(along 1) in the composite, fiber and the matrix are same and hence 
L L L
c f mε ε ε= = . 

(Refer Slide Time: 08:01) 
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The deformed shape of the RVE showing the strains along 1 and 2 due to load along 1 only is 

shown in the Fig.  

Therefore, the total change in length of the composite δc in the transverse direction is the sum 

of that in the fiber and the matrix i.e.  
T T T
c f mδ δ δ= +  

Now using the relation  
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T T T
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Now, writing the transverse strain in terms of longitudinal strain and the Poisson’s ratio as 
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we get 
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Now taking note of the fact that for the RVE tf/tc actually represents the volume fraction Vf and 

tm/tc also represents the volume fraction Vm. Therefore, at the Poisson’s ratio could be written 

as 

c f f m mV Vν ν ν= +
 

Now what is νc is the Poisson’s ratio of the lamina when the stress is applied along 1 and all 

other stresses are zero and because of that there is a transverse deformation along 2 therefore 

this νc = ν12. 

12 f f m mV Vν ν ν= +
 

So, we get the Poisson’s ratio of the lamina in terms of the Poisson’s ratios of the fiober and 

the matrix and the volume fraction. This is similar to what was obtained for the longitudinal 

Young’s modulus of a lamina E1 = EfVf + EmVm.  

Now once ν12 is known using the reciprocal relation 
12 21 2

21 12
1 2 1

E
E E E
ν ν ν ν= → =

. 

So, the Poisson’s ratio ν12 is influenced by the Poisson ration of the matrix and Poisson station 

of the fiber as well as their volume fraction. 

(Refer Slide Time: 12:51) 

 
Next, we will discuss the determination of in plane shear modulus of a lamina. In this case 

again the same RVE is considered but it is now subjected to pure in plane shear τ12 and no 

other stresses. So, suppose because of this in plane shear suppose,  
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Since the lamina is subjected to in-plane shear stress τ12 , the composite, the fiber and the 

matrix all experience the same shear stress and hence 

c f mτ τ τ= =
 

Subjected to the in-plane shear, the deformed shape of the RVE is as shown in the Fig.  Now 

using the definition of shear strain (small strain) 

; ;c c c f f f m m mt t tδ γ δ γ δ γ= = =
 

Also, because it is assumed that the fiber matrix and the composites obey the Hooke’s law that 

is linearly elastic,  

; ;fc m
c f m

c f mG G G
ττ τγ γ γ= = =

 

 

 (Refer Slide Time: 17:03) 

 
Now referring to the Fig., total shear deformation is nothing but the sum of the shear 

deformation of the fiber and the shear deformation of the matrix and 

c f m δ δ δ= +  
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c c f f m mt t tγ γ γ= +  
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Now using 

( )c f mτ τ τ= =
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Now taking note of the fact that for the RVE tf/tc actually represents the volume fraction Vf and 

tm/tc also represents the volume fraction Vm 

1 f m

c f m

V V
G G G

= +

 

Now Gc in this case is nothing but the in plane shear modulus G12 therefore  

12

1 f m

f m

V V
G G G

= +
 

So the in-plane shear modulus of the lamina in terms of that of the fiber and the matrx and the 

volume fraction is derived and note that it is similar to transverse Young’s modulus of the 

lamina 1/E2 = Vf/Ef +Vm/Em. So, here also ah it is quite clear that the shear modulus of the 

lamina is actually decided by the corresponding shear modulus of the fiber and the matrix and 

that the relative proportion.  

(Refer Slide Time: 20:18) 
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So, using mechanics of material approach the relationship between the composite modulus in 

terms of the modulus of the fiber and the matrix and the relative proportions are established as  

1 f f m mE E V E V= +  

12 f f m mV Vν ν ν= +  

2

1 f m

f m

V V
E E E

= +
 

12

1 f m

f m

V V
G G G

= +
 

 

Now having understood this it, the assumptions that were made to develop these relationships 

were clearly stated as 

● Fiber matrix and composites are all obey Hooke's  

● Fibers are of uniform strength, uniform dimensions, equally spaced  

● There is no void  

● Perfect bonding.  

Now it is important that we understand how accurately these expressions developed using 

mechanics of material approach could actually predict the composite modulus in terms of the 

modulus of the fiber and the matrix.  

(Refer Slide Time: 22:43) 

 
So, let us start with the longitudinal Young’s modulus E1. So, we have obtained that  

1 f f m mE  E V  E V= +  
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So, why do we add fibers. Suppose in a matrix if we add fibers naturally, we would like to see 

that the stiffness increases, because fiber stiffness is far higher compared to that of the matrix. 

Therefore with the addition of fiber in the matrix, the stiffness increases. Let us see how the 

fiber properties actually influence E1. 

Say we can write this as 
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⇒
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E1 is the longitudinal Young’s modulus of the lamina, Ef and Em are the Young’s moduli of the 

fiber and the matrix respectively. Generally, the fiber modulus is far higher compared to that 

of the matrix.  

Suppose Ef/Em = 10, then in such a case if suppose Vf = 10% (10% fiber and 90 % matrix) that 

leads to  

E1/Em = (10−1) × 0.1 + 1 = 1.9 

This means that adding 10% fiber leads to 1.9 times increase in the modulus of the composite 

compared to the matrix modulus. So, adding only 10% fiber leads to 90% increase in the 

Young’s modulus.  

Similarly, for Vf = 20% (20% fiber and 90 % matrix) leads to  

E1/Em = (10−1) × 0.2 + 1 = 2.8. 

So, increasing the fiber volume fraction by 2-fold E1/Em is also increased from 1.9 to 2.8. 

Similarly, for Vf = 50% then E1/Em = 5.5. So, we could see that as we increase the volume 

fraction of the fiber for a given Ef/Em the composite longitudinal Young’s modulus also 

increases almost by the same order.  

Now suppose for a given Vf, say Vf = 20% , if we increase Ef/Em , say  Ef/Em = 20 this leads to 

E1/Em = (20−1) × 0.2 + 1 = 4.8. 

So, for a given volume fraction if Ef/Em is doubled E1 increases from 2.8 to 4.8. So, what we 

observe is that as Vf increases it has significant effect on the increase longitudinal Young’s 

modulus and for a given Vf as Ef/Em increases there is a significant increase in the longitudinal 

Young’s modulus.  

So, the fibers both in terms of its modulus as well as in terms of its volume fraction actually 

significantly influence E1 and therefore this E1 is actually a fiber dominant property. So, the 
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addition of fibers actually we understood now that addition of fibers actually influences the 

longitudinal Young’s modulus. 

Next we try to understand what happens when we add the fiber in terms of the load carrying 

capacity of the composite and in terms of stress strain relationship of a composite.  

(Refer Slide Time: 30:03) 

 
Suppose the load Fc applied along direction 1 is shared by the fiber (Ff) and the matrix (Fm). 

So, 
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where Ac, Af and Am are the cross-sectional areas of the composite, fiber and the matrix 

respectively and σc, σf and σm are the stress in the composite, fiber and the matrix respectively. 

For the considered RVE (ref Fig.), Af/Ac = Vf. 

Suppose we have the stress strain relationship for fiber and the stress strain relationship for the 

matrix. Now for a given volume fraction and at a given strain suppose εc we know what is σf. 

Similarly for a given εc we know what is σm, the matrix stress. Therefore, knowing the volume 

fraction, Vf we also know what is σc using c f f m mV Vσ σ σ= +  . 

That means the stress in the composite corresponding to a given strain could be obtained and 

thus we could obtain the stress strain curve for the composite for a given volume fraction. 

Now in this in the micro mechanics approach while determining E1 it was assumed that the 

matrix and the fiber behaves linearly elastic and obeys Hooke’s law. Now suppose the matrix 
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does not obey Hooke's law i.e., the matrix is non-linear beyond certain strain value as shown 

in the Fig. Now in deriving c f f m mV Vσ σ σ= +  we still did not put the assumptions of linearity. 

Only when we write the stresses in terms of strains and Young’s modulus we put the 

assumptions of linearity.  

Now in this in this expression the assumption of linearity is still not use and therefore we can 

still use this to obtain the composite stress strain curve using the matrix stress strain curve 

which is non-linear. Only thing is the curve for the composite stress strain will also be non-

linear. But knowing that Ef is far greater than Em, the influence of the non-linearity of the 

polymer matrix will not be significant in determination of the stress strain curve of the 

composite. Also, at higher volume fraction it is dominated by the fiber therefore Em or stress 

strain non-linearity of matrix does not cause significant error in E1 especially at high volume 

fraction. Therefore, many times it is not considered, but fiber behaves like linear till its failure. 

But matrix may be having nonlinearly but it does not have much influence on the determination 

of E1 using mechanics of material approach. 

 

The next thing is the load share.  
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Ef is generally much higher compared to that of the matrix. Therefore, say for Ef/Em = 10 and 

say Vf = 10%, this leads to Ff/Fm = 1. This means that addition of 10% of fiber actually leads 

to 50% of the load shared by fiber. Therefore, it is significant.  

If we plot this, the volume fraction versus Ff/Fm for different Ef/Em as shown in the Fig., it 

could be seen that as volume fraction increases, the load share of the fiber increases for a given 

volume fraction. As Ef/Em increases the load share also increases. Therefore, E1 is actually a 

fiber dominated property. 

And it is observed that the predicted E1 by agrees well with experimental observations. 

(Refer Slide Time: 41:12) 

220



 
 

Next let us see then influence on E2. We know 
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Now if we plot this if we plot this E2/Em as a function of Vf as shown in the Fig. 

 

So, for Vf =1 this becomes E2/Em = Ef/Em . Suppose for a given Vf =50% for a given Ef/Em = 

10, E2/Em =1.88.  That means adding 50% fiber leads to an increase in the matrix modulus only 

by 2 times. Now if you compare this with longitudinal modulus, adding only 10% of fiber leads 

to almost 90% increase in the matrix Young’s modulus.  So, Ef does not have much influence 

on E2. To achieve a E2/Em =5, we need almost 90% fiber volume fraction which is impractical. 

90% fiber volume fraction is not achievable as in that case there will be not much space left for 

waiting of the fibers and the fibers will touch each leading to imperfect adhesion of the fiber in 

the matrix. Therefore, transverse Young’s modulus E2 is not influenced by the modulus of the 

fiber as well as the volume fraction of the fiber. It is actually a matrix dominated property.  

It is observed that the expression for E2 from the mechanics of material approach does not agree 

well with experimental results. Now the reason for this is that in the RVE considered, it was 

assumed that the fibers in the thickness directions are regularly spaced as shown in the Fig. and 

the RVE is simplified.  

But in actual case the fibers will be randomly spaced and it is not stacked as it is shown here. 

Therefore, actually the stress in direction 2 may not be uniform but it is shared ie.  the stress in 
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the composite is not equal to the stress in the matrix and stress in the fiber but is actually shared. 

That is the reason for the discrepancy. 

And the second reason is the mismatch in Poisson’s ratio of the fiber and the matrix. So, 

because of this there will be stresses induced in the fiber and the matrix. So, that is another 

reason which is not taken into account in this simplified RVE therefore the transverse Young’s 

modulus which is obtained from mechanics of materials approach does not actually predict 

results accurately and it does not match with the experimental observations. On the other hand, 

the E1 agrees well with the experimental observations.  

Same is the reason that even G12 which is a matrix dominated property and also does not agree 

well the experimental observations. The mechanics of material approach actually gives us 

simplified simple relations where the modulus of the composite could be obtained from the 

corresponding modulus of the fiber and the matrix and the relative proportions. 

However, except the longitudinal Young’s modulus E1 which actually agrees well with the 

experimental observations, the matrix dominated properties like transverse Young’s modulus 

E2 and the shear modulus G12 actually do not agree with the experimental results.  

So, in summarizing, the mechanics of material approach could provide us a simplified 

relationship for E1, E2, ν12 and G12. However, the predictions of E2 and G12 by mechanics of 

material approach do not agree with the experimental observations.  
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